第三课时 整式的加减.ppt
合集下载
人教版(2024新版)七年级数学上册第四章课件:4.2 课时3 整式的加减
![人教版(2024新版)七年级数学上册第四章课件:4.2 课时3 整式的加减](https://img.taocdn.com/s3/m/218212a58ad63186bceb19e8b8f67c1cfad6eef6.png)
过程.
(a2b+4ab)-3(ab-a2b)
=a2b+4ab-3ab-3a2b…………第一步,
=a2b-3a2b+4ab-3ab…………第二步,
=ab-2a2b…………第三步.
据此解答下列问题.
(1)马小虎同学解答过程在第
是 去括号时,没有变号
.
一 步开始出错,出错原因
跟踪训练
1.以下是马小虎同学化简代数式(a2b+4ab)-3(ab-a2b)的
=4a2b+ab.
新知探究
通过上面的学习,我们可以得到整式加减的运算
法则:
几个整式相加减,如果有括号就先去括号,然后
再合并同类项.
典型例题
例3 求
− ( −
解:
=
)
−2 −
− 2 +
+
−
(−
+
+
+
−
)
+
解:小纸盒的表面积是(2ab+2bc+2ca)cm2,
大纸盒的表面积是(6ab+8bc+6ca)cm2.
(1)由(2ab+2bc+2ca)+ (6ab+8bc+6ca)
=2ab+2bc+2ca+6ab+8bc+6ca
= 8ab+10bc+8ca
可知,做这两个纸盒共用纸(8ab+10bc+8ca)cm2.
(a2b+4ab)-3(ab-a2b)
=a2b+4ab-3ab-3a2b…………第一步,
=a2b-3a2b+4ab-3ab…………第二步,
=ab-2a2b…………第三步.
据此解答下列问题.
(1)马小虎同学解答过程在第
是 去括号时,没有变号
.
一 步开始出错,出错原因
跟踪训练
1.以下是马小虎同学化简代数式(a2b+4ab)-3(ab-a2b)的
=4a2b+ab.
新知探究
通过上面的学习,我们可以得到整式加减的运算
法则:
几个整式相加减,如果有括号就先去括号,然后
再合并同类项.
典型例题
例3 求
− ( −
解:
=
)
−2 −
− 2 +
+
−
(−
+
+
+
−
)
+
解:小纸盒的表面积是(2ab+2bc+2ca)cm2,
大纸盒的表面积是(6ab+8bc+6ca)cm2.
(1)由(2ab+2bc+2ca)+ (6ab+8bc+6ca)
=2ab+2bc+2ca+6ab+8bc+6ca
= 8ab+10bc+8ca
可知,做这两个纸盒共用纸(8ab+10bc+8ca)cm2.
整式的加减ppt课件
![整式的加减ppt课件](https://img.taocdn.com/s3/m/a8f4fb74182e453610661ed9ad51f01dc381577b.png)
× -
×
- =-
.
感悟新知
知3-练
5-1.先化简,再求值:
(- x2+ 3xy - y2 ) - (- 3x2+5xy - 2y2 ) ,其中
x= , y= - .
感悟新知
知3-练
解:
原式=-x2+3xy-y2+3x2-5xy+2y2=2x2-2xy+y2.
12
(3) 利用合并同类项法则合并同类项;
(4) 写出合并后的结果 (可能是单项式,也可能是多项
式).
感悟新知
例2
知2-练
合并同类项:
(1) x2-3x-2+4x-1;
(2)3a2b-2ab+2+2ab-a2b-5.
解题秘方:合并同类项:将同类项的系数相加,
字母和字母的指数不变 .
感悟新知
知2-练
解:(1) x2-3x-2+4x-1
(2) - 3(2a - 3b) - 5a+b = - 6a+9b - 5a+b= - 11a+10b;
(3) (x+
��
)- 2 (3x - ) =x+ - 6x+ = - 5x+
.
感悟新知
知3-练
警示误区:去括号时要看清括号前面的符号,当
括号前面是“-”号时,去括号后,
原括号里各项的符号都要改变,不能
知4-练
(2) 若 3y - x=2, 求A - 2B 的值 .
