数形结合思想

合集下载

数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。

这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。

二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。

教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。

对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。

2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。

通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。

教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。

3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。

教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。

教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。

2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。

数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。

3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。

通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。

2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。

初中数学教学数形结合思想的渗透

初中数学教学数形结合思想的渗透

初中数学教学数形结合思想的渗透数学是一门抽象而又具体的学科,它不仅具有严谨的逻辑性,还有着丰富的视觉形象性。

而数形结合思想正是将数学中的抽象概念与形象化的图形结合起来,使得学生可以通过视觉的方式更加直观地理解数学知识。

在初中数学教学中,数形结合思想的渗透已成为一种教学理念。

本文将就初中数学教学中数形结合思想的渗透进行探讨。

一、数形结合思想的内涵二、数形结合思想对初中数学教学的意义1. 提高学生的学习兴趣。

图形是一种直观的表达方式,通过图形的展示可以使抽象的数学概念更具形象性,激发学生对数学的兴趣。

2. 增强学生的数学直观性。

通过图形的展示,学生可以更加直观地理解数学概念,从而加深对知识的理解和记忆。

3. 培养学生的空间想象能力。

数形结合思想可以促进学生对空间的认知和构建,有助于培养学生的空间想象能力。

4. 提高学生的解决问题能力。

通过数形结合思想,学生可以更加直观地理解实际问题,培养学生的实际问题解决能力。

1. 几何图形的展示。

在初中几何学习中,几何图形是数形结合思想的重要展示对象。

教师可以通过几何图形的展示,让学生更直观地理解几何概念,如面积、周长等。

2. 函数图像的展示。

初中数学教学中,函数图像是一个重要的内容。

教师可以通过函数图像的展示,让学生更直观地理解函数的性质和变化规律。

1. 教师的教学设计。

教师在教学设计中应充分考虑数形结合思想,合理设计教学内容和教学活动,使得数形结合思想更好地渗透到教学中。

2. 使用教学工具。

教师在教学中可以使用各种教学工具,如几何模型、幻灯片、多媒体等,使得数学知识更加形象化、直观化,促进数形结合思想的渗透。

3. 学生的参与与互动。

教师应充分调动学生的积极性,鼓励学生参与到数学教学中来,通过学生的参与和互动,促进数形结合思想的渗透。

4. 多角度的展示。

教师在教学中可以从不同的角度对数学知识进行展示,使得学生能够从多个角度去理解数学知识,加深对知识的理解。

五、结语数形结合思想的渗透对于初中数学教学有着重要的意义。

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用一、数形结合思想的基本概念数形结合思想是指通过数学的抽象思维和几何的形象思维相互贯通、相互补充、相互渗透,以求达到更好的教学效果。

这种教学思想不仅能够增加数学的趣味性和实用性,同时也有助于培养学生的综合思维能力和创造力。

数形结合思想在小学数学教学中的应用主要体现在以下几个方面:1. 利用图形帮助理解数学概念。

通过绘制图形可以帮助学生更好地理解几何图形的性质和关系,有利于强化学生对几何概念的理解和记忆。

2. 利用数学知识解释图形现象。

通过数学知识可以对图形的属性进行量化分析,从而更深入地理解图形的性质和规律。

3. 通过数学模型对实际问题进行分析和求解。

通过建立数学模型对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

1. 利用几何图形教学数学概念在小学数学的教学中,教师可以通过绘制几何图形的方式,来帮助学生更好地理解和掌握数学概念。

在教学加减法时,可以通过绘制几何图形,让学生直观地理解加减法的意义和运算规律。

在教学分数时,可以通过绘制图形让学生形象化地理解分数的大小和大小比较。

也可以通过观察图形的对称性来帮助学生理解和掌握对称性的概念。

2. 利用数学知识解释图形现象在小学数学教学中,教师可以通过数学知识来解释一些图形现象,从而帮助学生更深入地理解图形的性质和规律。

在教学三角形的面积时,可以通过数学知识来解释三角形面积与底和高的关系,从而让学生更好地理解三角形的面积计算方法。

3. 通过数学模型对实际问题进行分析和求解在小学数学的教学中,教师可以引导学生通过建立数学模型对实际问题进行分析和求解。

在教学解决实际问题时,可以通过建立代数方程或几何图形来对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

也可以通过绘制图形来帮助学生形象化地理解和解决实际问题。

三、数形结合思想在小学数学教学中的效果评价数形结合思想在小学数学教学中的实践应用,可以有效地提高小学生的数学学习兴趣,激发他们的学习动力,增强他们的数学综合素养。

数形结合思想

数形结合思想
汽车 P站 步行 A 汽车 工厂
汽车提前10分钟到达工厂,其少走的路程为;两倍的车站 到A的距离。即从车站到A汽车用时5分钟。张工程师用时 50分钟。 汽车速度是步行速度的10倍。
二、关系图 关系的图示法很多,研究对象可以用点(或方 框或圆圈)表示,对象间的关系户则用连接两者 的线段表示,线段可以添加箭头或标注。 例3 甲、乙、丙、丁与小强五位同学一起比赛象 棋,每两人都要比赛一盘,到现在为止,甲已经 赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘, 问小强已经赛了多少盘? 乙 甲 分析: 丙 将五个人看成五个 “点”,两人比赛过, 丁 小强 就用线条连接相应的两 点。
三、树形图 例5 已知A、B、C、D、E、F、G、H、I、K 代表十个互不相同的大于0的数,要使下列等 式都成产,A最小是什么数?
B+C=A ; G+H=D ;
D+E=B ; E+F=C ; H+I=E ; I+K=F 。
分析:将这十个数字的 关系用树形图表示。
四、矩形图
如果一道题涉及的是两种数量以及它们的乘 积(速度、时间和路程),则可用矩形的长和 宽表示这两种量,而用矩形的面积表示它们的 积。 因此,能借助几个矩形的长、宽和面积之间 的关系进行推理或计算。
第十四章 数形结合思想
数形结合思想 就是根据数学问题的条件和结论之间的内在联系,既分 析其代数含义又揭示其几何意义,使问题的数量关系和空间 形式巧妙、和谐地结合起来,通过数与形的相互转化来解决 数学问题的思想。 其实质是将抽象的数学语言与直观的图像结合起来, 关键是代数问题与图形之间的相互转化,它可以使代数问 题几何化,几何问题代数化。数形结合的思想,包含“以 形助数”和“以数辅形”两个方面,其应用大致可以分为 两种情形:或者是借助形的生动和直观性来阐明数之间的 联系, 在小学教学中,它主要表现在把抽象的数量关系,转 化为适当的几何图形,从图开的直观特征发现数量之间存 在的联系,以达到化难来易、化繁为简、化隐为显的目的, 使问题简捷地得以解决。通常是将数量关系转化为线段图, 这是基本的、自然的手段。如一年级认数时数轴与对应点 之间的关系.

