高一数学二次函数在闭区间上的最值练习题

合集下载

二次函数相关的定义域与最值问题

二次函数相关的定义域与最值问题

二次函数相关的定义域与最值问题一.定义域为R的含参不等式题型例1.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为( )A.k<0或k>4 B.0≤k<4C.0<k<4 D.k≥4或k≤0变式:函数y=√ax²+ax+2的定义域为R,则实数a的取值范围为练习:1.函数f(x)=1ax2+4ax+3的定义域为R,求实数a的取值范围。

2.不等式ax²-2ax+3≥0的解集为R,求实数a的取值范围。

二.求二次函数在某一闭区间上的最值(定轴定区间型)例2.求函数y=x²-2x-3在x∈[-2,2]上的最大值与最小值。

练习:(1)求函数y=x²-6x+1在[0,4]的最值。

(2)求函数y=-2x²-4x+7在下列范围内的最值①x∈[-3,0]② x∈[0,4]三.含参二次函数在某一闭区间上的最值(动轴定区间型)二次函数随着参数的变化而变化,即其图像是运动的,但定义域区间是固定的,我们称这种情况为“动二次函数在定区间上的最值”例3.求函数f(x)=x²-2a x+3在x∈[0,4]上的最值变式:已知函数f(x)=-x²+2a x+1-a,在x∈[0,1]上的最大值为2,求实数a的值。

练习:求函数f(x)=-2x²+2ax+1在x∈[-1,1]上的最大值四.二次函数在动闭区间上的最值(定轴动区间型)二次函数是确定的,但它的定义域区间是随着参数的变化而变化的,我们称这种情况是“定函数在动区间上的最值”例4.求函数f(x)=x²-2x-5在x∈[t,t+1]上的最小值(其中t为常数)练习:求函数f(x)=x²-2x+3在x∈[a,a+3]上的最值课后练习1.函数f(x)的图象如图,则其最大值、最小值分别为( )A.f32,f −32B.f(0),f32C.f −32,f(0) D.f(0),f(3)2.若函数f(x)=2x+6,x∈[1,2],x+7,x∈[−1,1),则f(x)的最大值为,最小值为.3.若不等式a≤x2-4x对任意x∈[0,4]恒成立,则a的取值范围为.4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f13=1.(1)求f(1)的值.(2)若存在实数m,使得f(m)=2,求m的值.(3)若f(x-2)>2,求x的取值范围.。

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。

将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

最全二次函数区间的最值问题(中考数学必考题型)

最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。

例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。

我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。

否则就说x 不属于A ,记作x ∉A 。

2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。

(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。

当a<0可作同样处理。

二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。

(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。

变式2:已知0≤x≤1,求y =的最值。

变式3:求函数y x =+的最小值。

类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。

高一数学函数的最值练习题

高一数学函数的最值练习题

高一数学函数的最值练习题题型四:函数的最值【例1】 函数3()31f x x x =-+在闭区间[30]-,上的最大值和最小值分别是( )A .11-,B .117-,C .317-,D .919-,【例2】 已知32()26f x x x a =-+(a 是常数)在[22]-,上有最大值3,那么在[22]-,上的最小值是( ) A .5- B .11- C .29- D .37-【例3】设函数1()20)f x x x x=+< 则()f x 的最大值为 .【例4】 函数3()34([01])f x x x x =-∈,的最大值是( ) A .1 B .12C .0D .1-【例5】 设函数1()21(0)f x x x x=+-<,则()f x ( )A .有最大值B .有最小值C .是增函数D .是减函数【例6】 对于函数()f x ,在使()f x M ≥恒成立的所有常数M 中,我们把M 中的最大值称为函数()f x 的“下确界”,则函数221()(1)x f x x +=+的下确界为 .【例7】 设函数()y f x =在()-∞+∞,内有定义.对于给定的正数K ,定义函数()()()()K f x f x Kf x Kf x K ⎧=⎨>⎩≤, 取函数()2x f x x e -=--,若对任意的()x ∈-∞+∞,,恒有()()K f x f x =,则( )A .K 的最大值为2B .K 的最小值为2C .K 的最大值为1D .K 的最小值为1【例8】 下列说法正确的是( )A .函数在闭区间上的极大值一定比极小值大B .函数在闭区间上的最大值一定是极大值C .满足()0f x '=的点可能不是函数的极值点D .函数()f x 在区间()a b ,上一定存在最值典例分析【例9】 函数42()25f x x x =-+在区间[22]-,上的最大值是 ;最小值是 .【例10】 对于函数22e ,0()12,02x x x f x x x x ⎧⋅⎪=⎨-+>⎪⎩≤,有下列命题: ①过该函数图象上一点()()2,2f --的切线的斜率为22e-;②函数()f x 的最小值为2e-;③该函数图象与x 轴有4个交点;④函数()f x 在(,1]-∞-上为减函数,在(0,1]上也为减函数.其中正确命题的序号是 .【例11】 已知函数()e ln x f x a x =+的定义域是D ,关于函数()f x 给出下列命题:① 对于任意()0,a ∈+∞,函数()f x 是D 上的减函数;② 对于任意(),0a ∈-∞,函数()f x 存在最小值;③ 存在()0,a ∈+∞,使得对于任意的x D ∈,都有()0f x >成立; ④ 存在(),0a ∈-∞,使得函数()f x 有两个零点.其中正确命题的序号是_____.(写出所有正确命题的序号).【例12】 已知32()21f x x bx cx =+++在区间[]12-,上是减函数,那么2b c +( ) A .有最大值152- B .有最大值152 C .有最小值152- D .有最小值152【例13】 求32()395f x x x x =--+在[44]-,上的最大值和最小值.【例14】 已知函数24()f x x x=+.⑴ 求函数()f x 的单调递减区间; ⑵ 当[14]x ∈,时,求函数()f x 的最大值和最小值.【例15】 已知函数32()6([12])f x ax ax b x =-+∈-,的最大值为3,最小值为29-,求a 、b 的值.【例16】 已知函数321()23f x ax x =+,其中0a >.若()f x 在区间[11]-,上的最小值为2-,求a 的值.【例17】 已知0a ≥,函数2()(2)x f x x ax e =-,当x 为何值时,()f x 取得最小值?【例18】 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1(1))f ,处的切线与直线670x y --=垂直,导函数()f x '的最小值为12-. ⑴求a ,b ,c 的值;⑵求函数()f x 的单调递增区间,并求函数()f x 在[13]-,上的最大值和最小值.【例19】 设a ∈R ,函数32()3f x ax x =-.⑴若2x =是函数()y f x =的极值点,求a 的值; ⑵若函数()()()[02]g x f x f x x '=+∈,,在0x =处取得最大值,求a 的取值范围. ⑶若函数()()()g x f x f x '=+在[02]x ∈,时的最大值为1,求a 的值.【例20】 已知函数()3239f x x x x a =-+++,⑴ 求()f x 的单调递减区间;⑵ 若()f x 在区间[]22-,上的最大值为20,求它在该区间上的最小值.【例21】 已知()ln()[0)f x ax x x e =--∈-,,.⑴ 当1a =-时,讨论()f x 的单调性、极值;⑵ 是否存在实数a ,使()f x 的最小值是3,如果存在,求出a 的值;若不存在,请说明理由.【例22】 设0a >,函数2()|ln 1|f x x a x =+-.⑴ 当1a =时,求曲线()y f x =在1x =处的切线方程; ⑵ 当3a =时,求函数()f x 的单调性; ⑶ 当4a =,[1)x ∈+∞,时,求函数()f x 的最小值.【例23】 设3x =是函数23()()e ()x f x x ax b x -=++∈R 的一个极值点.⑴求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;⑵设0a >,225()e 4xg x a ⎛⎫=+ ⎪⎝⎭.若存在12[04]ξξ∈,,使得12()()1f g ξξ-<成立, 求a 的取值范围.【例24】 已知函数247()2x f x x-=-,[01]x ∈,.⑴求()f x 的单调区间和值域;⑵设1a ≥,函数32()32g x x a x a =--,[01]x ∈,.若对于任意1[01]x ∈,,总存在0[01]x ∈,,使得01()()g x f x =成立,求a 的取值范围.【例25】 已知函数()ln f x ax x =+,(1)x e ∈,,且()f x 有极值.⑴求实数a 的取值范围; ⑵求函数()f x 的值域;⑶函数3()2g x x x =--,证明:1(1)x e ∀∈,,0(1)x e ∃∈,,使得01()()g x f x =成立.【例26】 已知函数()()1ln 1af x x ax a x-=-+-∈R . ⑴ 当12a ≤时,讨论()f x 的单调性;⑵ 设()224g x x bx =-+.当14a =时,若对任意()102x ∈,,存在[]212x ∈,,使()()12f x g x ≥,求实数b 取值范围.【例27】 设函数()()()ln ln 20f x x x ax a =+-+>⑴当1a =时,求()f x 的单调区间;⑵若()f x 在(]01,上的最大值为12,求a 的值.【例28】 已知函数()ln af x x x=+. ⑴当0a <时,求函数()f x 的单调区间;⑵若函数()f x 在[]1,e 上的最小值是3,2求a 的值.【例29】 已知a 是实数,函数()()2f x x x a =-.⑴若(1)3f '=,求a 的值及曲线()y f x =在点()()11f ,处的切线方程; ⑵求()f x 的极值.⑶求()f x 在区间[]02,上的最大值.【例30】 已知函数()21ln f x x a x x=-+-,0a >.⑴ 讨论()f x 的单调性;⑵ 设3a =,求()f x 在区间21e ⎡⎤⎣⎦,上的值域,其中e=2.71828L 是自然对数的底数.【例31】 已知a 为实数,2()(4)()f x x x a =--.⑴求导数()f x ';⑵若(1)0f '-=,求()f x 在[22]-,上的最大值和最小值; ⑶若()f x 在(2)-∞-,和(2)+∞,上都是递增的,求a 的取值范围.【例32】 已知函数32()2f x x ax x =+-+,()a R ∈⑴ 若()f x 在()01,上是减函数,求a 的最大值; ⑵ 若()f x 的单调递减区间是113⎛⎫- ⎪⎝⎭,,求函数()y f x =图像过点()11,的切线与两坐标轴围成图形的面积.【例33】 设曲线e (0)x y x -=≥在点(e )t M t -,处的切线l 与x 轴,y 轴所围成的三角形的面积为()S t , ⑴求切线l 的方程;⑵求()S t 的最大值.【例34】 已知函数323()2f x x mx n =-+,12m <<,⑴ 若()f x 在区间[11]-,上的最大值为1,最小值为2-,求m 、n 的值; ⑵ 在⑴的条件下,求经过点(2, 1)P 且与曲线()f x 相切的直线l 的方程;⑶ 设函数()f x 的导函数为()g x ,函数2()31()6xg x x F x e ++=⋅,试判断函数()F x 的极值点个数,并求出相应实数m 的范围.【例35】 在实数集R 上定义运算(1)x y x a y ⊗⊗=+-:(),若()2f x x =,()g x x =,若()()()F x f x g x =⊗.⑴求()F x 的解析式;⑵若()F x 在R 上是减函数,求实数a 的取值范围;⑶若53a =,()F x 的曲线上是否存在两点,使得过这两点的切线互相垂直,若存在,求出切线方程;若不存在,说明理由.【例36】 已知函数()2()ln 12ax f x x a x =+-+,a ∈R ,且0a ≥.⑴若(2)1f '=,求a 的值;⑵当0a =时,求函数()f x 的最大值; ⑶求函数()f x 的单调递增区间.【例37】 已知函数3221()(1)(,)3f x x ax a x b a b =-+-+∈R⑴若1x =为()f x 的极值点,求a 的值;⑵若()y f x =的图象在点(1,(1))f 处的切线方程为30x y +-=, 求()f x 在区间[2,4]-上的最大值;⑶当0a ≠时,若()f x 在区间(1,1)-上不单调,求a 的取值范围.【例38】 已知函数3221()(1)(,)3f x x ax a x b a b =-+-+∈R⑴若1x =为()f x 的极值点,求a 的值;⑵若()y f x =的图象在点(1,(1))f 处的切线方程为30x y +-=, ①求()f x 在区间[2,4]-上的最大值;②求函数()[()(2)]()x G x f x m x m e m -'=+++∈R 的单调区间.【例39】 已知函数()1e x a f x x ⎛⎫=+ ⎪⎝⎭,其中0a >.⑴求函数()f x 的零点;⑵讨论()y f x =在区间(,0)-∞上的单调性;⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上,()f x 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.【例40】 已知函数2()()e x f x x mx m =-+,其中m ∈R .⑴若函数()f x 存在零点,求实数m 的取值范围;⑵当0m <时,求函数()f x 的单调区间,并确定此时()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由.【例41】 已知函数()ln f x x =-,(0)x e ∈,.曲线()y f x =在点(())t f t ,处的切线与x 轴和y 轴分别交于A 、B 两点,设O 为坐标原点,求AOB ∆面积的最大值.【例42】 已知函数()f x ⑴写出函数()f x 的定义域,并求函数()f x 的单调区间;⑵设过曲线()y f x =上的点P 的切线l 与x 轴、y 轴所围成的三角形的面积为S ,求S 的最小值,并求此时点P 的坐标.【例43】 函数2()1(00)f x ax a x =->>,,该函数图象在点P 200(1)x ax -,处的切线为l ,设切线l 分别交x 轴和y 轴于两点M 和N .⑴将MON ∆(O 为坐标原点)的面积S 表示为0x 的函数0()S x ;⑵若1(0)M x ,,函数()y f x =的图象与x 轴交于点(0)T t ,,则1x 与t 的大小关系如何?证明你的结论;⑶若在01x =处,0()S x 取得最小值,求此时a 的值及0()S x 的最小值.【例44】 如图,曲线段OMB 是函数2()(06)f x x x =≤≤的图象,BA x ⊥轴于点A ,曲线段OMB 上一点2()M t t ,处的切线PQ 交x 轴于点P ,交线段AB 于点Q ,⑴若t 已知,求切线PQ 的方程;⑵求QAP ∆的面积的最大值.。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

