2015年内蒙古呼和浩特地区中考数学练习:专题2 图表信息问题

合集下载

呼和浩特市中考数学试卷真题

呼和浩特市中考数学试卷真题

2015年呼和浩特市中考试卷数学注意事项:1.考生务必将自己的姓名、准考证号填在试卷和答题卡的规定位置。

2.考生要将答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分。

考试时间120分钟。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A.-3℃B.15℃C.-10℃D.-1℃2.下列图形中,既是轴对称图形,又是中心对称图形的是A.B. C. D.3.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为A. 70°B. 100°C. 110°D. 120°4.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为A. 12B.13C.14D.165.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是A. -3≤y≤3B. 0≤y≤2C. 1≤y≤3D. 0≤y≤36.下列运算,结果正确的是A .224m m m += B . 22211()m m m m +=+ C . 2224(3)6mn m n = D . 2222m m n mn n÷= 7.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为 A . 12 B . 98C . 2D . 4 8.以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额9.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为A . 236πB . 136πC . 132πD . 120π10.函数xx x y 22+=的图象为A. B. C. D.各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元. 12.分解因式:x 3-x =__________.13.如图,四边形 ABCD 是菱形, E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒落到阴影区域内的概率是__________. 14.一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为__________.15.若实数a 、b 满足(4a +4b ) (4a +4b -2)-8=0,则a +b=__________. 16.以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补. ②边数相等的两个正多边形一定相似.③等腰三角形ABC 中, D 是底边BC 上一点, E 是一腰AC 上的一点,若∠BAD =60°且AD =AE , 则∠EDC =30°.④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点. 其中正确命题的序号为__________.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤)17.(10分)计算 (1) (5分)计算63-11()3-+24(2) (5分)先化简,再求值:2232237()5102a b a b ab a b +÷,其中a = 52,b =-1218.(6分)如图, 的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE ≌△DOF ;G HFA CBDE AD BCFE O(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.19.(6分)如图,热气球的探测器显示,从热气球A 处看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为65°,热气球与高楼的水平距离AD 为120m .求这栋高楼的高度. (结果用含非特殊角的三角函数及根式表示即可)20.(6分)若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x + y >-32,求出满足条件的m 的所有正整数值.21.(7分)某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象.以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10).请你结合表格和图象:(1)指出付款金额和购买量哪个变量是函数的自变量x ,并写出表中a 、b 的值; (2)求出当x>2时,y 关于x 的函数解析式;(3)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该玉米种子,分别计算他们的购买量和付款金额.22.(9分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手表达能力阅读理解综合素质汉字听写付款金额(元) a 7.5 10 12 b 购买量(千克)11.522.53甲 85 78 85 73 乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁; (2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.23.(7分)如图,在平面直角坐标系中A 点的坐标为(8,y ) ,AB ⊥x 轴于点B , sin ∠OAB = 45 ,反比例函数y= kx的图象的一支经过AO 的中点C ,且与AB 交于点D. (1)求反比例函数解析式;(2)若函数y = 3x 与y = kx 的图象的另一支交于点M ,求三角形OMB 与四边形OCDB 的面积的比.24.(9分)如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,∠P AC =∠ABC(1) 求证:P A 是⊙O 的切线;(2) 连接PB 与AC 交于点D ,与⊙O 交于点E ,F 为BD 上的一点,若M为BC ⌒的中点,且∠DCF =∠P ,求证:BD PD = FD ED = CD AD.25.(12分)已知:抛物线y = x 2+(2m -1)x + m 2-1经过坐标原点,且当x < 0时,y 随x 的增大而减小. (1)求抛物线的解析式,并写出y < 0时,对应x 的取值范围;(2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C.