浅析数形结合思想在小学数学教学中的应用

浅析数形结合思想在小学数学教学中的应用

浅析数形结合思想在小学数学教学中的应用1. 引言1.1 概述数形结合思想是指在数学教学中,将抽象的数学概念与具体的形象结合起来,通过观察、比较、绘制图形等方式来帮助学生更加直观地理解和掌握数学知识。

数形结合思想在小学数学教学中有着重要的作用,可以帮助学生从形象思维逐步转向符号思维,提高他们的数学学习兴趣和学习效果。

本文将对数形结合思想在小学数学教学中的应用进行分析和探讨,旨在为教师在教学实践中更好地运用这一思想提供参考和借鉴。

已介绍完毕,下面将继续探讨。

1.2 研究背景随着教育教学理念的不断更新和发展,人们越来越重视数学教学中数形结合思想的应用。

数形结合思想指的是将数学的抽象概念与几何图形相结合,通过具体形象的展示和实践操作,帮助学生更好地理解和掌握数学知识。

这一思想的提出源于对传统数学教学方法的反思和挑战,认为仅仅停留在抽象符号和公式的层面,不能真正激发学生的学习兴趣和培养他们的数学思维能力。

在过去的数学教学中,往往以填鸭式的教学方式为主,学生被passively 接受知识,缺乏主动探究和实践的机会。

而数形结合思想的提出,意味着教师需要更多地关注学生的个体差异和学习方式,通过多样化的教学手段和资源,激发学生的学习兴趣和潜能。

研究数形结合思想在小学数学教学中的应用,具有重要的理论和实践意义。

通过深入探讨这一教学理念的内涵和具体实践案例,可以为小学数学教学提供更加有效和具体的教学方法,促进学生数学思维能力和创新意识的培养。

1.3 研究意义数形结合思想在小学数学教学中的应用,具有重要的研究意义。

数形结合思想可以帮助学生更加深入地理解数学概念,将抽象的数学知识与具体的图形形象结合起来,使学生易于理解和记忆。

数形结合思想可以激发学生的兴趣,提高他们学习数学的积极性和主动性,培养他们的逻辑思维能力和创造性思维能力。

数形结合思想还可以帮助学生培养观察和分析问题的能力,提高他们解决实际问题的能力,促进他们综合运用数学知识的能力。

数形结合思想总结

数形结合思想总结

数形结合思想总结数形结合思想,即数学与几何的相互结合,是一种抽象思维方式,可以帮助我们理解和解决问题。

在现实生活中,我们经常会遇到需要进行量化和图像表示的情况,数形结合思想就可以发挥非常重要的作用。

首先,数形结合思想可以帮助我们更好地理解数学概念。

数学是一门抽象的学科,有时很难理解其中的概念。

但是,通过将数学问题与几何图形相结合,我们可以用图形的形式来直观地表示和理解抽象的数学概念。

例如,在学习几何题目时,我们经常使用图形来表示给定条件,然后通过数学方法来求解未知量。

这样,就可以更加直观地理解和应用数学概念。

其次,数形结合思想可以在解决实际问题时发挥重要作用。

在现实生活中,我们常常需要通过数学方法来解决各种实际问题。

然而,有些问题很难用纯数学方法解决,因为涉及到很多具体的情况和变量。

这时,数形结合思想就可以帮助我们将问题转化为几何图形,从而更加直观地分析和解决问题。

通过将问题用图形表示,我们可以更好地观察问题的特点和规律,从而找到解决问题的方法。

另外,数形结合思想在培养创造力和创新思维方面也是非常有益的。

数学和几何本质上都是一门创造性的学科,通过将数学和几何相结合,我们可以激发学生的创造力和创新思维。

通过探索不同的数学问题和几何图形,学生可以学会思考和解决问题的方法,培养他们的创新思维能力。

数形结合思想可以帮助学生发现问题的多种解决途径,从而提高他们的思维灵活性和创造性。

此外,数形结合思想对于培养学生的空间想象能力也非常重要。

在学习几何和立体几何时,学生需要通过观察和分析图形,并将其转化为数学表达式。

这就要求学生具备一定的空间想象能力。

数形结合思想可以帮助学生在思维中形成几何的空间感,从而提高他们的空间想象能力。

通过不断练习和探索,学生可以逐渐提高他们的空间想象能力,从而更好地理解和应用几何以及其他相关的数学概念。

综上所述,数形结合思想是一种非常有用的思维方式,它可以帮助我们更好地理解和应用数学概念,解决实际问题,并培养学生的创造力和空间想象能力。

数形结合思想在小学数学教学中的应用

数形结合思想在小学数学教学中的应用

数形结合思想在小学数学教学中的应用
数形结合思想是指在数学学习中,将几何形状和数字计算结合起来进行分析和解决问
题的思维方式。

它不仅拓宽了学生的思维空间,增强了学生对数学的兴趣,还能够提高学
生的逻辑思维能力和创造力。

在小学数学教学中,数形结合思想的应用可以丰富教学内容,增强学生的学习效果。

一、数形结合在几何图形认识中的应用
数形结合思想可以帮助学生更好地认识和理解各种几何图形。

在学习正方形的性质时,可以通过画出正方形的各个边和角度来帮助学生更加直观地理解正方形的特征;在学习平
行四边形时,可以通过画出平行四边形的对角线和角度来帮助学生理解平行四边形的性
质。