所以,当t=50时,h(t)取得区间[0 ,200]上的最大值100;
当 200<t≤300时,配方整理得
1 t 3502 100 ht 200
所以,当t=300时,h(t)取得区间[200,300]上的最大值87.5 综上,由100>87.5可知, h(t)在区间[0,300]上可以取最大值 100,此时,t=50 ,即从二月一日开始的第50天时,上市的西 红柿纯收益最大。
∴ 当1<a时, f(x)min=f(a)=a2-2a+3 f(x)max=f(3)=6
∴ 当-1<a≦1时, f(x)min=f(1)=2 f(x)max=f(3)=6 ∴ 当a≦-1时, f(x)min=f(1)=2 f(x)max=f(a)=a2-2a+3
3 2 1 -2
1 2 3
1 2 1 175 t t , 0 t 200 , 200 2 2 ht 1 t 2 7 t 1025 , 200 t 300 . 2 2 200
当0≤t≤200时,配方整理得
1 t 502 100 ht 200
(I)写出图一表示的市场售价与时间的函数关系式P=f(t);
写出图二表示的种植成本与时间的函数关系式Q=g(t);
( II )认定市场售价减去种植成本为纯收益,问何时上市的西 红柿收益最大?
(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
解:(I)由图一可得市场售价与时间的函数关系为

b 2a
(2)二次函数y=ax² +bx+c (a<0)
b 4ac b 2 顶点坐标 , 2 a 4 a 在(-∞, 2ba )上,单调递增;在( 2ba ,+ ∞)上,单调递减。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

15级高一数学二次函数在闭区间上的最值练习

15级高一数学二次函数在闭区间上的最值练习

3.已知函数 y x 2 2x 3 在闭区间[0, m] 上有最大值 3,最小值 2,则 m 的取值范围是
(A) [1,)
(B) [0,2]
(C) [1,2]
4.若函数 f (x) (a 2)x2 2(a 2)x 4 0对一切x R 恒成立,则 a 的取值范围(
(D) 1 , 3 4
(
2a
1 )x
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)

考点08  二次函数在闭区间上的最值(值域)问题的解法(解析版)

专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。

2020高考数学专项训练《31闭区间上二次函数的最值问题》(有答案)

2020高考数学专项训练《31闭区间上二次函数的最值问题》(有答案)

专题31 闭区间上二次函数的最值问题例题:已知函数f(x)=x 2-ax +1,求函数f(x)在区间[-1,1]上的最值.变式1已知函数f(x)=x 2-2ax +2,当x ∈[-1,1]时,f(x)≥a 恒成立,求实数a 的取值范围.变式2求二次函数f(x)=ax 2+(2a -1)x -3(a ≠0)在区间⎣⎡⎦⎤-32,2上的最大值.串讲1已知函数f(x)=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________________.串讲2若f(x)=1-2a -2a cos x -2sin 2x 的最小值为g(a). (1)求g(a)的解析式;(2)求能使g(a)=12的a 值,并求出当a 取此值时,f(x)的最大值.若函数f(x)=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,证明M -m的值与b 无关.已知a 为实数,函数f(x)=x 2+|x -a|+1,x ∈R . (1)求f (x )的最小值;(2)若a >0,g (x )=f (x )+a |x |,求g (x )的最小值.答案:(1)f (x )min=⎩⎪⎨⎪⎧34+a ,a ≥12,a 2+1,-12<a <12,34-a ,a ≤-12.(2)g (x )min=⎩⎨⎧a +1,a ≥1,-a 2+6a +34,13≤a <1,2a 2+1,0<a <13.解析:(1)f (x )=⎩⎨⎧x 2+x -a +1,x ≥a ,x 2-x +a +1,x <a ,①当a ≤-12时,f (x )在⎝⎛⎭⎫-∞,-12上单调递减,⎝⎛⎭⎫-12,+∞上单调递减, f (x )min =f ⎝⎛⎭⎫-12=34-a ;2分 ②当-12<a <12时,f (x )在(-∞,a )上单调递减,(a ,+∞)上单调递减,f (x )min =f (a )=a 2+1;4分③当a ≥12时,f (x )在⎝⎛⎭⎫-∞,12上单调递减,⎝⎛⎭⎫12,+∞上单调递减, f (x )min =f ⎝⎛⎭⎫12=34+a ;6分综上:f (x )min=⎩⎪⎨⎪⎧34+a ,a ≥12,a 2+1,-12<a <12,34-a ,a ≤-12.7分(2)g (x )=x 2+|x -a |+1+a |x |=⎩⎨⎧x 2+(a +1)x -a +1,x ≥a ,x 2+(a -1)x +a +1,0<x <a ,x 2-(a +1)x +a +1,x ≤0.①当a +12≤a 时,即a ≥1时,-a +12<0且1-a 2≤0,g (x )在(-∞,0)上单调递减,(0,+∞)上单调递减,g (x )min =g (0)=a +1;9分 ②当a +12>a 时,即0<a <1时,-a +12<0且1-a 2>0,(ⅰ)当1-a 2≤a ,即13≤a <1时,g (x )在⎝⎛⎭⎫-∞,1-a 2上单调递减,⎝⎛⎭⎫1-a 2,+∞上单调 递减,所以g (x )min =f ⎝⎛⎭⎫1-a 2=-a 2+6a +34;11分(ⅱ)当1-a 2>a ,即0<a <13时,g (x )在(-∞,a )上单调递减,(a ,+∞)上单调递减,所以g (x )min =f (a )=2a 2+1;13分综上:g (x )min=⎩⎨⎧a +1,a ≥1,-a 2+6a +34,13≤a <1,2a 2+1,0<a <13.14分专题31例题答案:f(x)min = ⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.解法1函数f(x)=x 2-ax +1=⎝⎛⎭⎫x -a 22-a 24+1,对称轴为x =a 2, ①当a2<-1时,即a <-2时,f(x)在[-1,1]上单调递增,f(x)min =f(-1)=2+a ,f(x)max=f(1)=2-a ;②当-1≤a 2<0时,即-2≤a <0时,f(x)在⎝⎛⎭⎫-1,a 2上单调递减,在⎝⎛⎭⎫a 2,1上单调递增,f(x)min =f ⎝⎛⎭⎫a 2=1-a24,f(x)max =f(1)=2-a ; ③当0≤a 2<1时,即0≤a <2时,f(x)在⎝⎛⎭⎫-1,a 2上单调递减,在⎝⎛⎭⎫a 2,1上单调递增,f(x)min=f ⎝⎛⎭⎫a 2=1-a24,f(x)max =f(-1)=2+a ; ④当a2≥1时,即a ≥2时,f(x)在[-1,1]上单调递减,f(x)min =f(1)=2-a ,f(x)max =f(-1)=2+a.综上,f(x)min =⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.解法2函数f(x)=x 2-ax +1=⎝⎛⎭⎫x -a 22-a 24+1,对称轴为x =a2,先求最小值. ①当a2<-1时,即a <-2时,f(x)在[-1,1]上单调递增,f(x)min =f(-1)=2+a ;②当-1≤a 2≤1时,即-2≤a ≤2时,f(x)min =f ⎝⎛⎭⎫a 2=1-a 24;③当a2≥1时,即a ≥2时,f(x)在[-1,1]上单调递减,f(x)min =f(1)=2-a.再求最大值,因为抛物线开口向上,则最高点必为曲线一端点,所以f(x)max =max {f(-1),f(1)}=⎩⎨⎧2-a ,a <0,2+a ,a ≥0.综上,f(x)min = ⎩⎪⎨⎪⎧2+a ,a <-2,1-a24,-2≤a ≤2,2-a ,a >2.f(x)max =⎩⎨⎧2-a ,a <0,2+a ,a ≥0.变式联想变式1答案:[-3,1].解法1研究函数f(x)=x 2-2ax +2在x ∈[-1,1]时的最小值,f(x)=x 2-2ax +2=(x -a)2+2-a 2,对称轴为x =a.①当a ≤-1时,f(x)在[-1,1]上单调递增,所以f(x)min =f(-1)=2a +3,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即2a +3≥a ,所以-3≤a ≤-1.②当-1<a <1时,f(x)在[-1,1]上的最小值为f(x)min =f(a)=2-a 2,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即2-a 2≥a ,所以-1<a <1.③当a ≥1时,f(x)在[-1,1]上单调递减,所以f(x)min =f(1)=3-2a ,要使得f(x)≥a 恒成立,只需f(x)min ≥a ,即3-2a ≥a ,所以a =1.综上,实数a 的取值范围是[-3,1].解法2不等式f(x)≥a 可化为a(1+2x)≤x 2+2①当-1≤x <-12时,不等式化为a ≥x 2+22x +1,令g(x)=x 2+22x +1,则g′(x)=⎝ ⎛⎭⎪⎫x 2+22x +1′=2(x 2+x -2)(2x +1)2<0,g(x)在⎣⎡⎭⎫-1,-12上单调递减,所以g(x)max =g(-1)=-3,则a ≥-3.②当x =-12时,0≤14+2恒成立,则a ∈R .③当-12<x ≤1时,不等式化为a ≤x 2+22x +1,令g (x )=x 2+22x +1,则g ′(x )=⎝ ⎛⎭⎪⎫x 2+22x +1′=2(x 2+x -2)(2x +1)2<0,g (x )在⎝⎛⎦⎤-12,1上单调递减,所以g (x )min =g (1)=1,则a ≤1. 综上,实数a 的取值范围是[-3,1]. 变式2答案:f(x)max =⎩⎪⎨⎪⎧-(2a -1)24a-3,a <-1,-34a -32,-1≤a <25且a ≠0,8a -5,a ≥25. 解析:f(x)=a ⎝⎛⎭⎫x +2a -12a 2-(2a -1)24a -3,对称轴为x = -2a -12a, (1)当a >0时,①当-2a -12a ≤14,即a ≥25时,f(x)max =f(2)=8a -5;②当-2a -12a >14,即0<a <25时,f(x)max =f ⎝⎛⎭⎫-32=-34a -32. (2)当a <0时,-2a -12a<0,①当-2a -12a ≤-32时,即-1≤a <0时,f(x)max =f ⎝⎛⎭⎫-32=-34a -32; ②当-32<-2a -12a <0时,即a <-1时,f(x)max =f ⎝⎛⎭⎫-2a -12a =-(2a -1)24a -3.综上,f(x)max =⎩⎪⎨⎪⎧-(2a -1)24a-3,a <-1,-34a -32,-1≤a <25且a ≠0,8a -5,a ≥25.说明:二次函数在闭区间的最值问题一般分为含参和不含参两种类型,对于不含参的定轴、定区间问题,根据轴与区间的位置关系,结合图象,确定函数的单调性即可求得最值;对于定轴、动区间,动轴、定区间,动轴、动区间的含参最值问题,常常抓住对称轴与区间的位置关系进行分类讨论,分类讨论时要做到不重、不漏;不过有时直接研究函数在区间端点处的取值以回避繁琐的分类讨论显得更快捷.总之,数形结合,灵活处理是解决此类问题的关键所在.串讲激活串讲1 答案:⎝⎛⎭⎫-22,0. 解法1讨论对称轴与区间的位置关系,求出f(x)的最大值f(x)max ,解不等式f(x)max <0;解法2因为抛物线开口向上,所以最大值在区间端点处取得.则要使得任意x ∈[m ,m+1],都有f(x)<0成立,只需满足⎩⎨⎧f (m )<0,f (m +1)<0,解得-22<m <0.串讲2答案:(1)g(a)= ⎩⎪⎨⎪⎧1-4a (a >2),-a22-2a -1(-2≤a ≤2),1(a <-2);(2)5.解析:(1)f(x)=2⎝⎛⎭⎫cos x -a 22-a 22-2a -1,令t =cos x ∈[-1,1].当a2<-1,即a <-2时,f(x)在cos x =-1时取得最小值,即g(a)=1;当-1≤a2≤1,即-2≤a ≤2时,f(x)在cos x=a 2时取得最小值,即g(a)=-a 22-2a -1;当a2>1,即a >2时,f(x)在cos x =1时取得最小值,即g(a)=1-4a.综上,g(a)=⎩⎪⎨⎪⎧1-4a (a >2),-a22-2a -1(-2≤a ≤2),1(a <-2).(2)由g(a)=12,得1-4a =12或-a 22-2a -1=12,当1-4a =12,a =18,与a >2矛盾,舍去;当-a 22-2a -1=12,得a =-3(舍去)或a =-1∈[-2,2]所以f(x)=2⎝⎛⎭⎫cos x +122+12,当cos x =1时,f(x)max =5.新题在线答案:M -m =⎩⎨⎧|1+a|,a <-2,或a >0,a 24,-2≤a ≤-1,1+a +a24,-1<a ≤0.M -m 的值与b 无关.解析:函数f(x)=x 2+ax +b 的图象是开口朝上且以直线x =-a2为对称轴的抛物线.①当-a 2>1或-a2<0,即a <-2,或a >0时,函数f(x)在区间[0,1]上单调,此时M-m =|f(1)-f(0)|=|1+a|,故M -m 的值与b 无关;②当12≤-a2≤1,即-2≤a ≤-1时,函数f(x)在区间⎣⎡⎦⎤0,-a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,且f(0)>f(1),此时M -m =f(0)-f ⎝⎛⎭⎫-a 2=a24,故M -m 的值与b 无关; ③当0≤-a 2<12,即-1<a ≤0时,函数f(x)在区间⎣⎡⎦⎤0,-a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,且f(0)<f(1),此时M -m =f(1)-f ⎝⎛⎭⎫-a 2=1+a +a 24,故M -m 的值与b 无关.综上,M -m 的值与b 无关.。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题湖北省荆州中学 鄢先进二次函数在闭区间上的最值问题是高中数学的重点和热点问题,频繁出现在函数试题中,很受命题者亲睐。