①当BC=1时,直接写出矩形ABCD的周长;②设动点A的坐标为(a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.2015年 呼 和 浩 特 市 中 考 试 卷数学参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CACADDCBBD二、填空题(本大题共6小题,每小题3分,共18分)题号 11 12 13 14 15 16 答案4.1×106x (x +1)(x -1)1212π- 12或1②③④三、解答题(本大题共9小题,满分72分)17.(10分) (1) (5分)解:原式=3-6-3+26 ……………3分 =6 …………………………5分(2) (5分)解:原式=32232()5107a b ab ab +⨯=3232223257107a b a b ab ab ⨯+⨯=22433535a b a b+=25a b…………………………………………3分当a =52,b =-12时,原式=-18…………………5分 18、(6分) (1)∴BO=DO,AO=OC ∵AE=CF∴AO -AE=OC -CF 即:OE=OF在△BOE 和△DOF 中,OB ODBOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩∴△BOE ≌△DOF (SAS ) ……………………4分 (2)矩形 ………………………………………6分19. (6分) 在Rt △ABD 中,∵tan 30°=BDAD∴BD = AD·tan 30°=120×33= 40 3 ………………………………………2分 在Rt △ACD 中, ∵tan 65°=CDAD∴CD =120·tan 65° ……………………………………………………4分AD BFE O∴BC =BD +CD =403+120·tan 65°答:这栋高楼的高度为(403+120·tan65°)米……………………………6分 20. (6分)解: 解:23224x y m x y +=-+⎧⎨+=⎩①②①+②得:3(x +y )=-3m +6 ∴x +y =-m +2 ∵x +y >-32 ……………………………………2分∴-m +2>-32∴m <72…………………………………………………………………………4分∵m 为正整数∴m =1、2或3…………………………………………………………………6分 21. (7分)解:(1) 购买量是函数中的自变量x …………1分a =5 …………2分b=14 …………3分(2) 当x >2时,设y 与x 的函数关系式为:y = kx +b ∵y = kx +b 经过点(2,10) 又x =3时,y =14 ∴210314k b k b +=⎧⎨+=⎩解得42k b =⎧⎨=⎩∴当x >2时,y 与x 的函数关系式为:y = 4x +2………………………………5分 (3)当y = 8. 8时, x =8.85=1.76 当x = 4.165时,y = 4×4.165+2 =18.66∴甲农户的购买量为1.76千克,乙农户的付款金额为18.66元. …………7分 22.(9分)解:(1)乙的平均成绩:73+80+82+834=79.5 …………………1分∵80.25 >79.5 ∴应选派甲……………………………………2分(2)甲的平均成绩:85×2+78×1+85×3+73×410 = 79.5…………………5分乙的平均成绩:73×2+80×1+82×3+83×410= 80.4………………8分∵79.5<80.4 ∴应选派乙 …………………………………9分 23.(7分) 解:(1) ∵A 点的坐标为(8,y ) ∴OB =8 ∵sin ∠OAB = 45,∴OA =8×54=10,AB =6∵C 是OA 的中点,且在第一象限 ∴C(4,3) ∴反比例函数的解析式为y =12x………………………………2分 (2)1212322,1266y x y x x x y y =⎧==-⎧⎧⎪⎪⎪⎨⎨⎨===-⎪⎪⎪⎩⎩⎩解方程组得 ∵M 是直线与双曲线另一支的交点∴M (-2,-6)………………………………………………3分 ∴S △OMB = 12·OB·|-6| = 12×8×6 =24∵S 四边形OCDB = S △OBC +S △BCD =12+12·DB ·4……………………5分D 在双曲线上,且D 点横坐标为8 ∴D (8,32),即BD =32∴S 四边形OCDB =12+3=15∴S △OMB S 四边形OCDB= 85…………………………………………………7分24、(9分)证明:(1) 连接CM∵∠P AC =∠ABC ,∠M =∠ABC ∴∠P AC =∠M ∵AM 为直径 ∴∠M +∠MAC =90° ∴∠P AC +∠MAC =90° 即:∠MAP =90° ∴MA ⊥AP∴P A 是⊙O 的切线…………………………………………3分 (2) 连接AE∵M 为BC ⌒中点,AM 为⊙O 的直径 ∴AM ⊥BC ∵AM ⊥AP ∴AP ∥BC ∴△ADP ∽△CDB ∴BD PD = CD AD………………………………………………………………………5分 ∵AP //BC ∴∠P =∠CBD ∵∠CBD =∠CAE ∴∠P =∠CAE ∵∠P =∠DCF ∴∠DCF =∠CAEABO F DEC∵∠ADE =∠CDF ∴△ADE ∽△CDF ∴CD DA = FD ED………………………………………………………………………7分 ∴BD PD = FD ED = CDAD …………………………………………………………………9分 25、(12分)解:(1)∵抛物线经过坐标原点(0,0) ∴m 2-1=0 ∴m = ±1∴y = x 2+x 或y = x 2-3x ……………………………………………………………………2分 ∵x <0时,y 随x 的增大而减小∴ y = x 2-3x ………………………………………………………………………………3分 由图象知:y <0时,0<x <3 ………………………………………………………………4分 (2)①当BC =1时,由抛物线的对称性知点B 的纵坐标为-2.所以矩形的周长为6 …5分 ②∵点A 的坐标为(a ,b )∴当点A 在对称轴左侧时,矩形ABCD 的一边BC =3-2a ,另一边AB =3a -a 2周长L =-2a 2+2a +6 ,其中 0<a <32 ……………………………………………………7分当点A 在对称轴右侧时,矩形的一边BC =3-(6-2a )=2a -3, 另一边AB =3a -a 2 周长L =-2a 2+10a -6,其中32<a <3……………………………………………………9分∴当0<a <32时,L =-2(a -12)2+132∴当a = 12时,L 最大= 132,A 点坐标为(12,-54)当32<a <3时,L =-2(a -52)2+ 132∴当a = 52时,L 最大= 132,A 点坐标为(52,-54) ……12分 (说明:本试卷各题只要方法合理,可依据情况酌情给分)。