人教版七年级上册整式的加减(第3课时)课件
![人教版七年级上册整式的加减(第3课时)课件](https://img.taocdn.com/s3/m/e186bc514b7302768e9951e79b89680203d86b9c.png)
2.2 整式的加减
2.2 整式的加减(3)
课题引入
1.某学生合唱团出场时第一排站了n名,从第二排起每一排
都比前一排多一人,一共站了四排,则该合唱团一共有多少名
学生参加?
答案:+(+1)+(+2)+(+3)
课题引入
2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),
小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,
求值.如题目要求“化简求值”时,必须
选用解法二求解.
知识梳理
特别讲授
整式的加减错例剖析
合并同类项是用字母表示数中的重要内容,熟练掌握合并同类项
法则、去括号法则是解决问题的关键.如果对合并同类项法则或去括号
的法则理解不透彻,可能会出现下列计算中的错误.
知识梳理
一、对同类项概念理解错误
例1 计算:
1 -22 -8 2 -2
知识梳理
四、去括号法则理解错误
例4 计算:
1 -(-)
(2) -2(- + )
错解: 1 -(-) = --
(2) -2(- + ) = -2-
(2)3-5-3
错解:(1)-22 -8 2 -2 = (-2-8-1)2 = -112
2 3-5-3 = 2-3 = -
正解:(1) -22 -8 2 -2 = (-2-1)2 -8 2 = -32 -8 2
(2) 3-5-3 = 2-3
(2) 6 + 6 + 8 − 2 + 2 + 2
= 6 + 6 + 8 − 2 − 2 − 2
= 4 + 4 + 6
因此做这两个纸盒共用料 8 + 8 + 10 平方厘米,
2.2 整式的加减(3)
课题引入
1.某学生合唱团出场时第一排站了n名,从第二排起每一排
都比前一排多一人,一共站了四排,则该合唱团一共有多少名
学生参加?
答案:+(+1)+(+2)+(+3)
课题引入
2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),
小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,
求值.如题目要求“化简求值”时,必须
选用解法二求解.
知识梳理
特别讲授
整式的加减错例剖析
合并同类项是用字母表示数中的重要内容,熟练掌握合并同类项
法则、去括号法则是解决问题的关键.如果对合并同类项法则或去括号
的法则理解不透彻,可能会出现下列计算中的错误.
知识梳理
一、对同类项概念理解错误
例1 计算:
1 -22 -8 2 -2
知识梳理
四、去括号法则理解错误
例4 计算:
1 -(-)
(2) -2(- + )
错解: 1 -(-) = --
(2) -2(- + ) = -2-
(2)3-5-3
错解:(1)-22 -8 2 -2 = (-2-8-1)2 = -112
2 3-5-3 = 2-3 = -
正解:(1) -22 -8 2 -2 = (-2-1)2 -8 2 = -32 -8 2
(2) 3-5-3 = 2-3
(2) 6 + 6 + 8 − 2 + 2 + 2
= 6 + 6 + 8 − 2 − 2 − 2
= 4 + 4 + 6
因此做这两个纸盒共用料 8 + 8 + 10 平方厘米,
4.2整式的加法与减法(第3课时)课件(共20张PPT)
![4.2整式的加法与减法(第3课时)课件(共20张PPT)](https://img.taocdn.com/s3/m/2e30ec880875f46527d3240c844769eae109a35b.png)
y= .
3
1
1 2 3
1 2
x-2
x
-
y
+
-
x+
y 的值,其中 x=-2
求
2
3 2
3
,
1
2 2 3
1 2
=
x-2x+
y
-
x+
y
解:原式
2
3
2 3
=-3x+y2.
2
当 x=-2,y= 3 时,
原式=(- 3)×(-2)+ 2 =6+4 =6 4 .
9
9
3
求
2
3 2
3
,
解:
直接代入
2
2
1
1 2 3
1 2
原式 = × (-2)-2×(-2)- × +- ×(-2)+ ×
2
3 3 2
3 3
4
=6 .
9
你还有别的方法吗?
先化简,后求值.
例 2
2
例 1
做大、小两个长方体纸盒,尺寸如下表所示.