二、数形结合在面积和周长计算中的应用
数形结合思想可以帮助学生更好地理解和计算面积和周长。

在学习矩形的面积和周长时,可以通过将矩形分成若干个小正方形来计算面积,通过将矩形的边展开来计算周长;
在学习三角形的面积时,可以通过将三角形分成若干个小矩形或平行四边形来计算面积。

三、数形结合在图形变换中的应用
数形结合思想可以帮助学生更好地理解和应用图形变换。

在学习平移时,可以通过画
出原图和平移后的图来展示平移的过程和结果;在学习旋转时,可以通过画出原图和旋转
后的图来展示旋转的过程和结果。

五、数形结合在解决实际问题中的应用
数形结合思想可以帮助学生更好地解决实际问题。

在解决购物问题时,可以通过画出
购物清单和价格表来计算总价格;在解决旅行问题时,可以通过画出地图和距离标尺来计
算行程和时间。

数形结合思想在小学数学教学中的妙用

数形结合思想在小学数学教学中的妙用

数形结合思想在小学数学教学中的妙用一、数形结合思想的概念数形结合思想是指在教学中将数学概念和几何图形相结合,通过图形的形状和特点来帮助学生理解数学概念,提高学生的数学思维能力。

数形结合思想的核心是通过直观的图形呈现,帮助学生建立数学概念的形象。

二、数形结合思想在小学数学教学中的具体应用1. 教学中的操作性在小学数学教学中,数形结合思想可以通过图形的操作性来帮助学生理解数学概念。

教学加减法时,通过图形的表示让学生更直观地理解加减法的概念,比单纯的数字计算更容易理解和掌握。

2. 教学中的形象性小学生喜欢直观形象的东西,数形结合思想可以通过图形形象地表示数学概念,让学生更容易接受和理解。

教学几何图形的面积和周长时,通过图形的形象表示,可以让学生更加深刻地理解面积和周长的概念,从而提高学生的学习兴趣。

3. 教学分数的比较大小在教学分数的比较大小时,可以通过图形的表示帮助学生直观地感受分数的大小和关系,从而更容易掌握分数的比较方法。

可以通过图形的形象表示让学生直观地感受到不同分数的大小和关系,从而更容易进行比较和运算。

四、数形结合思想在小学数学教学中的意义和价值1. 增强学生的学习兴趣数形结合思想通过图形形象地呈现数学概念,使学生更容易接受和理解数学知识,从而增强学生的学习兴趣,激发学生学习的热情。

3. 培养学生的数学思维能力数形结合思想通过图形的表示帮助学生建立数学概念的形象,培养学生的想象力和思维能力,提高学生的数学思维水平。

五、数形结合思想在小学数学教学中的展望数形结合思想在小学数学教学中具有重要的意义和价值,未来应进一步深化数形结合思想在小学数学教学中的应用,不断丰富教学方法和手段,提高教学质量和效果,培养更多数学人才。

数形结合思想对初中数学教学的意义

数形结合思想对初中数学教学的意义

数形结合思想对初中数学教学的意义一、引言数学是一门以逻辑思维和抽象推理为基础的科学,它的学习需要学生形成正确的数学思维方式和数学观念。

然而,在传统的数学教学中,往往侧重于数学的符号运算,缺乏对数学概念的形象和直观的理解,导致学生对数学的兴趣不高,学习效果有限。

而数形结合思想的提出,正是为了解决这一问题而诞生的。

本文将从数形结合思想的内涵、在初中数学教学中的应用和对学生数学学习的意义三个方面详细探讨。

二、数形结合思想的内涵数形结合思想是指在数学教学中,将数量和形状有机结合起来,通过观察、比较、分类等方式,使学生从形象、直观的角度认识和理解数学概念,培养学生的数学直觉和几何观念。