内蒙古呼和浩特市2015届中考第一次模拟考试数学试题及答案(版)

内蒙古呼和浩特市2015届中考第一次模拟考试数学试题及答案(版)

2015年呼和浩特市初三年级质量普査调研考试注竄事项:,.答H 繭,考生将姓名写在答舗卡相应位■,认曲对貪力码上的姓名、考生号和考 试科目,贴在仗定位■上。

2考生要将答案霉在答题坎上,在试卷上答题一律无效。

3.本试卷満分120分。

考试时何120分钵。

一•迭择甌(本大JM 共10小■•毎小& 3分•共30分.在毎小题给出的四个选项中■只有一项是符合题目耍求的)1 •下列图形中•既是披对称图形又杲中心对称图形的是3•为了实现医药卫生改革的目标•烂初步測算.2011-2015年各级致府一共霜要投入人民 币8500亿元这个数攜用科学记数法可裘示为 A.8J x 元 B.85 x 1010元C.0.85 x 10° 元 D85 x 10“ 元4•已知一组数据1・7」0.8,心6刀・3・若这细数抵的平均数;=5.则x 应尊干5・一代角的余角加上90。

■就遍于6•方程^♦6x-5-0的左边!£成完全平方履所得方程为 A.(x + 3?»14B.(x-3):» 14C.(x4 6尸 « 41D.(x ♦3),«47 •如图・超一^几何体的三视图(主视18中的弧线是半岡),则该几何体的体积是.D.3或・3A 遠个锐角的B.这个钱角的余角初三年■湘CMGM WK (A4M)&下列运算正Ift的是AJaJ 看 B.(rWavTTFsa59•已知平冇四边形ABCD的对角线AC与BD相交于点0. AB丄AC•若AB = 2.AC = 8. 划对角线BD的长是10.已知bvovj则議数yskxx-k,和厂瞥的图象大致是2VT R2V T C・4VT D.4VTA B C D二、填空18(本大題共6小題,每小题3分,共18分.本題要求把正确结果填存餐题SUR定的橫坟上,不碣要解答过程)■11 •險数厂亠的口变灵X的取值____________________ •IX从1.2.3.4中任意取出两个不同的效,其和为5的槪率妃_____________ •13.一个等膜但不等边的三角形,它的角平分线、高、中线的总条数为____ 条.14.分解囚式:2^-8a s ____________ •15.___________________________________________________________ 巳知圜锥的母线长为8■其侧面展开图込半EL则这个圆策的高为___________________ •16•已知gb是方程0的两个实数根■则£-ab + 3t + b的值为____________________三■解答题(本大J■共9小鳳芻分72分.解答应写出文字说明,证明过程或初步St)忆(10分)H#2x-y ■ 1(1)(5分)解方程组:3x - y; L = 4 ・⑵(5分)计算Q-VT)°・VTun3S +(#尸・初三年max (A4X)18・(7分)^AABC 中・DJ&BC 边的中点.E.F 分别在AD 及其延长域上.CE 〃BF.连接 BEXF. (1) ^iI :ABDF^ACDE;(2) 若DE = £BC,试判断四边形BFCE 的形状. 无需说明理由.20. (6分)如图,要测fit 小山上电视塔BC 的离度■在山胸下点A «^:塔顶B 的仰角为£BAD«40%塔底C 的仰角为Z.CAD = 30。