表 长方体纸盒的尺寸
类型
长/cm
宽/cm
高/cm
小纸盒
a
b
c
大纸盒
1.5a
2b
2c
上面的面的面积=下面的面的面积=ab cm2,
左面的面的面积=右面的面的面积=bc cm2,
前面的面的面积=后面的面的面积=ca cm2 .
小纸盒的表面积是(2ab+2bc+2ca)cm2.
c
a
b
例 1
3
1
1 2 3
1 2
x-2
x
-
y
+
-
x+
y 的值,其中 x=-2
求
2
3 2
3
,
1
2 2 3
1 2
=
x-2x+
y
-
x+
y
解:原式
2
3
2 3
=-3x+y2.
2
当 x=-2,y= 3 时,
原式=(- 3)×(-2)+ 2 =6+4 =6 4 .
9
9
3
求
2
3 2
3
,
解:
直接代入
2
2
1
1 2 3
1 2
原式 = × (-2)-2×(-2)- × +- ×(-2)+ ×
2
3 3 2
3 3
4
=6 .
9
你还有别的方法吗?
先化简,后求值.
例 2
2
例 1
做大、小两个长方体纸盒,尺寸如下表所示.
表 长方体纸盒的尺寸
类型
长/cm
宽/cm
高/cm
小纸盒
a
b
c
大纸盒
1.5a
2b
2c
上面的面的面积=下面的面的面积=ab cm2,
左面的面的面积=右面的面的面积=bc cm2,
前面的面的面积=后面的面的面积=ca cm2 .
小纸盒的表面积是(2ab+2bc+2ca)cm2.
c
a
b
例 1
人教版七年级数学上册第二章 2.2 第3课时 整式的加减课件(共24张PPT)
![人教版七年级数学上册第二章 2.2 第3课时 整式的加减课件(共24张PPT)](https://img.taocdn.com/s3/m/b13baff97375a417866f8fe4.png)
图2-2-5
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.
《整式的加减》第3课时 公开课教学PPT课件【初中数学人教版七年级上册】
![《整式的加减》第3课时 公开课教学PPT课件【初中数学人教版七年级上册】](https://img.taocdn.com/s3/m/27ee596049649b6649d74719.png)
三、运用新知
议一议:在上面的两个问题中,分别涉及了整式 的什么运算?你是如何运算的?
整式的加减运算
去括号、合并同类项
三、运用新知
议一议:整式的加减的一般步骤是什么?整 式的加减结果是什么?
进行整式加减运算时,有括号先去括号, 再合并同类项.
四、巩固新知
例1(1)2x2-3x+1 与 -3x2+5x-7 的和; (2)-x2+3xy-0.5y2 与 -0.5x2+4xy-1.5y2 的差.
2. 计算:(1)12x-20x =_-_8_x___; x+7x-5x=__3_x__. 把多项式中的_同__类__项__合并成一项,叫做合并同类项.
3. 去括号: (1) a + ( b – c - d )= _a_+__b_-_c_-_d___; (2) a- ( b – c + d )= _a_-_b_+__c_-_d___.
负变正不变, 要变全都变!
一、复习回顾
4. 化简: (1) 12(x - 0.5)=__1_2_x_-_6__; (2) -5(1 - 15x)=_-_5_+_x___. 5. 计算: (1) (8a-7b)+(4a-5b)=__1_2__a_-_1_2_b____;
(2) 7x-(3x-3)=___4_x_+_3____. 6. 一个两位数,个位数字是 x,十位数字是 y,则这个两位数为 ___1_0_x_+_y___.
五、归纳小结
这堂课你有什么收获?
再见
第二章 整式的加减
2.1 整式的加减 第 3 课时
一、复习回顾
下列整式哪些是单项式?哪些是多项2 y5,
4.2 第3课时 整式的加减 课件(共20张PPT) 人教版七年级数学上册
![4.2 第3课时 整式的加减 课件(共20张PPT) 人教版七年级数学上册](https://img.taocdn.com/s3/m/72ee1955591b6bd97f192279168884868762b830.png)
【题型二】整式的加减的应用
例4:为落实“阳光体育”工程,某校计划采购网球及网球拍.已知网球拍每个250元,网球每桶30元,甲、乙两个商场推出如下优惠活动:甲商场:按购买金额打九折付款;乙商场:买一个网球拍送一桶网球.现学校需要购买网球拍18个,网球x桶(x>18).(1)分别求出甲、乙两个商场的购买费用;(用含x的整式表示)
解:原式=2a+6a2+2-6a2+3a-6=5a-4.