影响二次函数在闭区间上最值问题的主要因素是二次函数图像的开口方向与所给区间和对称轴的位置关系。

本文介绍有关二次函数在闭区间上最值问题的常见类型及解题策略,供同学们参考。

类型一 定轴定区间例1.已知函数2()2f x x x =-,求()f x 的最小值. 解:22()2(1)1f x x x x =-=-- 由图像可知,当1x =时,min ()1f x =-变式1.已知函数2()2f x x x =-,[2,4]x ∈,求()f x 的最小值。

分析:由图像可知,函数)(x f 在[2,4]为增函数,min ()(2)0f x f ∴==变式2.已知函数2()2f x x x =-,[0,3]x ∈,求()f x 的最大值.分析:由图像可知函数()f x 在[0,1]上递减,在[1,3]上递增,且3离对称轴的距离大于0离对称轴的距离。

max ()(3)3f x f ∴==例2.已知二次函数f x ax ax a ()=++-2241在区间[]-41,上的最大值为5,求实数a 的值。

解:将二次函数配方得f x a x a a ()()=++--24122,函数图像对称轴方程为x =-2,顶点坐标为()---2412,a a ,图像开口方向由a 决定。

很明显,其顶点横坐标在区间[]-41,内。

x①若a <0,函数图像开口向下,如下图1所示。

当x =-2时,函数()f x 取得最大值5 即f a a ()-=--=24152,解得a =±210 故a a =-=+210210()舍去图1 图2②若a >0,函数图像开口向上,如上图2所示,当x =1时,函数()f x 取得最大值5 即f a a ()15152=+-=,解得a a ==-16或,故a a ==-16()舍去综上可知:函数f x ()在区间[]-41,上取得最大值5时,a a =-=2101或 点拨:求解有关二次函数在闭区间上的最值问题,应先配方,作出函数图像,然后结合其图像研究,要特别注意开口方向、对称轴和区间的相对位置。

二次函数在给定区间上的最值问题

二次函数在给定区间上的最值问题

二次函数在给定区间上的最值问题【学前思考】二次函数在闭区间上取得最值时的x ,只能是其图像的顶点的横坐标或给定区间的端点. 因此,影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴以及给定区间的位置. 在这三大因素中,最容易确定的是抛物线的开口方向(与二次项系数的正负有关),而关于对称轴与给定区间的位置关系的讨论是解决二次函数在给定区间上的最值问题的关键. 本节,我们将以若干实例说明解决此类问题的具体方法.【知识要点&例题精讲】二次函数在给定区间上的最值问题,常见的有以下三种类型,分别是: Case Ⅰ、给定区间确定,对称轴位置也确定说明:此种类型是较为简单的一种,只要找到二次函数的对称轴,画出其函数图像,再将给定区间标出,那么二次函数的最值一目了然.解法:若二次函数的给定区间是确定的,其对称轴的位置也确定,则要求二次函数在给定区间上的最值,只需先考察其对称轴的横坐标是否在给定区间. (i )当其对称轴的横坐标在给定区间时,二次函数在给定区间上不具有单调性,此时其一个最值在顶点处取得,另一个最值在离对称轴的横坐标较远的端点处取得;(ii )当其对称轴的横坐标不在给定区间时,二次函数在给定区间上具有单调性,此时可利用二次函数的单调性确定其最值.例1、二次函数223y x x =-+在闭区间[]1,2-上的最大值是_______.例2、函数2()42f x x x =-+-在区间[]0,3上的最大值是_______,最小值是_______.例3、已知223x x ≤,则函数2()1f x x x =++的最大值是_______,最小值是______.Case Ⅱ、给定区间确定,对称轴位置变化说明:此种类型是非常重要的,是考试必考点,主要是讨论二次函数的对称轴与给定区间的位置关系,一般需要分对称轴在给定区间的左侧、部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值.解法:若二次函数的给定区间是确定的,而其对称轴的位置是变化的,则要求二次函数2y ax bx c =++(0a ≠)在给定区间[],p q 上的最值,需对其对称轴与给定区间的位置关系进行分类讨论. 这里我们以0a >的情形进行分析: (ⅰ)若2b p a-<,即对称轴在给定区间[],p q 的左侧,则函数()f x 在给定区间[],p q 上单调递增,此时max [()]()f x f q =,min [()]()f x f p =; (ⅱ)若2b p q a ≤-≤,即对称轴在给定区间[],p q 的部,则函数()f x 在[,]2b p a-上单调递减,在[,]2b q a -上单调递增,此时min [()]()2b f x f a =-,max [()]()f x f p =或()f q ,至于最大值究竟是()f p 还是()f q ,还需通过考察对称轴与给定区间的中点的位置关系作进一步讨论:若22b p q p a +≤-<,则max [()]()f x f q =;若22p q b q a +≤-≤,则max [()]()f x f p =; (ⅲ)若2b q a->,即对称轴在给定区间[],p q 的右侧,则函数()f x 在给定区间[],p q 上单调递减,此时max [()]()f x f p =,min [()]()f x f q =. 综上可知,当0a >时,max (),22[()](),22b p q f q a f x b p q f p a +⎧-<⎪⎪=⎨+⎪-≥⎪⎩若若; min (),2[()](),22(),2b f p p a b b f x f p q a a b f q q a ⎧-<⎪⎪⎪=-≤-≤⎨⎪⎪->⎪⎩若若若.通过同样的分析可得到:当0a <时,max(),2[()](),22(),2b f p p a b b f x f p q a a b f q q a ⎧-<⎪⎪⎪=-≤-≤⎨⎪⎪->⎪⎩若若若; min (),22[()](),22b p q f q a f x b p q f p a +⎧-<⎪⎪=⎨+⎪-≥⎪⎩若若.例4、已知21x ≤且2a ≥,求函数2()3f x x ax =++的最值.例5、求函数()()f x x x a =--在区间[]1,1-上的最大值.例6、求函数2()21f x x ax =--在区间[]0,2上的最大值和最小值.例7、设函数2()f x x ax b =++(,a b R ∈),当214a b =+时,求函数()f x 在区间[]1,1-上的最小值()g a 的解析式.22222222()1()1422122()[1,1]()(1)11244122()[1,1]()(1)11244a a a f x x axb x ax x x a a f x a a g a f a a a a f x a a g a f a a =++=+++=++=--<->-=-=-++=-+-><--==+++=++函数的图像是开口向上,对称轴为直线的抛物线(i )若,即此时函数在上单调递增于是(ii )若,即此时函数在上单调递减于是(iii )[解析] 2211222()[1,][,1]22()()12224()1,22224a a a a f x a g a f a a a g a a a a a -≤-≤-≤≤---=-=⎧-+>⎪⎪⎪=-≤≤⎨⎪⎪++<-⎪⎩若,即此时函数在上单调递减,在上单调递增于是,综上可知,,例8、已知函数2()1f x x mx =+-,若对于任意的[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值围是_______.Case Ⅲ、给定区间变化,对称轴位置确定说明:此种类型,考试中出现的较少,一般是给定区间里含有参数. 解决此类问题,亦可根据对称轴与给定区间的位置关系,分对称轴在给定区间的左侧、部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值.解法:若二次函数的给定区间是变化的,而其对称轴的位置是确定的,则要求二次函数在给定区间上的最值,需对变化区间是否包含其对称轴的横坐标进行分类讨论,分类标准为:变化区间包含其对称轴的横坐标,变化区间不包含其对称轴的横坐标. 解决方法与知识点2类似,这里不再赘述.例9、已知函数2()(1)1f x x =-+定义在区间[],1t t +(t R ∈)上,求()f x 的最小值.例10、已知函数2()23f x x x =-+,当[],1x t t ∈+(t R ∈)时,求()f x 的最大值.CaseIV 、与二次函数最值问题有关的综合题型利用二次函数在给定区间上取得最值,可以求解、证明或探究以下综合问题:(1)求函数的最值或最值的取值围;(2)求函数的解析式;(3)证明不等式;(4)求参数的取值围;(5)探究参数是否存在;……例11、设函数()221f x x ax a =+--,[]0,2x ∈,a 为常数.(I )求()f x 的最小值()g a 的解析式;(II )在(I )中,是否存在最小的整数m ,使得()0g a m -≤对于任意a R ∈均成立. 若存在,求出m 的值;若不存在,请说明理由.【解析】(I )函数()22221()1f x x ax a x a a a =+--=+---的图像是开口向上,对称轴为直线x a =-的抛物线(i )若0a -<,即0a >此时函数()f x 的对称轴x a =-不在区间[]0,2上,()f x 在区间[]0,2上单调递增 于是min ()[()](0)1g a f x f a ===--(ii )若2a ->,即2a <-此时函数()f x 的对称轴x a =-不在区间[]0,2上,()f x 在区间[]0,2上单调递减 于是min ()[()](2)44133g a f x f a a a ===+--=+(iii )若02a ≤-≤,即20a -≤≤此时函数()f x 的对称轴x a =-在区间[]0,2上,()f x 在区间[]0,a -上单调递减,在区间[],2a -上单调递增于是2min ()[()]()1g a f x f a a a ==-=---综上可知,21,0()1,2033,2a a g a a a a a a -->⎧⎪=----≤≤⎨⎪+<-⎩(II )要使()0g a m -≤对于任意的a R ∈均成立,只需max [()]m g a ≥,a R ∀∈ 下求max [()]g a由函数()g a 的图像可见,()g a 在1(,]2-∞-上单调递增,在1[,)2-+∞上单调递减 2max 1113[()]()()()12224g a g ∴=-=-----=- 于是34m ≥- 又m Z ∈故m 的最小值为0例12、已知函数2()2f x x ax b =-+(,a b R ∈),记M 是|()|f x 在区间[0,1]上的最大值.(Ⅰ)当0b =且2M =时,求a 的值; (Ⅱ)若12M ≤,证明01a ≤≤. 【解析】(I )函数222()2()f x x ax b x a a b =-+=--+的图像是开口向上,对称轴为直线x a =的抛物线 而函数()f x 的图像是将函数()f x 在x 轴上方的图像保持不变、把它在x 轴下方的图像翻折上去得到的(I )当0b =时,函数222()2()f x x ax x a a =-=--(i )若0a <此时函数()f x 的对称轴x a =不在区间[0,1]上,()f x 在区间[0,1]上单调递增于是{}{}max [()]max (0),(1)max 0,12122M f x f f a a ===-=-=122122a a ⇒-=-=-或,即12a =-(舍去32a =) (ii )若1a >此时函数()f x 的对称轴x a =不在区间[0,1]上,()f x 在区间[0,1]上单调递减 于是{}{}max [()]max (0),(1)max 0,12122M f x f f a a ===-=-=122122a a ⇒-=-=-或,即32a =(舍去12a =-) (iii )若01a ≤≤ 此时函数()f x 的对称轴x a =在区间[0,1]上,()f x 在区间[]0,a 上单调递减,在区间[],1a 上单调递增 于是{}{}2max [()]max (),(1)max ,122M f x f a f a a ===-=当22a =时,[0,1]a =,舍去 当122a -=时,122122a a -=-=-或⇒12a =-或32a =,均舍去 综上可知,12a =-或32a = (II )(0)(1)12fb f a b =⎧⎨=-+⎩ 1(11(0)(11(0)(12222b f f f f f a +-+--∴===+))) 又12M ≤ 1(0)2f ∴≤,1(1)2f ≤ 11(0)22f ⇒-≤≤,11(1)22f -≤≤ 于是有1(0)(1)1f f -≤-≤ 故111(0)(11101222222f f a -=-≤=+≤+=),即[0,1]a ∈例13、(2015高考)已知函数2()f x x ax b =++(a ,b R ∈),记(,)M a b 是()f x 在区间[]1,1-上的最大值.(1)证明:当2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤时,求a b +的最大值.【分析】本题考查的知识点是二次函数在区间定、对称轴位置变化的情形下的最值问题. 解决此类问题的关键是正确理解“(,)M a b 是()f x 在区间[]1,1-上的最大值”这一条件,并结合函数图像以及三角不等式等知识。