最新2015年呼和浩特市中考数学试卷及答案解析

最新2015年呼和浩特市中考数学试卷及答案解析

12015年呼和浩特市中考试卷23数学456注意事项:1.考生务必将自己的姓名、准考证号填在试卷和答题卡的规定位置。

782.考生要将答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试9卷和答10题卡一并交回。

113.本试卷满分120分。

考试时间120分钟。

1213一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)14151.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A.-3℃B.15℃C.-10℃D.-1℃16172.下列图形中,既是轴对称图形,又是中心对称图形的是18A.B. C. D.193.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为20 A . 70° 21 B . 100° 22 C . 110° 23 D . 120°24 4.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,25 随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为26A . 12B . 13C . 14D .1627 5.如果两个变量x 、y 之间的函数关系如图所示,则函数值y 的取值范围是2829 A . -3≤y ≤3 B . 30 0≤y ≤231 C . 1≤y ≤3 D . 0≤y ≤332 33 6.下列运算,结果正确的是34 A . 224m m m += B . 22211( )m m mm+=+35 C . 2224(3)6mn m n = D . 2222m m n mn n÷=367.如图,有一块矩形纸片ABCD ,AB =8,AD =6,37 将纸片折叠,使得AD 边落在AB 边上,折痕38为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为39 A . 12B . 98C . 2D . 440 8.以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星41 手机的销售情况四个同学得出的以下四个结论,其中正确的为42A . 4月份三星手机销售额为65万元 43B . 4月份三星手机销售额比3月份有所上升 44C . 4月份三星手机销售额比3月份有所下降45 D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额4647 9.如图是某几何体的三视图,根据图中所标48 的数据求得该几何体的体积为49 A . 236π B . 136π 50 C . 132π D . 120π5110.函数xxx y 22+=的图象为52三星手机销售额占该手机53 A. B. C.54 D.55 二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果56 填在答题卡规定的横线上,不需要解答过程)57 11.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为58 __________元.59 12.分解因式:x 3-x =__________.60 13.如图,四边形 ABCD 是菱形, E 、F 、G 、H 分别是61 各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒62 落到阴影区域内的概率是__________.63 14.一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为__________. 64 15.若实数a 、b 满足(4a +4b ) (4a +4b -2)-8=0,则a +b=__________. 65 16.以下四个命题:66 ①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补.67 ②边数相等的两个正多边形一定相似.68 ③等腰三角形ABC 中, D 是底边BC 上一点, E 是一腰AC 上的一点,若69 ∠BAD =60°且AD =AE , 70 则∠EDC =30°.71 ④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.72GHFACBDE其中正确命题的序号为__________.7374 三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明75 过程或演算步骤) 76 17.(10分)计算77 (1) (5分)计算:63--11()3-+2478(2) (5分)先化简,再求值:2232237()5102a b a b ab a b +÷,其中a = 52,b =-12798081 18.(6分)如图, ABCD 的对角线AC 、BD82 相交于点O ,AE =CF .83 (1)求证:△BOE ≌△DOF ;84 (2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.858687 19.(6分)如图,热气球的探测器显示,从热气球A 88 处看一栋高楼顶部B 的仰角为30°,看这栋高楼底部89 C 的俯角为65°,热气球与高楼的水平距离AD 为120m .90 求这栋高楼的高度. (结果用含非特殊角的三角函数91 及根式表示即可)92AD BCFE O93 949520.