数形结合思想是一种根据学生的认知规律和心理特点,利用形状图形或实物模型辅助教学的方法,通过视觉形象的印象,启发学生的思维,促进学生对数学的理解。

三、数形结合思想在初中数学教学中的应用1.培养学生的兴趣。

数学教学往往让学生感到枯燥乏味,缺乏趣味性。

而数形结合思想的应用,可以通过丰富多样的形象图片、实物模型等,激发学生对数学的兴趣,使学生在观察和比较中寻找规律,从而主动参与数学学习。

2.帮助学生理解抽象概念。

初中数学的一些概念相对抽象,如平行线、垂直线等。

通过引入实物模型或几何图形,可以让学生直观地感受抽象概念所包含的属性,从而更好地理解和应用这些概念。

3.培养学生的空间想象能力。

数形结合思想的应用,可以帮助学生培养空间想象能力。

例如,在学习立体几何时,可以通过制作纸板模型、拼装积木等方式,让学生从多个角度观察和理解几何体的特点,提高学生的空间想象力。

4.促进学生的思维发展。

数学教学不仅仅是传授知识,更重要的是培养学生的思维能力。

数形结合思想的应用,可以引导学生从不同角度观察问题,从而激发学生的思维,培养学生的逻辑思维能力、创造思维能力和解决问题的能力。

四、数形结合思想对学生数学学习的意义1.增强学生的数学自信心。

通过数形结合思想的应用,学生可以从形象、直观的角度理解数学概念,为后续学习打下坚实的基础,提高学生的自信心。

浅析小学数学教学中的数形结合思想

浅析小学数学教学中的数形结合思想

浅析小学数学教学中的数形结合思想数形结合是指把数与形结合起来教学,让学生通过绘图、实验等方式掌握数学知识。

数形结合教学方法是一种高效的教学方式,它可以帮助学生直观地理解和掌握数学知识,激发学生的学习兴趣和求知欲。

在小学数学教学中,数形结合思想非常重要。

通过学习形状、图形、坐标系等数学概念和知识,让学生掌握数学规律和方法。

下面我们就具体分析一下小学数学教学中的数形结合思想。

一、数与图形的结合在小学数学教学中,数与图形的结合十分重要。

通过图形展示数学概念和知识,让学生直观地感受数学的魅力,培养学生的形象思维能力和创造力。

例如,在学习几何图形时,老师可以让学生通过绘图的方式学习不同形状的图形,比如正方形、长方形、三角形等,让学生不仅掌握图形的特点,还能体会到数学的美妙。

在学习数字计数时,可以让学生通过图形展示不同数量的物体,让学生直观地体验数字之间的关系。

在小学数学教学中,数与统计的结合也非常重要。

通过一些实际的统计数据,让学生学习数学知识,掌握数据分析的方法。

例如,在学习数据分析时,可以使用一些实际场景的数据,如某个班级学生的身高、体重等,让学生通过统计数据来分析学生的身体状况,从而让学生学会数据分析的方法。

在学习概率知识时,可以让学生在实际生活中进行一些有趣的概率实验,比如抛硬币、掷骰子等,让学生深入理解概率知识。

在小学数学教学中,数与运算的结合同样非常重要。

通过学习数学运算,让学生掌握基本的算数概念和方法。

例如,在学习加减法时,可以通过图形表示给学生直观感受,如两个正方形相加形成一个大正方形,从而方便学生理解加减法的基本规律。

在学习乘除法时,可以通过实际场景的例子,让学生掌握乘法和除法的应用方法,从而帮助学生更好地理解数学知识。

综上所述,数形结合在小学数学教学中起着非常重要的作用。

通过数形结合教学方法,可以让学生直观地感受数学的美妙,激发学生的学习热情和学习兴趣,从而提高学生的数学素养和学习成绩。

小学数学教学中数形结合思想教学模式的应用

小学数学教学中数形结合思想教学模式的应用

小学数学教学中数形结合思想教学模式的应用数学教育一直以来都是教育的重点之一,随着时代的发展和现代化教育的不断推进,数学教育也日新月异,在教学模式上也不断创新。

其中,数形结合思想教学模式对小学数学的教学有着重要的意义。

本文将从以下几个方面介绍数形结合思想教学模式的应用在小学数学教学中的重要性。

一、数形结合思想教学模式的定义和特点数形结合思想教学模式,是指将数学与形象的几何图形进行结合,让学生先通过图形引导理解数学的概念,然后再进行抽象的计算,从而提高学生对数学的理解与记忆。

该教学模式的特点在于,采用视觉化、图像化的方式进行数学教学,使学生更加容易理解和接受数学知识。

因此,数形结合思想教学模式能够有效地提高学生的学习兴趣和学习效果。

1. 概念引入阶段在数学知识的学习中,概念是需要引入的部分,而数形结合思想教学模式能够很好地帮助学生进行概念引入。

在小学数学教学中,例如求一个图形的面积或周长等,通过绘制解题图形,让学生先有直观感受,再通过观察图形对其面积或周长进行估算,并引导学生逐步抽象出公式,从而深入学习概念。

2. 计算运用阶段在小学数学教学中,许多计算需要通过图形进行较好的理解,如平移、旋转、翻转等操作,图形学可以很好地帮助学生进行计算与运用。

例如在学习加减法时,可以通过图形认知方式,通过输入两个图形,让学生对这两个图形进行加减法运算,从而更好地理解加减法的操作方法。

这样一来,学生在进行数学计算时能够更快速和准确地理解,也能够提高计算效率。

3. 问题解决阶段数学问题解决是小学数学教学的重点要求之一,而数形结合思想教学模式能够帮助学生更好地解决问题。

通过绘制数学问题的解题图形,让学生在图形上寻找数学问题的结论,特别是在转化问题、连续问题解决以及以数学模型解决实际问题时。

例如,当我们遇到一个物理问题,需要利用数学方法去计算物体的运动状态等,此时数形结合思想教学模式能够帮助学生更好的理解和解决这些问题。

数形结合思想教学模式在小学数学教学中具有重要的意义,其一是深入学习数学知识,增强记忆;其二,对学生的潜力有更好的挖掘和发挥作用;其三,培养学生的空间思维和逻辑推理能力;其四,更好地满足现代化教育的要求,更好地适应时代发展与变化。

初中数学思想方法篇——数形结合

初中数学思想方法篇——数形结合

解题思想之数形结合一、注解:数形结合思想指将数量与图形结合起来,对题目中的给定的题设和结论既进行代数方面的分析,又从几何含义方面进行分析,将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,也可以使图形的性质通过数量之间的计算与分析,达到更加完整、严密和准确。

在解决数学问题的过程时要善于由形思数,由数思形,数形结合,通过数量与图形的转化,把数的问题利用图形直观的表示出来,力图找到解题思路。

数形结合是数学学习的一个重要方法,通常与平面直角坐标系,数轴及其他数学概念同时使用。

二、实例运用:1.在实数中的运用【例1】如图,在所给数轴上表示出实数—3,—1,2-的点,并把这组数从小到大用“<”连接。

【例2】已知a<0,b<0,且a<b,则()A —b>—aB —b>aC —a >bD b>a2.在不等式中的运用【例3】不等式组2030xx-⎧⎨-≥⎩的正整数解的个数为()A 1个B 2个C 3个D 4个【例4】关于x的不等式组521xx a-≥-⎧⎨-⎩无解,则a的取值范围是。