A
例3:一轮船航行于甲、乙两港之间,它在静水中的航速为a千米/时,水速为16千米/时,则轮船顺水航行5小时的行程与逆水航行3小时的行程相差多少?
解:5(a+16)-3(a-16)=5a+80-3a+48=2a+128(千米).答:轮船顺水航行5小时的行程与逆水航行3小时的行程相差(2a+128)千米.
去括号时,注意不要漏乘,注意符号变化
同学们,悟性的高低取决于有无悟“心”,差别在于你是否去思考,去发现.
教材习题:完成课本101-102页练习1,2,3题.
同学们再见!
授课老师:
时间:2024年9月15日
4.2 整式的加法与减法
第3课时 整式的加减
1. 通过具体实例,引导学生探究、理解整式加减的实质,掌握整式的加减运算法则,培养学生观察、分析的能力.2.通过运用整式的加减运算法则解决实际问题,掌握规范的解题步骤,培养学生的运算能力.
重点
难点
情境导入
同学们,我们一起来看一个问题:小强乘公共汽车到城里的书店买书.小强上车时,发现车上已有(4a-b)人,车到中途站时,有(3a-4)人下车,但是又上来若干人,这时公共汽车上共有(9a-3b)人,则中途有多少人上车? 你能用我们学过的数学知识解决这个问题吗?
求整式的值时,一般需要先化简,再代入数值计算.
例4:为落实“阳光体育”工程,某校计划采购网球及网球拍.已知网球拍每个250元,网球每桶30元,甲、乙两个商场推出如下优惠活动:甲商场:按购买金额打九折付款;乙商场:买一个网球拍送一桶网球.现学校需要购买网球拍18个,网球x桶(x>18).(1)分别求出甲、乙两个商场的购买费用;(用含x的整式表示)
解:原式=2a+6a2+2-6a2+3a-6=5a-4.
A
例3:一轮船航行于甲、乙两港之间,它在静水中的航速为a千米/时,水速为16千米/时,则轮船顺水航行5小时的行程与逆水航行3小时的行程相差多少?
解:5(a+16)-3(a-16)=5a+80-3a+48=2a+128(千米).答:轮船顺水航行5小时的行程与逆水航行3小时的行程相差(2a+128)千米.
去括号时,注意不要漏乘,注意符号变化
同学们,悟性的高低取决于有无悟“心”,差别在于你是否去思考,去发现.
教材习题:完成课本101-102页练习1,2,3题.
同学们再见!
授课老师:
时间:2024年9月15日
4.2 整式的加法与减法
第3课时 整式的加减
1. 通过具体实例,引导学生探究、理解整式加减的实质,掌握整式的加减运算法则,培养学生观察、分析的能力.2.通过运用整式的加减运算法则解决实际问题,掌握规范的解题步骤,培养学生的运算能力.
重点
难点
情境导入
同学们,我们一起来看一个问题:小强乘公共汽车到城里的书店买书.小强上车时,发现车上已有(4a-b)人,车到中途站时,有(3a-4)人下车,但是又上来若干人,这时公共汽车上共有(9a-3b)人,则中途有多少人上车? 你能用我们学过的数学知识解决这个问题吗?
求整式的值时,一般需要先化简,再代入数值计算.
2024年秋新人教版七年级上册数学课件 4.2 整式的加减(第3课时)整式的加减
![2024年秋新人教版七年级上册数学课件 4.2 整式的加减(第3课时)整式的加减](https://img.taocdn.com/s3/m/2dc13c5b91c69ec3d5bbfd0a79563c1ec5dad78a.png)
= 3xy+10y+5x-2xy-2y+3x =8x+8y+xy
=8(x+y)+xy.
注意整体思想的 运用
把xy=-2,x+y=3代入,原式=8×3+(-2)=24-2=22.
6.若(x2+ax-2y&的取值无
关,求a,b的值.