(6分)若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x + y >-32,96 求出满足条件的m 的所有正整数值.9798 21.(7分)某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,99 超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量100 的对应关系用列表法做了分析,并绘制出了函数图象.以下是该101 科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为102 (2,10).请你结合表格和图象:103 104105 (1)指出付106 款金额和购107 买量哪个变108 量是函数的109 自变量x ,并写出表中a 、b 的值;110 (2)求出当x>2时,y 关于x 的函数解析式;111 (3)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该112 玉米种子,分别计算他们的购买量和付款金额.113 114115付款金额(元)a7.51012b购买量(千克)11.5 22.5 311622.(9分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的117汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四118个方面做了测试,他们各自的成绩(百分制)如下表:119选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他120们的这一成绩看,应选派谁;121(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3 122和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁. 12312412512623.(7分)如图,在平面直角坐标系中A点的坐标为(8,y) ,AB⊥x轴于点B, 127sin∠OAB = 45,反比例函数y =kx的图象的一支经过AO的中点C,且与AB交128于点D.129(1)求反比例函数解析式; 130(2)若函数y = 3x 与y = k x的图象的另一支交131 于点M ,求三角形OMB 与四边形OCDB 的面积的比.132 133 134 135136 24.(9分)如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,137 ∠PAC =∠ABC138 (1) 求证:PA 是⊙O 的切线;139 (2) 连接PB 与AC 交于点D ,与⊙O 交于点E ,F140 为BD 上的一点,若M 为BC ⌒的中点,且∠DCF =∠P ,求141 证:BD PD = FD ED = CD AD. 142143144 25.(12分)已知:抛物线y = x 2+(2m -1)x + m 2-1经过坐标原点,且当x 145 < 0时,y 随x 的增大而减小.146 (1)求抛物线的解析式,并写出y < 0时,对应x 的取值范围;147 (2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线148 交抛物线于另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C.149 ①当BC =1时,直接写出矩形ABCD 的周长;150②设动点A的坐标为 (a,b),将矩形ABCD的周长L表示为a的函数并151152写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个153最大值,并求出此时点A的坐标;如果不存在,请说明理由.1541551561571581591601611621631641651661671681691701711721732015年 呼 和 浩 特 市 中 考 试 卷174 数学参考答案及评分标准175 一、选择题(本大题共10小题,每小题3分,共30分)176题号1234567891答案 C A C A D D C B B D二、填空题(本大题共6小题,每小题3分,共18分)177 题号 11 12 13 14 15 16答案4.1×106x (x +1)(x -1)1212π- 12或1②③④三、解答题(本大题共9小题,满分72分)178 17.(10分) (1) (5分)解:原式=3-6-3+2 6 ……………3分179= 6 …………………………5分180 (2) (5分)解:原式=32232()5107a b ab ab +⨯=3232223257107a b a b ab ab ⨯+⨯=22433535a b a b+181=25a b…………………………………………3分182当a =52,b =-12时,原式=-18…………………5分 183 18、(6分) (1)184 ∴BO=DO,AO=OC 185 ∵AE=CF186 ∴AO -AE=OC -CF 187 即:OE=OF188 在△BOE 和△DOF 中,189 OB ODBOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩190∴△BOE ≌△DOF (SAS ) ……………………4分 191 (2)矩形 ………………………………………6分 192 19. (6分) 在Rt △ABD 中,193∵tan 30°=BD AD194 ∴BD = AD·tan 30°=120×33= 40 3 ………………………………………2195 分196 在Rt △ACD 中,197∵tan 65°= CDAD198AD BFE O∴CD =120·tan 