3.在方程(组)中的运用【例5】利用图像法解方程组24212x yx y-=⎧⎨+=⎩4.在函数中的运用【例6】某水电站的蓄水池有2个进水口和1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示。

已知某天0点到6点进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示。

给出三个判断:(1)0点到3点,只进水不出水;(2)3点到4点,不进水只出水;(3)4点到6点,不进水不出水。

则以上判断正确的是()A (1)B (2)C (2)(3)D (1)(2)(3)【例7】已知二次函数y=ax2+bx+c的图象如图所示,则在(1)a<0,(2)b>0(3)c<0(4)b2-4ac>0中,正确的判断是()A (1)(2)(3)(4)B (4)C(1)(2)(3)D(1)(4)5.在统计与概率中的运用【例8】近年来,某市旅游业蓬勃发展,吸引了大批海内外游客前来观光,下面两图分别反映了该市2001—2004年旅客总人数和旅游业总收入的情况。

数形结合数学思想方法

数形结合数学思想方法

数形结合数学思想方法2数形结合数学思想方法用图形的直观,帮助同学理解数量关系,提升教学效率用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。

"数形结合'可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进同学形象思维和抽象思维的协调发展,〔沟通〕数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

它是小学数学教材的一个重要特点,更是解决问题时常用的方法。

众所周知,同学从形象思维向抽象思维发展,一般来说必须要借助于直观。

以数解形:有关图形中往往蕴含着数量关系,特别是复杂的几何〔形体〕可以用简单的数量关系来表示。

而我们也可以借助代数的运算,经常可以将几何图形化难为易,表示为简单的数量关系(如算式等),以获得更多的知识面,简单地说就是"以数解形'。

它往往借助于数的准确性来阐明形的某些属性,表示形的特征、形的求积计算等等,而有的老师在出示图形时太过简单,同学直接来观察却看不出个所以然,这时我们就必须要给图形赋予一定价值的问题。

助表象,发展同学的空间观念,培养同学初步的逻辑思维能力。

儿童的熟悉规律,一般来说是从直接感知到表象,再到形成科学概念的过程。

表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,发展同学的空间观念,培养初步的逻辑思维能力,具有十分重要意义。

数形结合,为建立函数思想打好基础。

小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。

为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。

此外,在六年二期学习的比例中,让同学通过描点连线来表示正比例函数的图象,发现成只要是正比例关系的式子,画在坐标图中是就一条直线。

从而体会到图形与函数之间密不可分的关系。

3数形结合数学思想渗透方法小同学都是从直观、形象的图形开始入门学习数学。

从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子,贝壳记事,慢慢的发展成为用形象的符号记事,最后才有了数字。

初中数学中的数形结合思想

初中数学中的数形结合思想

初中数学中的数形结合思想在初中数学中,数形结合思想是解决问题的重要方法之一。

这种思想可以将图形性质问题转化为数量关系问题,或者将数量关系问题转化为图形性质问题,从而使问题更加具体化、简单化。

这种转换不仅可以提高教学质量,还可以有效地培养学生的思维素质,因此它是初中数学研究的关键所在。

数形结合思想对学生数学能力的培养非常重要,主要包括运算能力和解题能力。

数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。

数形结合思想是初中数学研究中一个重要的数学思想,贯穿了数学教学的始终。

数形结合思想的核心是将数与形结合起来进行分析研究,通过图形的描述代数的论证来研究和解决数学问题。

它能够使复杂的问题简单化、抽象的问题具体化,将代数关系与几何图形的直观形象有机地结合起来。

在初中数学中,数形结合思想的应用主要体现在以下两个方面:一、有数思形数形结合,用形来解决数的问题和解决一些运算公式。

例如,利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等;用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理;用函数的图像解决函数的最值问题、值域问题;用图形比较不等式的大小问题。

解这种类型题的关键是根据数结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。

二、由形思数数形结合。

解决这类问题的关键是运用数的精确性来阐明形的某些属性,将图形信息转化为代数信息,利用数特征将图形问题转化为代数问题来解决。

这类问题在初中数学中也比较常见,例如用数表示角的大小和线段的大小,用数的大小比较角的大小和线段的大小;用有序实数对描述点在平面直角坐标系内的位置;用方程、不等式或者函数解决几何量的问题;用数来描述点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系,直线与直线的位置关系。

在教学中,我们需要注意到任何一种解题思想方法都不是孤立的。

因此,我们需要根据具体的问题利用现有的教材,将不同的思想方法综合运用。

谈谈数形结合思想在数学教学中的重要性

谈谈数形结合思想在数学教学中的重要性

谈谈数形结合思想在数学教学中的重要性
数形结合思想是指将数学中的抽象概念与图形直观地结合在一起,通过图形的形状、大小、位置等来帮助理解和解决数学问题的思考方式。

它在数学教学中具有重要的意义,主要体现在以下几个方面:
1. 直观性强:数学中的抽象概念往往难以被学生直接理解,而图形具有直观性,能够帮助学生形象地把握数学概念。