解: (x2+ax-2y+7)-(bx2-2x+9y-1) = x2+ax-2y+7-bx2+2x-9y+1 = (1-b)x2+(a+2)x-11y+8.
如果有括号,一般先去括号
例1 计算:
(1) (2x-3y)+(5x+4y) ; (2) (8a-7b)-(4a-5b).
分析:第(1)题是计算多项式2x -3y和5x+4y的和; 第(2)题是计算多项式8a-7b和4a-5b的差.
解: (1)(2x-3y)+(5x+4y) = 2x-3y +5x+4y = 7x+y;
2r1+2r2+2r3=2R
整式加减的运算法则: 几个整式相加减,如果有括号就先去括号,然后
再合并同类项. 注意: (1)整式加减运算的过程中,一般把多项式用括号括 起来; (2)整式加减的最后结果中不能含有同类项,即要合 并到不能再合并为止.
一化:利用整式加减的运算法则将整式化简;
整式化简求 值的方法
(2) 5a2-[a2+(5a2-2a)] =5a2-(a2+5a2-2a) =5a2-(6a2-2a) =5a2-6a2+2a =-a2+2a.
整式的加减ppt课件_图文
![整式的加减ppt课件_图文](https://img.taocdn.com/s3/m/a8d8552cb7360b4c2e3f6464.png)
( 交换律 )
2.类比探究,学习新知
例题 4x2 2x 7 3x 8x2 2
解:4x2 2x 7 3x 8x2 2
4x2 8x2 2x 3x 7 2
( 交换律 )
(4x2 8x2 ) (2x 3x) (7 2) ( 结合律 )
母及其指数一同提出来,再把系数部分相加); (4)按同一个字母的降幂(或升幂排列).
3.学以致用,应用新知
例1 合并下列各式的同类项:
(1)xy2 1 xy2 5
(2)3 x2 y 2 x2 y 3 xy2 2 xy2
(3)4a2 3b2 2ab 4a2 4b2
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的
在括号内打“√”,错误的打“×”
(1) 3x 与 3mx 是同类项( )
(2) 2ab 与 5ab 是同类项( )
(3) 3xy2 与 1 y2 x 是同类项(
)
(4) 5a2b
与
2 2a
2bc
是同类项(
)
(5) 23 与 32 是同类项( )
4.基础训练,巩固新知
(3) 2ab 2ba 0
(4)3 x2 y 5 xy2 2 x2 y
例2 (1)求多项式 2x2-5x+x2+4x-3x2-2 的值,
其中 x= 1 ; 2
(2)求多项式3a+abc- 1 c2-3a+ 1 c2 的值,
3
3
其中 a - 1 , b 2 ,c -3
6
2x2 3xy 6x2 0 0 0
8x2 3xy
86
2
例6 若 a2 ab 20, ab b2 13 ,
3.4整式的加减(第三课时)(课件)七年级数学上册(北师大版)
![3.4整式的加减(第三课时)(课件)七年级数学上册(北师大版)](https://img.taocdn.com/s3/m/a2cd1947178884868762caaedd3383c4ba4cb442.png)
与后三个数字组成的三位数 的和能被 9 整除,则满足条件的数的最大值是 8165.
课堂小结
1.整式加减运算的实质
去括号 合并同类项
由特殊到一般 2. 整式的加减应用体现数学思想 整体思想
化归思想.
1.长方形的长是2a,宽是3a﹣b,则长方形的周长是( A ) A.10a﹣2b B.7a﹣b C.10a+2b D.7a+b
2.已知A=3x2+2x﹣1,B=mx+1,若关于x的多项式A+B不含 一次项,则m的值( D )
A.2
B.﹣3
C.4
D.﹣2
当堂测试
3.当a+b=3时,代数式2(a+2b)﹣(3a+5b)+5的值为 2 . 4.一个长方形的长是a+1,宽是a,则这个长方形的周长为 4a+2 .
5.当m=
时 , 关 于 x 的 多 项 式 8x2 ﹣ 3x+5 与 多 项 式
3
解:原式=3x 2 12x 3 x 3 4 x 2 2 (先去括
= x3 3x2
4 x2
3 12x 3 2
号) (降幂排
3
列)
= x 3 5 x 2 12x 1 (合并同类项,化简完成)
3
当x=-2时 (代入)
原式= (2)3 5 (2)2 12 (2) 1 =8 20 24 1
将2A﹣B看成了2A+B,求得结果为3x2﹣2x,已知A=x2+3x﹣2.