65° ……………………………………………………4分 199 ∴BC =BD +CD =403+120·tan 65°200答:这栋高楼的高度为(403+120·tan65°)米……………………………6201 分202 20. (6分)解:203解:23224x y m x y +=-+⎧⎨+=⎩①②204①+②得:3(x +y )=-3m +6 ∴x +y =-m +2 205 ∵x +y >-32……………………………………2分206∴-m +2>-32207 ∴m <72…………………………………………………………………………4分208∵m 为正整数209 ∴m =1、2或3…………………………………………………………………6分 210 21. (7分)解:(1) 购买量是函数中的自变量x …………1分211 a =5 …………2分 212 b=14 …………3分213 (2) 当x >2时,设y 与x 的函数关系式为:y = kx +b214∵y = kx +b 经过点(2,10)215 又x =3时,y =14216 ∴210314k b k b +=⎧⎨+=⎩解得42k b =⎧⎨=⎩ 217∴当x >2时,y 与x 的函数关系式为:y = 4x +2………………………………5218 分219(3)当y = 8. 8时, x =8.85=1.76 220 当x = 4.165时,y = 4×4.165+2 =18.66221 ∴甲农户的购买量为1.76千克,乙农户的付款金额为18.66元. …………7222 分22322.(9分)解:(1)乙的平均成绩:73+80+82+834=79.5 …………………1分224∵80.25 >79.5 ∴应选派甲……………………………………2分225(2)甲的平均成绩:85×2+78×1+85×3+73×410= 79.5…………………5分226 乙的平均成绩:73×2+80×1+82×3+83×410 = 80.4………………8分227 ∵79.5<80.4 ∴应选派乙 …………………………………9分 228 23.(7分) 解:(1) ∵A 点的坐标为(8,y )229 ∴OB =8230∵sin ∠OAB = 45,231∴OA =8×54=10,AB =6232∵C 是OA 的中点,且在第一象限 ∴C(4,3)233∴反比例函数的解析式为y =12x………………………………2分234 (2)1212322,1266y x y x x x y y =⎧==-⎧⎧⎪⎪⎪⎨⎨⎨===-⎪⎪⎪⎩⎩⎩解方程组得235∵M 是直线与双曲线另一支的交点236 ∴M (-2,-6)………………………………………………3分237∴S △OMB =12·OB·|-6| = 12×8×6 =24238 ∵S 四边形OCDB = S △OBC +S △BCD =12+12·DB ·4……………………5分239D 在双曲线上,且D 点横坐标为8 240 ∴D (8,32),即BD =32241∴S 四边形OCDB =12+3=15242∴S △OMBS 四边形OCDB= 243O FD E85…………………………………………………7分24424、(9分)证明:(1) 连接CM245 ∵∠PAC =∠ABC ,∠M =∠ABC 246 ∴∠PAC =∠M 247 ∵AM 为直径 248 ∴∠M +∠MAC =90° 249 ∴∠PAC +∠MAC =90° 250 即:∠MAP =90° 251 ∴MA ⊥AP252 ∴PA 是⊙O 的切线…………………………………………3分253 (2) 连接AE254∵M 为BC ⌒中点,AM 为⊙O 的直径255 ∴AM ⊥BC 256 ∵AM ⊥AP 257 ∴AP ∥BC258 ∴△ADP ∽△CDB259∴BD PD = CDAD (5260)分261∵AP//BC262∴∠P=∠CBD 263∵∠CBD=∠CAE 264∴∠P=∠CAE 265∵∠P=∠DCF266∴∠DCF=∠CAE 267∵∠ADE=∠CDF 268∴△ADE∽△CDF 269∴CDDA=FDED………………………………………………………………………7分270∴BDPD=FDED=CDAD (9)271分27225、(12分)解:(1)∵抛物线经过坐标原点(0,0)273∴m2-1=0274∴m = ±1275∴y = x2+x或y = x2-2763x……………………………………………………………………2分277∵x<0时,y随x的增大而减小278∴ y = x 2-279 3x ………………………………………………………………………………3分 280 由图象知:y <0时,281 0<x <3 ………………………………………………………………4分282 (2)①当BC =1时,由抛物线的对称性知点B 的纵坐标为-2.所以矩形的周长283 为6 …5分284 ②∵点A 的坐标为(a ,b )285 ∴当点A 在对称轴左侧时,矩形ABCD 的一边BC =3-2a ,另一边AB =3a -a 2 286 周长L =-2a 2+2a +6,其中 0<a <287 32……………………………………………………7分 288当点A 在对称轴右侧时,矩形的一边BC =3-(6-2a )=2a -3, 另一边AB =3a -289 a 2290周长L =-2a 2+10a -6,其中32<a <291 3……………………………………………………9分 292∴当0<a <32时,L =-2(a -12)2+132∴当a = 12时,L最大=132,A 点坐标为(12,293-54) 294当32<a <3时,L =-2(a -52)2+ 132∴当a = 52时,L 最大= 132,A 点坐标为(52,-2955 4) ……12分296(说明:本试卷各题只要方法合理,可依据情况酌情给分)297298299300301302303304。