通过图形的形状、大小、位置等,学生能够更容易地理解抽象的数学概念,从而从感性层面上建立起对数学知识的认识。

2. 帮助发现规律:数形结合思想能够帮助学生在观察和探索中发现数学问题的规律,培养学生的发现和探索能力。

通过绘制图形、观察图形特征和数学意义的联系,学生可以主动参与问题的解决过程,从而提高解决问题的思维能力。

3. 增强记忆和理解:图形形象生动地展示了数学概念和定理的几何意义,能够帮助学生记忆和理解数学知识。

通过观察、分析和绘制图形,学生能够更加深入地理解数学概念和定理,并将其应用于解决问题中,提高数学知识的应用能力。

4. 拓宽思维空间:数形结合思想可以拓宽学生的思维空间,培养学生的创新思维和解决问题的能力。

通过将数学问题转化为图形问题,学生可以从不同的角度思考问题,寻找更多的解决方法和途径,培养出灵活、独立思考的能力。

因此,在数学教学中,数形结合思想的运用对于学生的数学学习起着重要的作用。

它不仅可以帮助学生更好地理解和掌握数学知识,还能够培养学生的观察力、分析能力和解决问题的能力,提高学生的数学素养和综合应用能力。

数形结合思想的总结

数形结合思想的总结

数形结合思想的总结数形结合思想是指在数学问题的解决过程中,结合几何图形进行分析和思考,以便更好地理解和解决问题。

数形结合思想是数学思维的重要组成部分,也是培养学生综合素质的有效方法之一。

在学习和应用数形结合思想的过程中,我们可以提高数学问题的理解和解决能力,培养逻辑思维和观察力,同时也能够增强几何直观和空间想象能力。

下面将对数形结合思想进行总结和分析。

首先,数形结合思想可以帮助学生更好地理解和解释数学问题。

数学问题通常以文字的形式呈现,有时候难以理解和把握。

而将问题转化为几何图形,可以帮助我们更加形象地理解问题的含义和要求。

通过观察和分析图形的特点,可以找到问题的关键信息,从而更好地解决问题。

例如,在解决平面几何问题时,我们可以通过画图来表示已知条件和所求要素的关系,从而更好地找到解答的方法和途径。

其次,数形结合思想有助于培养学生的逻辑思维和观察力。

在数学学习过程中,逻辑思维和观察力是至关重要的能力。

运用数形结合思想,可以培养学生的逻辑思维能力。

通过观察和分析图形的形状、大小、位置等特点,进行逻辑推理和推断,有助于学生锻炼逻辑思维能力,提高解题的准确性和效率。

同时,数形结合思想也要求学生具备良好的观察力,能够准确地观察和把握图形的特点和变化。

通过观察和比较图形,可以帮助学生发现问题的规律和规则,从而更好地解决问题。

此外,数形结合思想还能够增强学生的几何直观和空间想象能力。

几何学是研究空间内点、直线、面及其相互关系的数学分支,几何直观和空间想象是几何学习的基本要素。

数形结合思想要求学生通过画图和观察图形,从而增强对几何图形的直观感受和空间想象能力。

通过观察和分析图形的形状、结构和变化,可以培养学生对几何图形的认识和理解能力,提高空间想象和几何直观的能力。

这对于解决几何学问题和应用直观思维进行数学推理是非常重要的。

最后,数形结合思想在培养学生综合素质方面具有积极的作用。

数形结合思想是一种综合性的思维方式,要求学生综合运用数学知识、几何图形和逻辑推理等技能进行分析和解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 数形结合思想要点一 利用数形结合思想研究函数的零点、[解析] (1)在同一坐标系下画出函数y =12e -2x 与y =|ln x |的大致图象,结合图象不难看出,这两条曲线的两个交点中,其中一个交点横坐标属于区间(0,1),另一个交点横坐标属于区间(1,+∞),不妨设x 1∈(0,1),x 2∈(1,+∞),则有12e -2x 1=|ln x 1|=-ln x 1∈⎝ ⎛⎭⎪⎫12e -2,12,12e -2x 2=|ln x 2|=ln x 2∈⎝ ⎛⎭⎪⎫0,12e -2,12e -2x 2-12e -2x 1=ln x 2+ln x 1=ln(x 1x 2)∈⎝ ⎛⎭⎪⎫-12,0,于是有e - 12 <x 1x 2<e 0,即1e<x 1x 2<1,故选B. (2)方程1x +2=a |x |有三个不同的实数解等价于函数y =1x +2与y =a |x |的图象有三个不同的交点.在同一直角坐标系中作出函数y =1x +2与y =a |x |的图象,如图所示,由图易知,a >0.当-2<x <0时,设函数y =a |x |=-ax 的图象与函数f (x )=1x +2的图象相切于点(x 0,y 0),因为f ′(x 0)=-1(x 0+2)2,则有 ⎩⎪⎨⎪⎧ y 0=-ax 0,y 0=1x 0+2,1(x 0+2)2=a ,解得a =1,所以实数a 的取值范围为(1,+∞),故选C.[答案] (1)B (2)C利用数形结合求方程解、函数零点问题的2个注意点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.[对点训练]1.(2018·大连模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m , 其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.[解析] 作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.[答案] (3,+∞)2.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.[解析] 如图所示,由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].[答案] [-1,1]要点二 利用数形结合思想解决最值问题[解析] (1)方程(x -2)2+y 2=3的几何意义为坐标平面上的一个圆,圆心为M (2,0),半径为r =3(如图),而y x =y -0x -0则表示圆M 上的点A (x ,y )与坐标原点O (0,0)的连线的斜率.所以该问题可转化为动点A 在以M (2,0)为圆心,以3为半径的圆上移动,求直线OA 的斜率的最大值.由图可知当∠OAM 在第一象限,且直线OA 与圆M 相切时,OA 的斜率最大,此时OM =2,AM =3,OA ⊥AM ,则OA =OM 2-AM 2=1,tan∠AOM =AM OA =3,故y x 的最大值为3,故选D.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6,故选B.[答案] (1)D (2)B利用数形结合思想解决最值问题的3点思路(1)对于几何图形中的动态问题,应分析各个变量的变化过程,找出其中的相互关系求解.