(1)则多项式B=
;
(2)求2A﹣B的正确结果为
.
6.一辆客车上原有(6a﹣2b)人,中途下车一半人数,又上车若干人 ,这时车上共有(12a﹣5b)人.则中途上车的乘客是(__9_a_-_4_b__)人.
课堂小结
1.整式加减运算的实质
去括号 合并同类项
由特殊到一般 2. 整式的加减应用体现数学思想 整体思想
化归思想.
1.长方形的长是2a,宽是3a﹣b,则长方形的周长是( A ) A.10a﹣2b B.7a﹣b C.10a+2b D.7a+b
2.已知A=3x2+2x﹣1,B=mx+1,若关于x的多项式A+B不含 一次项,则m的值( D )
A.2
B.﹣3
C.4
D.﹣2
当堂测试
3.当a+b=3时,代数式2(a+2b)﹣(3a+5b)+5的值为 2 . 4.一个长方形的长是a+1,宽是a,则这个长方形的周长为 4a+2 .
5.当m=
时 , 关 于 x 的 多 项 式 8x2 ﹣ 3x+5 与 多 项 式
3
解:原式=3x 2 12x 3 x 3 4 x 2 2 (先去括
= x3 3x2
4 x2
3 12x 3 2
号) (降幂排
3
列)
= x 3 5 x 2 12x 1 (合并同类项,化简完成)
3
当x=-2时 (代入)
原式= (2)3 5 (2)2 12 (2) 1 =8 20 24 1
将2A﹣B看成了2A+B,求得结果为3x2﹣2x,已知A=x2+3x﹣2.
(1)则多项式B=
;
(2)求2A﹣B的正确结果为
.
6.一辆客车上原有(6a﹣2b)人,中途下车一半人数,又上车若干人 ,这时车上共有(12a﹣5b)人.则中途上车的乘客是(__9_a_-_4_b__)人.
《整式的加减》ppt课件全面版
![《整式的加减》ppt课件全面版](https://img.taocdn.com/s3/m/58eceee26f1aff00bfd51e32.png)
A.a2-5a+6 B.a2-5a-4 C.a2-a-4 D.a2-a+6
【解析】选D.先去括号,再合并同类项.
2.(广州·中考)下列运算正确的是(
)
A.-3(x-1)=-3x-1
B.-3(x-1)=-3x+1
C.-3(x-1)=-3x-3
D.-3(x-1)=-3x+3
【解析】选D.考查去括号法则.因为-3(x-1)=-3x+3,
(2)做大纸盒比做小纸盒多用料:
(12ab 16ac 24bc) (2ab 2ac 2bc)
12ab 16ac 24bc 2ab 2ac 2bc 10ab 14ac 22bc(cm2 ).
【例题】
【例】求 1 x-2(x- 1 y2)+( 3 x+ 1y2)的值,
所以A,B,C都不对.
3.(江西·中考)化简-2a+(2a-1)的结果是( )
A.-4a-1 B.-4a+1 C.1
D.-1
【解析】选D.括号前是“+”,去掉括号后各项均 不变号,所以原式=-2a+2a-1=-1.
4.(漳州·中考)若m2-2m=1,则2m2-4m+2 007的
值是
.
【解析】 2m2-4m+2 007
简单地讲,就是:先去括号再合并同类项. 因此只要掌握了合并同类项的方法,就能正确进行 整式的加减.
注意:整式加减运算的结果仍然是整式.
探究: 问题一
一种笔记本的单价是x元,圆珠笔的单价是y元.小 红买这种笔记本3个,买圆珠笔2支;小明买这种笔记 本4个,买圆珠笔3支,买这些笔记本和圆珠笔,小红 和小明一共花费多少钱?
整式的加法和减法(PPT)
![整式的加法和减法(PPT)](https://img.taocdn.com/s3/m/7605c303f61fb7360a4c65bc.png)
同类项
两个 (1)所含字母相同. 相同 (2)相同字母的指数分别相同.