二次函数求最值(动轴定区间、动区间定轴)

二次函数求最值(动轴定区间、动区间定轴)
5 f(x)max=10f(k+2)=(1k5 +2)2-2(k+2)-3 =k2+2k-3
8
6
4
2 x=1 k
2
k+2 5
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
10
15
f(x) min=f(k)=k2-2k-3
4
6
8
10
8
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
(2)若x∈[ 2,4 ],求函数f(x)的最值; 10
(3)若x∈[ 1 , 5 ],求函数f(x)的最值; 8
2
(4)若x∈[
12, 2
3
6
2 ],求函数f(x)的最值;
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
15
10
5
x= 1 时有最大值 f (1) 13
2
24
x=1时有最小值f(1)=-4
当0≤ k<1时 f(x)max=f(k+2)=k2+21k0 -3
10
10
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
f(x)min=f(1)=8- 4 f(x)min=f(1)=10- 4 f(x) min=f(k)=k2-2k-3
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
k
2
2
2
2
1105
k+2
4
4
4
4
6
6
6
6
8

(完整版)含参数二次函数的值域习题

(完整版)含参数二次函数的值域习题

含有参数的闭区间上二次函数的最值与值域(分类讨论)(一)正向型是指已知二次函数和定义域区间,求其最值.对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键.此类问题包括以下四种情形:(1)定轴定区间;(2)定轴动区间;(3)动轴定区间;(4)动轴动区间。

题型一:“定轴定区间”型例1、函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______.练习:已知232xx ≤,求函数f x x x ()=++21的最值。

题型二:“动轴定区间”型例2、求函数2()23f x x ax =-+在[0,4]x ∈上的最值.解:222()23()3f x x ax x a a =-+=-+- ①当a <0时,==min (0)3f f ,==-max (4)198a f f②当0≤a<2时,2min (a)3a f f ==-max (4)198f f a ==-③当2≤a<4时,2min (a)3a f f ==-,==max (0)3f f④当4≤a 时,min (4)198f f a ==-,==max (0)3f f练习:已知函数=+--2()(21)3f x ax a x 在区间3[,2]2-上最大值为1,求实数a 的值题型三:“动区间定轴”型的二次函数最值例3.求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。

解:=-+2(x)(1)2f x 开口向上,对称轴x=1①当a >1,2minf(a)3f a ==-+;2max (a 2)a 2a 3f f =+=++ ②212a a a ++≤<,即0<a≤1,min f(1)2f ==;2max (a 2)a 2a 3f f =+=++ ③212a a a ++≤<即-1<a≤0,min f(1)f =,max f(a)f = ④a+2≤1,即a≤-1时,,maxf(a)f =;min (a 2)f f =+练习:求函数=-+2()22f x x x 在x ∈[t,t+1]上的最值。