(2)对于求最大值、最小值问题,先分析所涉及知识,然后画出相应图象,数形结合求解.(3)如果(不)等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解.[对点训练]3.(2018·广东广州测试)若x ,y 满足约束条件⎩⎪⎨⎪⎧ x -y +2≥0,2y -1≥0,x -1≤0,则z =x 2+2x +y 2的最小值为( )A.12B.14 C .-12 D .-34 [解析] 画出约束条件对应的平面区域,如图中阴影部分所示,z =x 2+2x +y 2=(x +1)2+y 2-1,其几何意义是平面区域内的点(x ,y )到定点(-1,0)的距离的平方再减去1,观察图形可得,平面区域内的点到定点(-1,0)的距离的最小值为12,故z =x 2+2x +y 2的最小值为z min=14-1=-34,故选D.[答案] D4.(2018·武汉二模)已知抛物线的方程为x 2=8y ,F 是其焦点,点A (-2,4),在此抛物线上求一点P ,使△APF 的周长最小,此时点P 的坐标为________.[解析] 因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部,如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,连接AQ ,由抛物线的定义可知△APF 的周长为|PF |+|P A |+|AF |=|PQ |+|P A |+|AF |≥|AQ |+|AF |≥|AB |+|AF |,当且仅当P ,B ,A 三点共线时,△APF 的周长取得最小值,即|AB |+|AF |.因为A (-2,4),所以不妨设△APF 的周长最小时,点P 的坐标为(-2,y 0),代入x 2=8y ,得y 0=12,故使△APF 的周长最小的抛物线上的点P 的坐标为⎝ ⎛⎭⎪⎫-2,12,故填⎝ ⎛⎭⎪⎫-2,12.[答案] ⎝ ⎛⎭⎪⎫-2,12要点三 利用数形结合思想解决不等式、参数问题[解析] (1)设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.(2)对任意x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|.因为f (x )的草图如图所示,观察f (x )=⎩⎨⎧ -x 2+x ,x ≤1,log 13 x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.[答案] (1)A (2)⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ 利用数形结合思想解不等式或求参数范围问题的技巧求参数范围或解不等式问题时经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答.[对点训练]5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)[解析] 因为f (x )是奇函数,所以当x <0时,-x >0,∴f (-x )=(-x )2+2(-x )=x 2-2x =-f (x ),∴f (x )=-x 2+2x .作出函数f (x )的大致图象(如图中实线所示),结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1,故选C.[答案] C6.(2018·河南郑州二模)使log2(-x)<x+1成立的x的取值范围是()A.(-1,0) B.[-1,0)C.(-2,0) D.[-2,0)[解析]在同一坐标系内作出y=log2(-x),y=x+1的图象,知满足条件的x∈(-1,0),故选A.[答案]A运用数形结合思想分析解决问题的三原则1.等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明.2.双向性原则在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.3.简单性原则找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单.专题跟踪训练(二)一、选择题1.(2018·沈阳质检)方程sinπx=x4的解的个数是() A.5 B.6C.7 D.8[解析]在同一平面直角坐标系中画出y1=sinπx和y2=x4的图象,如右图:观察图象可知y1=sinπx和y2=x4的图象在第一象限有3个交点,根据对称性可知,在第三象限也有3个交点,再加上原点,共7个交点,所以方程sinπx=x4有7个解,故选C.[答案]C2.(2018·宝鸡质检)若方程x+k=1-x2有且只有一个解,则k 的取值范围是()A.[-1,1) B.k=±2C.[-1,1] D.k=2或k∈[-1,1)[解析]令y1=x+k,y2=1-x2,则x2+y2=1(y≥0).作出图象如图:而y1=x+k中,k是直线的纵截距,由图知:方程有一个解⇔直线与上述半圆只有一个公共点⇔k=2或-1≤k<1,故选D.[答案]D3.记实数x1,x2,…,x n中最小数为min{x1,x2,…,x n},则定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13-x}的最大值为()A.5 B.6C.8 D.10[解析]在同一坐标系中作出三个函数y =x 2+1,y =x +3,y =13-x 的图象如图:由图可知,在实数集R 上,min{x 2+1,x +3,13-x }为y =x +3上A 点下方的射线,抛物线AB 之间的部分,线段BC ,与直线y =13-x 点C 下方的部分的组合图.显然,在区间[0,+∞)上,在C 点时,y =min{x 2+1,x +3,13-x }取得最大值.解方程组⎩⎪⎨⎪⎧y =x +3y =13-x 得点C (5,8). 所以f (x )max =8,故选C.[答案] C4.(2018·西安调研)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y ≥0mx -y ≤0x -2y +2≥0,若z =2x -y 的最大值为2,则实数m =( ) A .-1B .-2C .1D .2[解析] 将目标函数变形为y =2x -z ,当z 取最大值时,直线y=2x -z 在y 轴上的截距最小,故当m ≤12时,不满足题意.