(1)系数相加作为结果的系数.
一个相加
合并同类项
两个不变 (2)字母与字母的指数不变.
课后作业
2.5 整式的加法和减法
第2课时 去括号
探究:
ab c 5 2 -1 -6 -4 3
a+(-b+c)
2
1
a-b+c
2 1
你发现了什么?
结论
一般地,有下列去括号法则: 括号前是“+”号,运用加法结合律把
括号去掉,原括号里各项的符号都不变.
探究:
ab c 5 2 -1 -6 -4 3
a-(-b+c) 8
-13
a+b-c 8 -13
你又发现了什么? 理论依据
a-(-b+c)=a+b-c
a-(-b+c) 分
=a-1·(-b+c) =a+b-c
=
合并同类项
= (-3-5 + 4)x2 - 14x
= -4x2 -14x;
找同类项
(2) xy3+x3y-2xy3+5x3y+9
解
xy3 + x3y -2xy3 + 5x3y + 9
将同类项放在一起
=
= (1-2)xy3+(1+5)x3y+9 合并同类项
= -xy3+6x3y+9.
(1)-3x2-14x-5x2+4x2 ; (2)xy3+x3y-2xy3+5x3y+9 .
课后作业
别相同,称它们为同类项.
人教版七年级数学上册《整式》整式的加减PPT精品课件
![人教版七年级数学上册《整式》整式的加减PPT精品课件](https://img.taocdn.com/s3/m/f8104519bc64783e0912a21614791711cc7979b3.png)
解:(1) ∵25>10,
∴购买25个排球应付25a×0.8=20a(b元; ②当b>10时,应付0.8ab元.
2.1 整式
第2课时
复习导入
1.什么是单项式?单项式的系数和次数? 表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式. 一个单项式中,所有字母的指数的和,叫做这
⑥x2+√13x.
其中属于多项式的有( C )
A.2 个 B.3 个 C.4 个 D.5 个
2.多项式2x4+5x2-6的项是____2_x_4_,___5_x_2__,_-_,6 常数项是 ______-. 6
课堂小结
(1)利用定义判定多项式,其关键是看式子是否是单项式的和,是 哪几个单项式的和; (2)多项式是由单项式组成的,但不能说多项式包含单项式,它们 是两个不同的概念,没有从属关系.
属于单项式的是___①__②___⑤__⑦________(填序号). 属于多项式的是____④__⑥___⑧_________(填序号). 属于整式的是_①___②___④__⑤___⑥__⑦___⑧___(填序号).
课堂小结
1.几个单项式的和叫做多项式 2.在多项式中,每个单项式叫做多项式的项 3.不含字母的项叫做常数项 4.多项式里次数最高项的次数就是多项式的次数
=392.5 这个圆环的面积是392.5 cm2.
应用提高
如图,文化广场上摆了一些桌子,若并排摆n张桌 子,可同时容纳多少人?当n=20时,可同时容纳多
少人?
……
1张桌子
2张桌子
3张桌子
解:并排摆n张桌子,可同时容纳(4n+2)人. 当n=20时, 4n+2=4×20+2=82
此时,可同时容纳82人.
∴购买25个排球应付25a×0.8=20a(b元; ②当b>10时,应付0.8ab元.
2.1 整式
第2课时
复习导入
1.什么是单项式?单项式的系数和次数? 表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式. 一个单项式中,所有字母的指数的和,叫做这
⑥x2+√13x.
其中属于多项式的有( C )
A.2 个 B.3 个 C.4 个 D.5 个
2.多项式2x4+5x2-6的项是____2_x_4_,___5_x_2__,_-_,6 常数项是 ______-. 6
课堂小结
(1)利用定义判定多项式,其关键是看式子是否是单项式的和,是 哪几个单项式的和; (2)多项式是由单项式组成的,但不能说多项式包含单项式,它们 是两个不同的概念,没有从属关系.
属于单项式的是___①__②___⑤__⑦________(填序号). 属于多项式的是____④__⑥___⑧_________(填序号). 属于整式的是_①___②___④__⑤___⑥__⑦___⑧___(填序号).