【高中数学过关练习】过关练13-二次函数在闭区间上的最值问题

【高中数学过关练习】过关练13-二次函数在闭区间上的最值问题

过关练13 二次函数在闭区间上的最值问题一、单选题1.(2022·山西运城·高一期末)已知二次函数()()2f x ax x c x =-+∈R 的值域为[)0,∞+,则41a c+的最小值为( ) A .16 B .12 C .10 D .8【解析】由题意知0a >,140ac ∆=-=, ∴14ac =且0c >, ∴4148a c ac+≥=, 当且仅当41a c=,即1a =,14c =时取等号.故选:D.2.(2022·全国·高一期末)若不等式220ax bx ++>的解集为{}21x x -<<,则二次函数224y bx x a =++在区间[]0,3上的最大值、最小值分别为( )A .-1,-7B .0,-8C .1,-1D .1,-7【解析】220ax bx ++>的解集为{}21x x -<<, 2∴-,1是方程220ax bx ++=的根,且0a <,∴21221b a a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,1a ∴=-,1b =-,则二次函数2224241y bx x a x x =++=-+-开口向下,对称轴1x =,在区间[]0,3上,当1x =时,函数取得最大值1,当3x =时,函数取得最小值7- 故选:D .3.(2022·河南·信阳高中高一期末(理))函数()(||1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .522+C .32D .2【解析】当x ≥0时,()()221111()244f x x x x x x ==-=--≥-﹣, 当x <0时,()()22111()24f x x x x x x =-=--=-++,作出函数()f x 的图象如图:当0x ≥时,由()f x =22x x -=,解得x =2. 当12x =时,()1124f =-.当x <0时,由21()4f x x x =--=-,即24410x x +=﹣,解得x 2444443244212-±+⨯-±-±-±===∴此时x 12-- ∵[,m n ]上的最小值为14-,最大值为2,∴n =21212m --≤≤, ∴n m -的最大值为1252222--=+, 故选:B .4.(2022·重庆巫山·高一期末)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( ) A .(]0,4 B .3,42⎡⎤⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【解析】234y x x =--为开口方向向上,对称轴为32x =的二次函数 min 99254424y ∴=--=- 令2344x x --=-,解得:10x =,23x = 332m ∴≤≤即实数m 的取值范围为3,32⎡⎤⎢⎥⎣⎦故选:C5.(2022·浙江台州·高一期末)已知函数()22f x ax x =+的定义域为区间[m ,n ],其中,,a m n R ∈,若f (x )的值域为[-4,4],则n m -的取值范围是( )A .[4,42]B .[22,82]C .[4,82]D .[42,8]【解析】若0a =,()2f x x =,函数为增函数,[,]x m n ∈时,则()24,()24f m m f n n ==-==,所以2(2)4n m -=--=, 当0a >时,作图如下,为使n m -取最大,应使n 尽量大,m 尽量小,此时14a =, 由22()424()424f n am m f m an n =⎧+=⎧⇒⎨⎨=+=⎩⎩,即2240ax x +-=, 所以24,m n mn a a+=-=-,所以()22416482n m m n mn a a-=+-=+=82n m -≤ 当14a -<-时,即104a <<时,此时,m n 在对称轴同侧时n m -最小,由抛物线的对称性,不妨设,n m 都在对称轴右侧,则由22()24,()24f n an n f m am m =+==+=-, 解得24162416a an m -++-+-==416416141441414141422a a a a n m a aa a+--+--∴-===++-++-, 当且仅当1414a a +=- ,即0a =时取等号,但0a >,等号取不到,4n m ∴->,0a <时,同理,当14a =-时,max ()82n m -=14a >-时,()min 4n m ->, 综上,n m -的取值范围是[4,82], 故选:C6.(2022·广东茂名·高一期末)已知函数2,02()34,23x x f x x x ⎧≤≤=⎨-<≤⎩,若存在实数1x ,2x (12x x <)满足12()()f x f x =,则21x x -的最小值为( ) A .712B .22C .23D .1【解析】当0≤x ≤2时,0≤x 2≤4,当2<x ≤3时,2<3x -4≤5, 则[0,4]∩(2,5]=(2,4],令12()()f x f x ==t ∈(2,4], 则1x t 243t x +=, ∴2214143333t x x t tt -==, 32t ,即94t =时,21x x -有最小值712,故选:A.二、多选题7.(2022·新疆巴音郭楞·高一期末)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( )A .()00f =B .()10f =C .最大值14D .最小值14-【解析】由题可知,函数()f x 为定义在R 上的奇函数,则()()f x f x -=-, 已知()f x 在(),0∞-上的解析式()()1f x x x =+, 则当0x >时,0x -<,则()()()1f x x x f x -=--=-,所以当[)0,x ∈+∞时,()()2211124f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,可知()00f =,()10f =,且最大值为14,无最小值,所以()f x 在[)0,∞+上正确的结论是ABC. 故选:ABC.8.(2022·贵州遵义·高一期末)设函数()21,21,ax x a f x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( )A .2B .-1C .0D .1【解析】当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.三、填空题9.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______【解析】因为22()25(1)4f x x x x =-+=-+,所以当1x =时,min ()(1)4f x f ==,当5x =时,2max ()(5)(51)420f x f ==-+=,所以最大值和最小值之积为42080⨯=.故答案为:8010.(2022·广东汕头·高一期末)函数()()()2f x x a bx a =++是偶函数,且它的值域为(],2-∞,则2a b +=__________.【解析】()()()()22222f x x a bx a bx a ab x a =++=+++为偶函数,所以20a ab +=,即0a =或2b =-,当0a =时,()2f x bx =值域不符合(],2-∞,所以0a =不成立;当2b =-时,()2222f x x a =-+,若值域为(],2-∞,则21a =,所以21a b +=-.故答案为:1-.11.(2022·广东·华南师大附中高一期末)对x ∀∈R ,不等式2430mx x m ++->恒成立,则m 的取值范围是___________;若2430mx x m ++->在()1,1-上有解,则m 的取值范围是___________.【解析】(1)关于x 的不等式函数2430mx x m ++->对于任意实数x 恒成立,则()204430m m m >⎧⎨∆=--<⎩,解得m 的取值范围是()4,+∞.(2)若2430mx x m ++->在()1,1-上有解, 则2341x m x ->+在()1,1-上有解,易知当314x -<≤时23401xx -≥+, 当314x <<时23401x x -<+,此时记34t x =-, 则104t <<,()244253311624t g t t t t --==⎛⎫++++ ⎪⎝⎭,在10,4⎛⎫ ⎪⎝⎭上单调递减,故()12g t >-, 综上可知,234112x x ->-+,故m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭.故答案为:()4,+∞;1,2⎛⎫-+∞ ⎪⎝⎭四、解答题12.(2022·河南安阳·高一期末(文))已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式; (2)求()f x 在区间[]1,2-上的值域. 【解析】(1)解:由()02f =可得2c =,()()()()221112f x a x b x c ax a b x a b c +=++++=+++++,由()()121f x f x x +-=-得221ax a b x ++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)解:由(1)可得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =,()11f =, 又因为()15f -=,()22f =,所以,()f x 在区间[]1,2-上的值域为[]1,5.13.(2022·广东潮州·高一期末)()2f x x bx c =++,不等式()0f x ≤的解集为[]1,3.(1)求实数b ,c 的值;(2)[]0,3x ∈时,求()f x 的值域.【解析】(1)解:由题意,1和3是方程20x bx c ++=的两根,所以1313b c +=-⎧⎨⨯=⎩,解得4,3b c =-=;(2)解:由(1)知,22()43(2)1f x x x x =-+=--,所以当[]0,2x ∈时,()f x 单调递减,当[]2,3x ∈时,()f x 单调递增, 所以min ()(2)1f x f ==-,max ()(0)3f x f ==, 所以()f x 的值域为[1,3]-.14.(2022·广东湛江·高一期末)已知函数()223f x x ax =++,[]4,6x ∈-.(1)当2a =-时,求()f x 的最值;(2)若()f x 在区间[]4,6-上是单调函数,求实数a 的取值范围. 【解析】(1)当2a =-时,()()224321f x x x x =-+=--, ∴()f x 在[]4,2-上单凋递减,在2,6上单调递增,∴()()min 21f x f ==-,()()()()2max 4444335f x f =-=--⨯-+=.(2)()()222233f x x ax x a a =++=++-,∴要使()f x 在[]4,6-上为单调函数,只需4a -≤-或6a -≥,解得4a ≥或6a ≤-. ∴实数a 的取值范围为(][),64,-∞-+∞.15.(2022·北京通州·高一期末)已知二次函数2()21f x ax ax =-+. (1)求()f x 的对称轴;(2)若(1)7f -=,求a 的值及()f x 的最值.【解析】(1)解:因为二次函数2()21f x ax ax =-+, 所以对称轴212ax a-=-=. (2)解:因为(1)7f -=,所以217a a ++=. 所以2a =.所以2()241f x x x =-+. 因为20a =>, 所以()f x 开口向上,又2()241f x x x =-+对称轴为1x =,所以最小值为(1)1f =-,无最大值. 16.(2022·陕西·长安一中高一期末)函数2()22f x x x =-- (1)当[2,2]x ∈-时,求函数()f x 的值域; (2)当[,1]x t t ∈+时,求函数()f x 的最小值.【解析】(1)解:由题意,函数()22()2213f x x x x =--=--,可得函数()f x 在[]2,1-上单调递减,在[]12,上单调递增,所以函数()f x 在区间[]22-,上的最大值为(2)6f -=,最小值为(1)3f -=-, 综上函数()f x 在上的值域为[]3,6-.(2)解:①当0t ≤时,函数在区间[],1t t +上单调递减,最小值为2(1)3f t t +=-; ②当01t <<时,函数在区间[],1t 上单调递减, 在区间[]1,+1t 上单调递增,最小值为(1)3f =-;③当1t ≥时,函数在区间[],1t t +上单调递增,最小值为2()22f t t t =--,综上可得:当0t ≤时,函数()f x 的最小值为23t -;当01t <<,函数()f x 的最小值为3-;当1t ≥时,函数()f x 的最小值为222t t --.17.(2022·福建泉州·高一期末)已知函数2()4(0)f x ax ax b a =-+>在[0,3]上的最大值为3,最小值为1-. (1)求()f x 的解析式;(2)若(1,)∃∈+∞x ,使得()f x mx <,求实数m 的取值范围. 【解析】(1)()f x 的开口向上,对称轴为2x =, 所以在区间[]0,3上有:()()()()min max 2,0f x f f x f ==,即481133a a b a b b -+=-=⎧⎧⇒⎨⎨==⎩⎩,所以()243f x x x =-+.(2)依题意(1,)∃∈+∞x ,使得()f x mx <,即2343,4x x mx m x x-+<>+-, 由于1x >,33424234x x x x+-≥⋅=, 当且仅当33x x x=⇒=. 所以234m >.18.(2022·吉林·梅河口市第五中学高一期末)已知函数()()220f x mx mx n m =-+<在区间[]0,3上的最大值为5,最小值为1.(1)求m ,n 的值;(2)若正实数a ,b 满足2na mb -=,求114a b+的最小值.【解析】(1)由()()220f x mx mx n m =-+<,可得其对称轴方程为212mx m-=-=,所以由题意有(1)25(3)961f m m n f m m n =-+=⎧⎨=-+=⎩,解得1,4m n =-=.(2)由(1)2na mb -=为42a b +=,则111111171171725()()()(2)14242424848b a b a a b a b a b a b a b +=++=++≥+⨯=+=, (当且仅当25a b ==时等号成立). 所以114a b +的最小值为258.19.(2022·山东日照·高一期末)已知函数()223f x x ax =--.(1)若1a =,求不等式()0f x ≥的解集;(2)已知()f x 在[)3,+∞上单调递增,求a 的取值范围; (3)求()f x 在[]1,2-上的最小值.【解析】(1)当1a =时,函数()223f x x x =--,不等式()0f x ≥,即223(1)(3)0x x x x --=+-≥,解得1x ≤-或3x ≥, 即不等式()0f x ≥的解集为(,1][3,)-∞-+∞.(2)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,要使得()f x 在[)3,+∞上单调递增,则满足3a ≤, 所以a 的取值范围为(,3]-∞.(3)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,当1a <-时,函数()f x 在[]1,2-上单调递增,所以()f x 最小值为()122f a -=-; 当12a -≤≤时,函数()f x 在[]1,a -递减,在[],2a 上递增,所以()f x 最小值为()23f a a =--;当2a >时,函数()f x 在[]1,2-上单调递减,所以()f x 最小值为()214f a =-, 综上可得,()f x 在[]1,2-上的最小值为()2min22,13,1214,2a a f x a a a a -<-⎧⎪=---≤≤⎨⎪->⎩. 20.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【解析】(1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0,此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0.(2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,2111212()()()24f n f n n n n +--=--=,令214n n >+得,12n +>12n +>1()()2f n f >,2max ()f x n =.121n +<≤时1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪⎪⎩. 21.(2022·天津市武清区杨村第一中学高一期末)已知函数()22f x x mx n =++的图象过点()1,1-,且满足()()23f f -=.(1)求函数()f x 的解析式:(2)求函数()f x 在[],2a a +上的最小值;(3)若0x 满足()00f x x =,则称0x 为函数()y f x =的不动点,函数()()g x f x tx t =-+有两个不相等且正的不动点,求t 的取值范围. 【解析】(1)∵()f x 的图象过点()1,1-, ∴21m n ++=-① 又()()23f f -=, ∴82183m n m n -+=++② 由①②解2m =-,1n =-,∴()2221f x x x =--;(2)()2213221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[],2x a a ∈+,当122a +≤,即32a ≤-时,函数()f x 在[],2a a +上单调递减,∴()()2min 2263f x f a a a ⎡⎤=+=++⎣⎦;当122a a <<+,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,∴()min1322f x f ⎛⎫⎡⎤==- ⎪⎣⎦⎝⎭; 当12a ≥时,函数()f x 在[],2a a +上单调递增, ∴()()2min 221f x f a a a ⎡⎤==--⎣⎦.综上,()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩.(3)设()()g x f x tx t =-+有两个不相等的不动点1x 、2x ,且1>0x ,20x >,∴()g x x =,即方程()22310x t x t -++-=有两个不相等的正实根1x 、2x .∴()()21212Δ3810,30,2102t t t x x t x x ⎧⎪=+-->⎪+⎪+=>⎨⎪-⎪=>⎪⎩,解得1t >. 22.(2022·安徽合肥·高一期末)已知函数()22f x x mx =--.(1)若0m >且()f x 的最小值为3-,求不等式()1f x <的解集; (2)若当21x ≤时,不等式()20f x x -<恒成立,求实数m 的取值范围. 【解析】(1)解:()f x 的图象是对称轴为2mx =,开口向上的抛物线,所以,()222min2232424m m mm f x f ⎛⎫==--=--=- ⎪⎝⎭,因为0m >,解得2m =,由()1f x <得2230x x --<,即()()310x x -+<,得13x ,因此,不等式()1f x <的解集为()1,3-.(2)解:由21x ≤得11x -≤≤,设函数()()()2222g x f x x x m x =-=-+-,因为函数()g x 的图象是开口向上的抛物线,要使当21x ≤时,不等式()20f x x -<恒成立,即()0g x <在[]1,1-上恒成立,则()()1010g g⎧<⎪⎨-<⎪⎩,可得122010m m ---<⎧⎨+<⎩,解得3<1m -<-. 23.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.【解析】(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.24.(2022·贵州·赫章县教育研究室高一期末)已知函数()2623f x ax x b =+-+(,a b 为常数),在1x =时取得最大值2. (1)求()f x 的解析式; (2)求函数()f x 在3,2上的单调区间和最小值.【解析】(1)由题意知6126232a ab ⎧-=⎪⎨⎪+-+=⎩,∴32a b =-⎧⎨=⎩ , ∴ ()2361f x x x =-+-.(2)∵()()()22321312f x x x x =---=--+,∴当[]3,2x ∈-时,()f x 的单调增区间为[]3,1-,单调减区间为[]1,2,又()()32718146,2121211f f -=---=-=-+-=-, ∴ ()f x 最小值为46-.25.(2022·广东·化州市第三中学高一期末)已知函数()22f x x mx =-+.(1)若()f x 在区间(],1-∞上有最小值为1-,求实数m 的值;(2)若4m ≥时,对任意的12,1,12m x x ⎡⎤∈+⎢⎥⎣⎦,总有()()21244mf x f x -≤-,求实数m 的取值范围.【解析】(1)可知()f x 的对称轴为2m,开口向上, 当12m ≤,即2m ≤时,()2min 2124m m f x f ⎛⎫==-=- ⎪⎝⎭, 解得23m =-23,∴23m =- 当12m>,即2m >时,()()min 131f x f m ==-=-, 解得4m =,∴4m =. 综上,23m =-4m =.(2)由题意得,对1,12m x ⎡⎤∈+⎢⎥⎣⎦,()()2max min 44m f x f x -≤-. ∵1,122m m ⎡⎤∈+⎢⎥⎣⎦,11222m m m⎛⎫-≥+- ⎪⎝⎭,∴()2min224m m f x f ⎛⎫==- ⎪⎝⎭,()()max 13f x f m ==-.∴()()22max min1444m m f x f x m -=-+≤-, 解得5m ≥,∴5m ≥.26.(2022·黑龙江·鹤岗一中高一期末)已知二次函数()f x 满足()()12f x f x x +-=,且()01f =.(1)求函数()f x 在区间[]1,1-上的值域;(2)当x ∈R 时,函数y a =-与()3y f x x =-的图像没有公共点,求实数a 的取值范围.【解析】(1)解:设()()20f x ax bx c a =++≠、∴()1()22f x f x ax a b x +-=++=,∴220a a b =⎧⎨+=⎩,∴1a =,1b =-,又()01f =,∴1c =,∴()21f x x x =-+.∵对称轴为直线12x =,11x -≤≤,1324f ⎛⎫= ⎪⎝⎭,()13f -=, ∴函数的值域3,34⎡⎤⎢⎥⎣⎦.(2)解:由(1)可得:()2341y f x x x x =-=-+∵直线y a =-与函数()3y f x x =-的图像没有公共点∴()2min 41a x x -<-+, 当2x =时,()2min 41=3x x -+-∴3a -<-,∴3a >.27.(2022·陕西安康·高一期末)已知二次函数()[]21,1,2f x x ax x =++∈-.(1)当1a =时,求()f x 的最大值和最小值,并指出此时x 的取值; (2)求()f x 的最小值,并表示为关于a 的函数()H a .【解析】(1)当1a =时,()21f x x x =++,对称轴为12x =-,开口向上,所以()f x 在11,2⎡⎤--⎢⎥⎣⎦上单调递减,在1,22⎡⎤-⎢⎥⎣⎦上单调递增,()2min111312224f x f ⎛⎫⎛⎫⎛⎫=-=-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()2max 22217f x f ==++=.所以当12x =-时,()f x 的最小值为34,当2x =时()f x 的最大值为7.(2)()21f x x ax =++的对称轴为2a x =-,开口向上,当12a-≤-即2a ≥时,()21f x x ax =++在[]1,2-上单调递增, ()()()2min 1112f x f a a =-=--+=-,当122a -<-<即42a -<<时,()21f x x ax =++在1,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在,22a ⎡⎤-⎢⎥⎣⎦上单调递增,此时()22min 112224a a a a f x f a ⎛⎫⎛⎫⎛⎫=-=-+⋅-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当22a-≥即4a ≤-时,()21f x x ax =++在[]1,2-上单调递减, ()()2min 222152f x f a a ==++=+,所以252,4()1,4242,2a a a H a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.28.(2022·北京平谷·高一期末)已知二次函数()()211f x ax a x =-++.(1)当对称轴为1x =-时, (i )求实数a 的值;(ii )求f (x )在区间[]22-,上的值域. (2)解不等式()0f x ≥. 【解析】(1)解:(i )由题得(1)(1)11,12,223a a a a a a a -++-==-∴+=-∴=-; (ii )()212133f x x x =--+,对称轴为1x =-, 所以当[]2,2x ∈-时,max 124()(1)1333f x f =-=-++=.min 445()(2)1333f x f ==--+=-.所以f (x )在区间[]22-,上的值域为54[,]33-. (2)解:()2110ax a x -++≥,当0a =时,10,1x x -+≥∴≤;当0a >时,121(1)(1)0,0,1ax x x x a--≥∴=>=, 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时,121(1)(1)0,0,1ax x x x a--+≤∴=<=, 所以不等式的解集为1{|1}x x a≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≤; 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时, 不等式的解集为1{|1}x x a≤≤. 29.(2022·重庆·高一期末)已知函数()29f x x ax a =-+-,a R ∈.(1)若()f x 在[]0,1上的值域为[]4,6,求a 的值;(2)若关于x 的不等式()0f x <只有一个正整数解,求a 的取值范围. 【解析】(1)解:因为函数()29f x x ax a =-+-,a R ∈,对称轴2ax =,且()09f a =-,()1102f a =-,21924a f a a ⎛⎫=--+ ⎪⎝⎭,当02a<时,函数()f x 在0,1上单调递增,所以 ()()0416f f ⎧=⎪⎨=⎪⎩,即941026a a -=⎧⎨-=⎩,此时无解; 当>12a时,函数()f x 在0,1上单调递减,所以 ()()0614f f ⎧=⎪⎨=⎪⎩,即961024a a -=⎧⎨-=⎩,解得3a =; 当012a ≤≤,即02a ≤≤时,函数()f x 在2a x =取得最小值,所以42a f ⎛⎫= ⎪⎝⎭,即21944a a --+=,方程在02a ≤≤上无解, 综上得:3a =;(2)解:关于x 的不等式()0f x <只有一个正整数解,等价于2+9>+1x a x 只有一个正整数解,令()2+9+1x g x x =,则()()()2+91010+1+22+12102+1+1+1g x x x x x x x ==-≥⋅=,当且仅当10+1+1x x =,即101x =, ()2+9+1x g x x =在(101⎤-⎦,上递减,在)101,⎡+∞⎣递增, 而21013<,()21+9151+1g ==,()29g =,()2+913222+13g ==,()2+999133,5>>3+12233g ==,当a 13932⎛⎤∈ ⎥⎝⎦,不等式只有一个正整数解2x =,所以a 的取值范围为13932⎛⎤⎥⎝⎦,.30.(2022·河北秦皇岛·高一期末)已知函数()1f x x x=+,()21g x x ax a =-+-. (1)若()g x 的值域为[)0,∞+,求a 的值.(2)证明:对任意[]11,2x ∈,总存在[]21,3x ∈-,使得()()12f x g x =成立.【解析】(1)解:因为()g x 的值域为[)0,∞+,所以()()222414420a a a a a ∆=--=-+=-=,解得2a =.(2)证明:由题意,根据对勾函数的单调性可得()1111f x x x =+在[]1,2上单调递增,所以()152,2f x ⎡⎤∈⎢⎥⎣⎦.设()21g x x ax a =-+-在[]1,3-上的值域为M ,当12a≤-,即2a -时,()g x 在[1,3]-上单调递增,因为max ()(3)8212g x g a =-=,min ()(1)24g x g a -==-,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当32a,即6a 时,()g x 在[1,3]-上单调递减,因为max ()(1)212g x g a -==,min ()(3) 824g x g a =--=,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当132a -<<,即26a -<<时,22min 11()1(2)(4,0]244a g x g a a a ⎛⎫==-+-=--∈- ⎪⎝⎭,max ()max{2, 82}[4,12)g x a a =-∈,所以52,2M ⎡⎤⊆⎢⎥⎣⎦;综上,52,2M ⎡⎤⊆⎢⎥⎣⎦恒成立,即()f x 在[1,2]上的值域是()g x 在[1,3]-上值域的子集恒成立,所以对任意1[1,2]x ∈总存在2[1,3]x ∈-,使得()()12f x g x =成立.31.(2022·内蒙古赤峰·高一期末)已知函数2()21f x ax x a =-+-(a 为实常数). (1)若0a >,设()f x 在区间[1,2]的最小值为()g a ,求()g a 的表达式: (2)设()()f x h x x=,若函数()h x 在区间[1,2]上是增函数,求实数a 的取值范围. 【解析】(1)由于0a >,当[1,2]x ∈时,2211()212124f x ax x a a x a a a ⎛⎫=-+-=-+-- ⎪⎝⎭①若1012a <<,即12a >,则()f x 在[1,2]为增函数 ,()(1)32g a f a ==-; ②若1122a ≤≤,即1142a ≤≤时,11()2124g a f a a a ⎛⎫==-- ⎪⎝⎭;③若122a >,即104a <<时,()f x 在[1,2]上是减函数,()(2)63g a f a ==-; 综上可得163,04111()21,442132,2a a g a a a a a a ⎧-<<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩; (2)21()1a h x ax x-=+-在区间[1,2]上任取1212x x ≤<≤, ()()()212121211221212111a a a h x h x ax ax x x a x x x x ⎛⎫⎛⎫⎛⎫----=+--+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]211212(21)x x ax x a x x -=--(*) ()h x 在[1,2]上是增函数 ()()210h x h x ∴->∴(*)可转化为12(21)0ax x a -->对任意12,[1,2]x x ∈且12x x <都成立,即1221ax x a >- ①当0a =时,上式显然成立 ②12210,a a x x a ->>,由1214x x <<得211a a-≤,解得01a <≤; ③12210,a a x x a-<<,由1214x x <<得,214a a -≥,得102a -≤<, 所以实数a 的取值范围是1,02⎡⎫-⎪⎢⎣⎭.。