当m >12时,作出不等式组⎩⎪⎨⎪⎧ x +2y ≥0mx -y ≤0x -2y +2≥0表示的平面区域,如图阴影部分所示(含边界).y =2x -z 过点B 时,直线在y 轴上的截距最小,此时z =2x -y 取得最大值.易求点B ⎝ ⎛⎭⎪⎫22m -1,2m 2m -1.∴最大值为z =2×22m -1-2m 2m -1=2,解得m =1. [答案] C5.函数f (x )=ln x -x -a 有两个不同的零点,则实数a 的取值范围是( )A .(-∞,-1]B .(-∞,-1)C .[-1,+∞)D .(-1,+∞)[解析]函数f (x )=ln x -x -a 的零点,即关于x 的方程ln x -x -a =0的实根,将方程ln x -x -a =0化为方程ln x =x +a ,令y 1=ln x ,y 2=x +a ,由导数知识可知,直线y 2=x +a 与曲线y 1=ln x 相切时有a =-1,如图所示,若关于x 的方程ln x -x -a =0有两个不同的实根,则实数a 的取值范围是(-∞,-1),故选B.[答案] B6.(2018·九江十校联考)设A ,B 在圆x 2+y 2=1上运动,且|AB |=3,点P 在直线l :3x +4y -12=0上运动,则|P A →+PB →|的最小值为( )A .3B .4 C.175 D.195 [解析] 设AB 的中点为D ,则P A →+PB →=2PD →.∴当且仅当O ,D ,P 三点共线时,|P A →+PB →|取得最小值,此时OP ⊥AB ,且OP ⊥l . ∵圆心到直线的距离为129+16=125,|OD |= 1-34=12,∴|P A →+PB →|的最小值为2⎝ ⎛⎭⎪⎫125-12=195,故选D. [答案] D二、填空题7.函数f (x )=3-x +x 2-4的零点个数是________.[解析] 令f (x )=0,则x 2-4=-⎝ ⎛⎭⎪⎫13x ,分别作出函数g (x )=x 2-4,h (x )=-⎝ ⎛⎭⎪⎫13x 的图象,由图可知,显然h (x )与g (x )的图象有2个交点,故函数f (x )的零点个数为2.[答案] 28.设函数f (x )=x |x -a |的图象与函数g (x )=|x -1|的图象有三个不同的交点,则a 的取值范围是________.[解析] 易知a =0时不满足题意.当a <0时,f (x )与g (x )的图象如图(1),不满足题意.当a >0时,f (x )与g (x )的图象如图(2).根据图(2)知要满足f (x )与g (x )的图象有三个不同交点,需a >1.∴a 的取值范围是(1,+∞).[答案] (1,+∞)9.(2018·山西四校模拟)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为________.[解析] 由题意可得⎩⎨⎧4a 1+4×32d ≥105a 1+5×42d ≤15,即⎩⎪⎨⎪⎧2a 1+3d ≥5a 1+2d ≤3.又a 4=a 1+3d ,故此题可转化为线性规划问题.画出可行域如图所示.作出直线a 1+3d =0,经平移可知当直线a 4=a 1+3d 过可行域内点A (1,1)时,在y 轴上的截距最大,此时a 4取最大值4.[答案] 4三、解答题10.(2018·海口模拟)设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实数α、β.(1)求实数a 的取值范围;(2)求α+β的值.[解](1)原方程可化为sin ⎝ ⎛⎭⎪⎫θ+π3=-a 2, 作出函数y =sin ⎝ ⎛⎭⎪⎫x +π3(x ∈(0,2π))的图象. 由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎨⎧ -1<-a 2<1-a 2≠32,即-2<a <-3或-3<a <2. (2)由图知:当-3<a <2,即-a 2∈⎝⎛⎭⎪⎫-1,32时,直线y =-a 2与三角函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象交于C 、D 两点,它们中点的横坐标为7π6,所以α+β2=7π6,所以α+β=7π3.当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎫32,1时,直线y =-a 2与三角函数y=sin ⎝ ⎛⎭⎪⎫x +π3的图象有两交点A 、B , 由对称性知,α+β2=π6,所以α+β=π3,综上所述,α+β=π3或7π3.11.已知直线l :x -y =1与圆M :x 2+y 2-2x +2y -1=0相交于A ,C 两点,点B ,D 分别在圆M 上运动,且位于直线AC 两侧,求四边形ABCD 面积的最大值.[解]把圆M :x 2+y 2-2x +2y -1=0化为标准方程:(x -1)2+(y +1)2=3,圆心(1,-1),半径r = 3.直线l 与圆M 相交,圆心到直线l 的距离d =|1×1-1×(-1)-1|12+(-1)2=22,所以弦长|AC |=2× (3)2-⎝ ⎛⎭⎪⎫222=10. 又B ,D 两点在圆上,且位于直线l 的两侧,四边形ABCD 的面积可以看成是两个三角形△ABC 和△ACD 的面积之和,如图所示,当B ,D 为如图所示位置,即BD 为弦AC 的垂直平分线时(即为直径时),两三角形的面积之和最大,即四边形ABCD 的面积最大,最大面积为S =12|AC |×|BE |+12|AC |×|DE |=12|AC |×|BD |=12×10×23=30.12.下面的图形无限向内延续,最外面的正方形的边长是2,从外到内,第n 个正方形与其内切圆之间的深色图形面积记为S n (n ∈N *).(1)证明:S n =2S n +1(n ∈N *);(2)证明:S 1+S 2+…+S n <8-2π.[证明] (1)设第n (n ∈N *)个正方形的边长为a n ,则其内切圆半径为a n 2,第n +1个正方形的边长为22a n ,其内切圆半径为24a n ,所以S n =a 2n -π⎝ ⎛⎭⎪⎫a n 22=a 2n ⎝ ⎛⎭⎪⎫1-π4 (n ∈N *),S n +1=⎝ ⎛⎭⎪⎫22a n 2-π⎝ ⎛⎭⎪⎫24a n 2=a 2n ⎝ ⎛⎭⎪⎫12-π8=12S n (n ∈N *).所以S n =2S n +1(n ∈N *).(2)由(1)可知,S 1=22×⎝ ⎛⎭⎪⎫1-π4=4-π,S 2=2-π2,…,S n =(4-π)⎝ ⎛⎭⎪⎫12n -1,所以T n =S 1+S 2+…+S n =(4-π)×⎝ ⎛⎭⎪⎫1+12+122+…+12n -1=(4-π)×1-⎝ ⎛⎭⎪⎫12n 1-12=(8-2π)⎝⎛⎭⎪⎫1-12n <8-2π.。

相关文档
最新文档