课堂小结
1.几个单项式的和叫做多项式 2.在多项式中,每个单项式叫做多项式的项 3.不含字母的项叫做常数项 4.多项式里次数最高项的次数就是多项式的次数
=392.5 这个圆环的面积是392.5 cm2.
应用提高
如图,文化广场上摆了一些桌子,若并排摆n张桌 子,可同时容纳多少人?当n=20时,可同时容纳多
少人?
……
1张桌子
2张桌子
3张桌子
解:并排摆n张桌子,可同时容纳(4n+2)人. 当n=20时, 4n+2=4×20+2=82
此时,可同时容纳82人.
人教版七年级数学上册4.2第3课时整式的加减课件
![人教版七年级数学上册4.2第3课时整式的加减课件](https://img.taocdn.com/s3/m/d5dbd7e2bdeb19e8b8f67c1cfad6195f312be823.png)
4.(新独家原创)梯形的上底为(a+2b),下底为2(3a-2b),高为4, 则梯形的面积为 14a-4b .
解析 梯形的面积为 1 [(a+2b)+2(3a-2b)]×4
2
=2[(a+2b)+(6a-4b)]=2(a+2b+6a-4b) =2(7a-2b)=14a-4b.
5.(2023山东青岛市北期末)先化简,再求值:
2.(2023江西南昌期中)一个多项式与x2-2x+1的和是3x-2,则这
个多项式为 ( A )
A.-x2+5x-3
B.-x2+x-1
C.x2-5x+3
D.x2-5x-3
解析 3x-2-(x2-2x+1)=3x-2-x2+2x-1=-x2+5x-3.故选A.
3.(易错题)(2024黑龙江明水期末)已知A=2x2-1,B=3-2x2,则B-2A = -6x2+5 . 解析 易错点:多项式相减时漏加括号. 由题意得B-2A=3-2x2-2(2x2-1) =3-2x2-4x2+2=-6x2+5.
2x2-3
12-3xx2 2,其32 中xy x=y22,y=-1.
解析 原式=2x2+ 3 x2-2xy+3y2-3x2=x2
2
2
当x=2,y=-1时,
-2xy+3y2,
原式= 4 -2×2×(-1)+3×1=2+4+3=9.
2
6.老师在黑板上写了一个正确的验算过程,随后用手掌捂住 了一个二次三项式: +x2-1=3x2-4x+5. (1)求被手掌捂住的二次三项式. (2)若-x2+2x=1,求手掌捂住的二次三项式的值.
4.2 整式的加减第3课时 整式的加减 课件(共35张PPT)
![4.2 整式的加减第3课时 整式的加减 课件(共35张PPT)](https://img.taocdn.com/s3/m/e63b5aa8db38376baf1ffc4ffe4733687e21fc91.png)
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
整式加减的一般步骤是:先去括号,再合并同类项. 注意: (1)整式加减运算的过程中,一般把多项式用括号括
起来; (2)整式加减的最后结果中不能含有同类项,即要合
并到不能再合并为止.
(2)(8a-7b)-(4a-5b) =8a-7b-4a+5b 去括号 =4a-2b 合并同类项
例2 已知A=3x2y+3xy2+y4,B=-8xy2-2x2y-2y4 求:(1)A-B;(2)A+ 1 B.
2
导引:将A,B代表的多项式代入,然后去括号、合并
同类项.
解:(1)A-B=(3x2y+3xy2+y4)-(-8xy2-2x2y-2y4)
人教2024七上数学 同步精品课件
人教版七年级上册
人教2024版七上数学同步高效精简课件 第四章 整式的加减
4.2 整式的加减
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.熟练进行整式的加减运算.(重点) 2.能根据题意列出式子,表示问题中的数量关系. (难点)
A.M<N
B.M=N
C.M>N
D.无法确定
当堂练习
5.多项式
与多项式
的和不含二次项,则m为( C )
A.2 B.-2 C.4 D.-4
6.已知a2+2a=1,则整式2a2+4a-1的值是( B ) A.0 B.1 C.-1 D.-2
当堂练习
7.若多项式3x3-2x2+3x+1与多项式x2-2mx3+2x 3
=3x2y+3xy2+y4+8xy2+2x2y+2y4
=5x2y+11xy2+3y4.
相关主题