新版高中数学北师大版必修1习题:第二章函数 2.4.2.2

新版高中数学北师大版必修1习题:第二章函数 2.4.2.2

第2课时二次函数在闭区间上的最值课时过关·能力提升1若函数f(x)=x2-2x+1在区间[a,a+2]上的最小值为4,则a的取值集合为() A.[-3,3] B.{-1,3}C.{-3,3}D.{-1,-3,3}解析:函数f(x)=x2-2x+1=(x-1)2,对称轴x=1,∵区间[a,a+2]上的最小值为4,∴当a≥1时,y min=f(a)=(a-1)2=4,解得a=3或a=-1(舍去);当a+2≤1时,即a≤-1,y min=f(a+2)=(a+1)2=4,解得a=-3或a=1(舍去);当a<1<a+2时,y min=f(1)=0≠4,故a的取值集合为{-3,3}.答案:C2已知函数f(x)=-x2+4x在区间[m,n]上的值域是[-5,4],则m+n的取值范围是() A.[1,7] B.[1,6]C.[-1,1]D.[0,6]解析:∵f(x)=-x2+4x=-(x-2)2+4,∴f(2)=4.又由f(x)=-5,得x=-1或5.由f(x)的图像知-1≤m≤2,2≤n≤5.因此1≤m+n≤7.故选A.答案:A3函数y=√-x2-6x-5的值域为()A.[0,2]B.[0,4]C.(-∞,4]D.[0,+∞)解析:因为y=√-x2-6x-5=√-(x+3)2+4≤√4=2,所以y∈[0,2].答案:A4已知函数f(x)=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A.[1,+∞)B.[0,2]C.[1,2]D.(-∞,2]解析:因为二次函数的解析式已确定,而区间的左端点也确定,故要使函数在区间[0,m]上有最大值3,最小值2,只有画出草图来观察,如图.因为f(x)=x2-2x+3=(x-1)2+2,f(0)=3,f(1)=2,且f(2)=3.可知只有当m∈[1,2]时,才能满足题目的要求.答案:C5对于函数f(x)=-3x2+k,当实数k属于()时,才能确保一定存在实数对a,b(a<b<0),使得当函数f(x)的定义域为[a,b]时,其值域也恰好是[a,b].A.[-2,0)B.[-2,-112)C.(-112,+∞) D.(-112,0)解析:因为f (x )=-3x 2+k ,x ∈[a ,b ](a<b<0),所以f (x )在[a ,b ]上是增加的.所以{f (a )=a ,f (b )=b ,即-3x 2+k=x 有2个负根,所以3x 2+x-k=0. 所以{ Δ>0,x 1+x 2=-13<0,x 1x 2=-k 3>0,解得-112<k<0. 答案:D6已知函数f (x )=ax 2+2(a-2)x+a-4,当x ∈(-1,1)时,恒有f (x )<0,则a 的取值范围为( )A.a ≤2B.a<2C.0<a<2D.a<2且a ≠0解析:当a=0时,f (x )=-4x-4,则此时f (x )在(-1,1)上是减少的,且f (-1)=0,则当x ∈(-1,1)时,恒有f (x )<f (-1)=0,即a=0符合题意,排除C,D;当a=2时,f (x )=2x 2-2,由于x ∈(-1,1),则有f (x )=2x 2-2<f (-1)=f (1)=0.即a=2符合题意,排除B,故选A .答案:A7若函数f (x )=x 2-2x+m 在区间[2,+∞)上的最小值为-3,则实数m 的值为 .解析:因为f (x )=x 2-2x+m=(x-1)2+m-1,所以f (x )=x 2-2x+m 在区间[2,+∞)上是增加的.所以f (x )min =f (2)=m=-3.答案:-38若函数f (x )=x 2-2x ,x ∈[2,4),则f (x )的值域是 .解析:函数f (x )=x 2-2x=(x-1)2-1,∴函数在区间(-∞,1]上是减少的,在[1,+∞)上是增加的,∵x ∈[2,4),∴函数在[2,4)上是增加的.又f (2)=0,f (4)=16-8=8,∴f (x )的值域是[0,8).答案:[0,8)9已知二次函数y=f (x )=x 2-2ax+a 在区间[0,3]上的最小值为-2,求a 的值.解:f (x )=(x-a )2+a-a 2,对称轴为直线x=a ,按a 是否在[0,3]中分三种情况讨论.(1)当a<0时,y min =f (0)=a=-2,经验证,a=-2符合题意;(2)当0≤a ≤3时,y min =f (a )=a-a 2=-2,解得a=2或a=-1,但-1∉[0,3],所以a=2;(3)当a>3时,y min =f (3)=9-5a=-2,解得a=115,但115<3,故舍去.综上所述,a=±2.10已知二次函数f (x )=ax 2+bx+c 和一次函数g (x )=-bx ,其中a ,b ,c ∈R ,且满足a>b>c ,f (1)=0.(1)证明:当a=3,b=2时,函数f (x )与g (x )的图像交于不同的两点A ,B ;(2)若函数F (x )=f (x )-g (x )在[2,3]上的最小值是9,最大值为21,试求a ,b 的值.(1)证明:由已知3x 2+2x+c=-2x ,即3x 2+4x+c=0,又f (1)=0,∴a+b+c=0,∴c=-5,∴Δ=42-4×3×(-5)=76>0.因此,函数f (x )与g (x )的图像交于不同的两点A ,B.(2)解:由题意知,F (x )=ax 2+2bx+c ,∴函数F (x )的图像的对称轴为直线x=-b a .∵a+b+c=0,∴x=a+c a =1+c a <2. 又a>0,∴F (x )在[2,3]上是递增的.∴{F (2)=4a +4b +c =9,F (3)=9a +6b +c =21, 即{3a +3b =9,8a +5b =21,解得{a =2,b =1.11已知二次函数f (x )=ax 2+bx (a ,b 是常数且a ≠0)满足条件f (2)=0,且方程f (x )=x 有等根.(1)求f (x )的解析式.(2)问是否存在实数m ,n (m<n )使f (x )的定义域和值域分别为[m ,n ]和[2m ,2n ]?如果存在,求出m ,n 的值;如果不存在,请说明理由.解:(1)∵方程ax 2+(b-1)x=0(a ≠0)有等根,∴Δ=(b-1)2-4a×0=0,∴b=1.又f (2)=0,∴4a+2b=0,∴a=-12. ∴f (x )=-12x 2+x.(2)假设存在实数m ,n (m<n ),使f (x )的定义域和值域分别为[m ,n ]和[2m ,2n ].则f (x )=-12(x-1)2+12≤12,∴2n ≤12,∴n ≤14.又二次函数f (x )=-12(x-1)2+12的对称轴方程为x=1,∴当n ≤14时,f (x )在[m ,n ]上是增加的,则{f (m )=2m ,f (n )=2n ,即{-12m 2-m =0,-12n 2-n =0, 解得{m =0或m =-2,n =0或n =-2.∵m<n ≤14,∴m=-2,n=0.∴存在实数m=-2,n=0,使f (x )的定义域为[-2,0],值域为[-4,0].。

人教版高中数学必修第一册-二次函数在给定区间上最值问题-专题强化训练【含答案】

人教版高中数学必修第一册-二次函数在给定区间上最值问题-专题强化训练【含答案】

二次函数在给定区间上最值问题二次函数的单调性与对称轴和开口方向有关,往往来讲,二次函数的开口方向一般是给定的,在此情况下,二次函数的单调性就和对称轴与闭区间的位置关系有关。

因而在求最值时,往往需要讨论对称轴和区间的位置关系,这类题目在后续学习中经常遇见。

例题精讲:一.选择题(共7小题)1.若函数2()5f x x mx =++在区间[1,5]上单调递增,则m 的取值范围为()A .[2-,)+∞B .(-∞,2]-C .[10-,)+∞D .(-∞,10]-2.已知函数2247y x ax =++在区间[3-,1]-上是单调函数,则实数a 的取值范围是()A .(-∞,1]B .[6,)+∞C .(-∞,2][6 ,)+∞D .(-∞,1][3 ,)+∞3.若二次函数2()21f x ax ax =++在区间[2-,3]上的最大值为6,则(a =)A .13B .13-或5C .13或5-D .13-4.若函数2()43f x x x =--在区间[n ,]m 上的值域为[7-,2],则m n -的取值范围是()A .[1,5]B .[2,7]C .[3,6]D .[4,7]5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为()A .0B .12C .1D .26.已知函数2()2(2)1f x ax a x =--+,[1x ∈-,3]是单调函数,则a 的取值范围是()A .[0,1]B .[1-,0]C .[1-,1]D .[1-,2]7.函数2()2f x x x =--在[a ,]b 上的值域是[3-,1],若1b =,则a b +的取值集合为()A .[3-,1]-B .[2-,0]C .[4-,0]D .[2-,1]二.解答题(共5小题)8.已知函数2()f x x ax=-(1)若在区间[1,)+∞上是增函数,求实数a 的取值范围;(2)求函数()f x 在区间[1,2]上的最小值.9.已知函数2()41f x x mx =-+,m R ∈.(1)若关于x 的不等式()0f x <解集为空集,求m 的取值范围;(2)若函数()f x 在区间[2-,)+∞上是单调增函数,求f (1)的最小值.10.山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略,也是中国第一个以新旧动能转换为主题的区域发展战略.济南新旧动能转换先行区肩负着山东新旧动能转换先行先试的重任,某制造企业落户济南先行区,该企业对市场进行了调查分析,每年固定成本1000万元,每生产产品x (百件),需另投入成本()R x 万元,且210300,060()10006103000,60x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩,由市场调研知,每件产品售价6万元,且全年内生产的产品当年能全部销售完.(1)求年利润()W x (万元)关于年产量x (百件)的函数解析式.(利润=销售额-成本)(2)年产量x 为多少(百件)时,企业所获利润最大?最大利润是多少?11.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax - 对任意[1x ∈,3]恒成立,求实数a 的取值范围.12.已知函数2()1f x x ax =-+.(1)求()f x 在[0,1]上的最大值;(2)当1a =时,求()f x 在闭区间[t ,1]()t t R +∈上的最小值.参考答案一.选择题(共7小题)1.【解答】解:2()5f x x mx =++ 在区间[1,5]上单调递增,12m∴-,故2m - .故选:A .2.【解答】解:函数的对称轴是x a =-,若函数在区间[3-,1]-上是单调函数,则3a -- 或1a -- ,解得:3a 或1a ,故选:D .3.【解答】解:显然0a ≠,有2()(1)1f x a x a =+-+,当0a >时,()f x 在[2-,3]上的最大值为f (3)151a =+,由1516a +=,解得13a =,符合题意;当0a <时,()f x 在[3-,2]上的最大值为(1)1f a -=-,由16a -=,解得5a =-,所以,a 的值为13或5-.故选:C .4.【解答】解:2()43f x x x =-- ,f ∴(2)7=-,(1)f f -=(5)2=,()f x 在区间[n ,]m 上的值域为[7-,2],∴当1n =-,2m =或2n =,5m =时m n -的最小值3,当1n =-,5m =时,m n -取得最大值6,故m n -的范围[3,6]故选:C .5.【解答】解:因为2()2a f x x ax =-+的开口向上,对称轴2ax =,①122a 即1a 时,此时函数取得最大值g (a )f =(1)12a=-,②当122a >即1a >时,此时函数取得最大值g (a )(0)2af ==,故g (a )1,12,12aa a a ⎧-⎪⎪=⎨⎪>⎪⎩ ,故当1a =时,g (a )取得最小值12.故选:B .6.【解答】解:当0a =时,函数()41f x x =+,为增函数,符合题意;当0a ≠时,函数2()2(2)1f x ax a x =--+的对称轴为2a x a-=,且函数在区间[1-,3]是单调函数,∴21a a -- ,或23a a- ,解得01a < 或10a -< .综上,实数a 的取值范围是[1-,1].故选:C .7.【解答】解:22()2(1)1f x x x x =--=-++,1x ∴=-时,()f x 取到最大值1,方程223x x --=-的根是3x =-或1.若1b =,则31a -- ,a b ∴+的取值集合围是:[2-,0].故选:B .二.解答题(共5小题)8.【解答】解:(1)函数()f x 的对称轴是2a x =,若在区间[1,)+∞上是增函数,则12a,解得:2a ;(2)①12a即2a 时,()f x 在[1,2]递增,故()min f x f =(1)1a =-,②122a <<即24a <<时,()f x 在[1,)2a 递减,在(2a,2]递增,故2()()24mina a f x f ==-,③22a即4a 时,()f x 在[1,2]递减,故()min f x f =(2)42a =-.9.【解答】解:(1)()0f x < 解集为空集,∴判别式△2160m m =- ,解得016m .(2)2()41f x x mx =-+,图象开口向上,对称轴8mx =,因为函数()f x 在区间[2-,)+∞上是单调增函数,所以28m- ,解得16m - ,f (1)4m =-是关于m 的减函数,所以当16m =-时,f (1)取最小值为20.10.【解答】解:(1)当060x <<时,22()600(10300)1000103001000W x x x x x x =-+-=-+-;当60x 时,10001000()600(6103000)1000102000W x x x x x x=-+--=--.2103001000,060()1000102000,60x x x W x x x x ⎧-+-<<⎪∴=⎨--+⎪⎩;(2)当060x <<时,22()10300100010(15)1250W x x x x =-+-=--+,当15x =时,()1250max W x =万元;当60x 时,()W x 单调递减,4150()(60)3max W x W ==.∴年产量x 为60(百件)时,企业所获利润最大,最大利润是41503万元.11.【解答】解:(1)由不等式()4f x >-的解集为R ,234x ax ∴+->-解集为R ,即210x ax ++>解集为R ,可得△0<,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)由不等式()26f x ax - 对任意[1x ∈,3]恒成立,()26f x ax ∴- ,即2326x ax ax +-- 对任意[1x ∈,3]恒成立,即230x ax -+ 对任意[1x ∈,3]恒成立,3()min a x x ∴+ ,[1x ∈,3];3x x += ;当且仅当3x x=,即x =a ∴故a 的取值范围是(-∞,.12.【解答】解:(1)2()1f x x ax =-+的开口向上,对称轴2a x =,所以在区间[0,1]的哪个端点离对称轴远,则在哪个端点处取得最大值,当122a 即1a 时,()f x 取得最大值f (1)2a =-,当122a >即1a >时,()f x 的最大值(0)1f =,(2)当1a =时,2()1f x x x =-+的对称轴12x =,当12t 时,()f x 在[t ,1]t +上单调递增,所以2()()1min f x f t t t ==-+,当112t +即12t - 时,()f x 在[t ,1]t +上单调递减,2()(1)1min f x f t t t =+=++,当112t t <<+即1122t -<<时,()f x 在1(,)2t 上单调递减,在1(2,1)t +上单调递增,故13()()24min f x f ==,令()()min g t f x =,则2211,2311(),42211,2t t t g t t t t t ⎧-+⎪⎪⎪=-<<⎨⎪⎪++-⎪⎩.。

闭区间上二次函数的最值

闭区间上二次函数的最值

闭区间上二次函数的最值朱义华二次函数是最简单的非线性函数之一,自身性质活跃,同时经常作为其他函数的载体。

二次函数在某一区间上的最值问题,是初中二次函数内容的继续和发展,随着区间的确定或变化,以及在系数中增添参变数,使其又成为高考数学中的热点。

一. 定二次函数在定区间上的最值二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。

函数的最大值为f ()22=,最小值为f ()02=-。

图1例2. 已知232x x ≤,求函数f x x x ()=++21的最值。

解:由已知232x x ≤,可得032≤≤x ,即函数f x ()是定义在区间032,⎡⎣⎢⎤⎦⎥上的二次函数。

将二次函数配方得f x x ()=+⎛⎝ ⎫⎭⎪+12342,其对称轴方程x =-12,顶点坐标-⎛⎝ ⎫⎭⎪1234,,且图象开口向上。

显然其顶点横坐标不在区间032,⎡⎣⎢⎤⎦⎥内,如图2所示。

函数f x ()的最小值为f ()01=,最大值为f 32194⎛⎝ ⎫⎭⎪=。

图2解后反思:已知二次函数f x ax bx c ()=++2(不妨设a >0),它的图象是顶点为--⎛⎝ ⎫⎭⎪b aac b a 2442,、对称轴为x b a =-2、开口向上的抛物线。

由数形结合可得在[m ,n]上f x ()的最大值或最小值:(1)当[]-∈b a m n 2,时,f x ()的最小值是f b a ac b af x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课 二次函数在闭区间上的最值一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设)0()(2≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。

分析:将)(x f 配方,得顶点为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,、对称轴为a bx 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值:(1)当[]n m ab,∈-2时,)(x f 的最小值是a b ac a b f 4422-=⎪⎭⎫ ⎝⎛-, )(x f 的最大值是)()(n f m f 、中的较大者。

(2)当),(2m a b-∞∈-时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n ab时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f当0<a 时,可类比得结论。

(一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定; (2)轴定,区间变; (3)轴变,区间定; (4)轴变,区间变。

1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数242-+-=x x y 在区间[0,3]上的最大值是_________,最小值是_______。

练习. 已知x x 322≤,求函数1)(2++=x x x f 的最值。

2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2. 如果函数f x x ()()=-+112定义在区间[]t t ,+1上,求f x ()的最小值。

典型例题 基础过关例3.已知32)(2+-=xxxf,当]1,[+∈t tx,()Rt∈时,求)(xf的最大值.观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细思考就很容易解决。

不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。

第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。

根据这个理解,不难解释第二个例题为什么这样讨论。

对二次函数的区间最值结合函数图象总结如下:当a>0时⎪⎪⎩⎪⎪⎨⎧+<-+≥-=))((212)())((212)()(21max如图如图,,nmabnfnmabmfxf⎪⎪⎪⎩⎪⎪⎪⎨⎧<-≤-≤->-=)(2)()(2)2()(2)()(543min如图如图如图,,,mabmfnabmabfnabnfxf当0<a时⎪⎪⎪⎩⎪⎪⎪⎨⎧<-≤-≤->-=)(2)()(2)2()(2)()(876max如图如图如图,,,mabmfnabmabfnabnfxf f xf mbam nf nbam n()()()()()()()min=-≥+-<+⎧⎨⎪⎪⎩⎪⎪,,如图如图2122129103、轴变区间定二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。

例4. 已知x 21≤,且a -≥20,求函数f x x ax ()=++23的最值。

例5. (1) 求2f (x )x 2ax 1=++在区间[-1,2]上的最大值。

(2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。

4. 轴变区间变 二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。

例6. 已知)(42a x a y -= ()0>a ,求()223y x u +-=的最小值。

(二)、逆向型 是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。

例7. 已知函数2()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。

例8. 已知函数2()2x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。

评注:解法利用闭区间上的最值不超过整个定义域上的最值,缩小了m ,n 的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。

例9. 已知二次函数2f (x )ax (2a 1)x 1=+-+在区间⎥⎦⎤⎢⎣⎡-2,23上的最大值为3,求实数a 的值。

解后反思:若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍,从而避开繁难的分类讨论,使解题过程简洁、明了。

12++x 在]1,1[-上的最小值和最大值分别是( ))(A 1 ,3 )(B 43 ,3 (C )21- ,3 (D )41-, 3 2.函数242-+-=x x y 在区间]4,1[ 上的最小值是( ))(A 7- )(B 4- )(C 2- )(D 23.函数5482+-=x x y 的最值为( ) )(A 最大值为8,最小值为0 )(B 不存在最小值,最大值为8(C )最小值为0, 不存在最大值 )(D 不存在最小值,也不存在最大值 4.若函数]4,0[,422∈+--=x x x y 的取值范围是______________________ 5.已知函数f x ax a x a ()()()[]=+---22130322≠在区间,上的最大值是1,则实数a 的值为 6.如果实数y x ,满足122=+y x ,那么)1)(1(xy xy +-有( )(A) 最大值为 1 , 最小值为21 (B) 无最大值,最小值为43(C )最大值为 1, 无最小值 (D) 最大值为1,最小值为437.已知函数322+-=x x y 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) (A) ),1[+∞ (B) ]2,0[ (C) ]2,1[ (D) ]2,(-∞ 巩固训练8.若12,0,0=+≥≥y x y x ,那么232y x +的最小值为__________________9.设21,,x x R m ∈是方程01222=-+-m mx x 的两个实根,则2221x x +的最小值______10.设),](1,[,44)(2R t t t x x x x f ∈+∈--=求函数)(x f 的最小值)(t g 的解析式。

11.已知)(x f 22aax x +-=,在区间]1,0[上的最大值为)(a g ,求)(a g 的最小值。

12. 设a 为实数,函数2()2()||f x x x a x a =+--. (1) 若(0)1f ≥,求a 的取值范围;(2) 求()f x 的最小值;(3) 设函数()(),(,)h x f x x a =∈+∞,直接写出....不等式()1h x ≥的解集(不需给出演算步骤).第2课 函数的定义域和值域一、定义域:1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:① 已知函数的解析式,就是 .② 复合函数)]([x g f 的有关定义域,就要保证内函数)(x g 的 域是外函数)(x f 的 域. ③ 实际应用问题的定义域,就是要使得 有意义的自变量的取值集合. 基础过关二、值域:1.函数)(x f y =中,与自变量x 的值 的集合.2.求函数值域的常用方法:①观察法; ②配方法; ③反函数法; ④不等式法; ⑤单调性法; ⑥数形法; ⑦判别式法; ⑧有界性法; ⑨换元法 例如:① 221x y +=,可采用 法; ② 2312++=x x y )32(-≠x ,可采用 法或 法;③ c x bf x f a y ++=)()]([2,可采用 法; ④ x x y --=1,可采用 法;⑤21x x y --=,可采用 法; ⑥ xxy cos 2sin -=可采用 法等.例1. 求下列函数的定义域: (1)xx x y -+=||)1(0;(2)232531x x y -+-=; (3) 1·1-+=x x y .变式训练1:求下列函数的定义域:(1)02)1(12)2lg(-+-+-=x x x x y ; (2)02)45()34lg(-++=x x x y ;2. 设函数)(x f y =的定义域为[0,1],求下列函数的定义域. (1))3(x f y =; (2))1(xf y =; (3))31()31(-++=x f x f y ; (4))()(a x f a x f y -++=.典型例题变式训练2:若函数)(x f 的定义域是[0,1],则)()(a x f a x f -⋅+(0<a <21)的定义域是 ( ) A.∅B.]1,[a a - C. ]1,[a a +- D.[0,1]例3. 求下列函数的值域:(1);122+--=x x x x y (2) x x y 21--=; (3)1e 1e +-=x x y .变式训练3:求下列函数的值域: (1)521+-=x x y ; (2) 21x x y -⋅=.例4.若函数a x x x f +-=221)(的定义域和值域均为[1,b ](b >1),求a 、b 的值.变式训练4:已知函数624)(2++-=a ax x x f (x∈R). (1)求函数的值域为[0,+∞)时的a 的值;(2)若函数的值均为非负值,求函数32)(+-=a a a f 的值域.第3课 指数、对数和幂函数1.指数:(1) 规定:① a 0= (a ≠0); ② a -p = ; ③ (0,m n mna a a m => .(2) 运算性质:① a a a a s r s r ,0(>=⋅+ (a>0, r 、∈s R ) ② a a a s r s r ,0()(>=⋅ (a>0, r 、∈s R ) ③ >>⋅=⋅rb a b a b a rr r ,0,0()( 2.指数函数:① 定义:函数 称为指数函数,② 性质: 1) 函数的定义域为 ; 2) 函数的值域为 ; 3)恒过定点 ,4) 当________时函数为减函数, 当_______时为增函数.③ 函数图象:3.对数:(1) 定义:如果N a b =)1,0(≠>a a 且,那么 ,其中a 称为对数的底,N 称为真数.(2) 基本性质:①01log =a ; ②1log =a a ; ③N a N a =log.④ma b n log = 换底公式log a N =4.对数函数: ① 定义:函数 称为对数函数,② 性质 1) 函数的定义域为 ; 2) 函数的值域为 ;3)恒过定点 ,4) 当______时,函数为减函数,当______时为增函数;5) 函数x y a log =与函数 )1,0(≠>=a a a y x 且互为反函数.③ 函数图象:5.幂函数:① 定义:我们把形如 的函数称为幂函数,其中 是自变量, 是常数; ② 性质:(1)幂函数的图象都过点 ; (2)任何幂函数都不过 象限;(3)当0α>时,幂函数在[0,)+∞上 ;当0α<时,幂函数在(0,)+∞上 ; (4)当2,2α=-时,幂函数是 ;当11,1,3,3α=-时,幂函数是 . ③ 函数图象: 基础过关1.指数函数例1. 已知a=91,b=9. 求:(1);315383327a a a a ⋅÷-- (2)111)(---+ab ba .变式训练1:化简下列各式(其中各字母均为正数):(1);)(65312121132b a b a b a ⋅⋅⋅⋅-- (2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a例2. 函数f(x)=x 2-bx+c 满足f(1+x)=f (1-x)且f(0)=3,则f(b x )与f(c x)的大小关系是 ( ) (b x )≤f(c x ) (b x )≥f(c x ) (b x )>f(c x) D.大小关系随x 的不同而不同变式训练2:已知实数a 、b 满足等式11()()23a b=,下列五个关系式中,不可能成立的关系式有( )个① 0<b <a; ②a <b <0; ③0<a <b; ④b <a <0; ⑤a=b.例3. 求下列函数的定义域、值域及其单调区间: (1)f(x)=3452+-x x ;(2)g(x)=-11()4()542x x ++.变式训练3:求下列函数的单调递增区间: (1)y=(226)21x x -+; (2)y=262--x x .例4.设a >0,f(x)=e e x xaa +是R 上的偶函数. (1)求a 的值; (2)求证:f(x)在(0,+∞)上是增函数.变式训练4:已知定义在R 上的奇函数f(x)有最小正周期2即(2)()f x f x +=,且当x ∈(0,1)时,f(x)=241xx +. (1)求f (x)在[-1,1]上的解析式;(2)证明:f(x)在(0,1)上是减函数.2.对数函数例1 计算:(1)23log (23)+-(2)2(lg 2)2+lg 2·lg5+2(lg 2)lg 21-+;变式训练1:化简求值.(1)(lg2)2+lg2·lg50+lg25;(2)(log 32+log 92)·(log 43+log 83).例2 比较下列各组数的大小.(1)log 332与log 556;(2)log 1.10.7与变式训练2:已知0<a<1,b >1,ab >1,则log a bb bba1log ,log ,1的大小关系是 ( )bb b b a 1log log 1<<B.b b b b aa1log 1loglog << C.b b b a b a 1log 1log log << D.b bb a a b log 1log 1log <<例3已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立,试求a 的取值范围.变式训练3:已知函数f (x )=log 2(x 2-ax-a)在区间(-∞,1-3]上是单调递减函数.求实数a 的取值范围.例4 已知函数131()log 1x f x x +=-.(1)求)(x f 的定义域; (2)判断)(x f 的奇偶性并予以证明; (3)若()0f x > 求实数x 的取值范围变式训练4 已知).1,0(11log )(≠>-+=a a xx x f a (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 取值范围.3.幂函数例1.写出下列函数的定义域,并指出它们的奇偶性:(1)22y x x -=+ (2)1122y x x -=+ (3)1124()3()f x x x =+-变式训练1:讨论下列函数的定义域、值域,奇偶性与单调性:(1)43y x-= (2)54y x = (3)12y x -=例2比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)--(3)1125.25,5.26,5.26--- (4)30.530.5,3,log 0.5变式训练2:将下列各组数用小于号从小到大排列:(1)2223332.5,( 1.4),(3)-- (2)3338420.16,0.5,6.25-- (3)113323255(),(),log 333--例3已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值. 分析:幂函数图象与x 轴、y 轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数.结合m Z ∈,便可逐步确定m 的值.变式训练3:证明幂函数12()f x x-=在(0,)+∞上是减函数.。

相关文档
最新文档