内蒙古呼伦贝尔市、兴安盟2015年中考数学真题试题(含解析)

内蒙古呼伦贝尔市、兴安盟2015年中考数学真题试题(含解析)

内蒙古呼伦贝尔市、兴安盟2015年中考数学真题试题(含解析)一、选择题(下列各题的四个选项中只有与一个正确,共12小题,没小题3分,共36分) 1.25的算术平方根是()A. 5 B.﹣5 C.±5D.2.下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.3.下列各式计算正确的是()A. a+2a2=3a3B.(a+b)2=a2+ab+b2C. 2(a﹣b)=2a﹣2b D.(2ab)2÷(ab)=2ab(ab≠0)4.点A(3,﹣1)关于原点的对称点A′的坐标是()A.(﹣3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣1,3)5.若|3﹣a|+=0,则a+b的值是()A. 2 B. 1 C. 0 D.﹣16.视力表的一部分如图,其中开口向上的两个“E”之间的变换是()A.平移B.旋转C.对称D.位似7.下列说法正确的是()A.掷一枚硬币,正面一定朝上B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.方差越大,数据的波动越大8.如图,EF∥BC,AC平分∠BAF,∠B=50°,则∠C的度数是()A.50°B.55°C.60°D.65°9.某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A. 800 B. 600 C. 400 D. 20010.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A. x2=21 B.x(x﹣1)=21 C.x2=21 D. x(x﹣1)=2111.二次函数y=(x+2)2﹣1的图象大致为()A.B.C.D.12.如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A.﹣1 B.C. 1 D.二、填空题(本题共5小题,每小题3分,共15分)13.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.14.分解因式:4ax2﹣ay2= .15.不等式4x﹣3<2x+1的解集为.16.圆锥的底面直径是8,母线长是5,则这个圆锥的侧面积是.17.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是.三、解答题(本题4个小题,每小题6分,共24分)18.计算:2sin45°+(﹣2)2﹣+(2015﹣π)0.19.解方程:+=1.20.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:s in36°≈0.59,cos36°≈0.81,tan36°≈0.73.21.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=的图象上.四、(本题7分)22.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.五、(本题7分)23.某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成就如下表:(单位:分)项目人员教学能力科研能力组织能力甲86 93 73乙81 95 79(1)根据实际需要,将阅读能力、科研能力、组织能力三项测试得分按5:3:2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.六、(本题8分)24.如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP 的延长线交直线l于点C.(1)求证:AB=AC;(2)若PC=2,求⊙O的半径.七、(本题10分)25.某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.(1)求每吨水的基础价和调节价;(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;(3)若某月用水12吨,应交水费多少元?八、(本题13分)26.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.2015年内蒙古兴安盟中考数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中只有与一个正确,共12小题,没小题3分,共36分)1.25的算术平方根是()A. 5 B.﹣5 C.±5D.考点:算术平方根.专题:计算题.分析:根据算术平方根的定义进行解答即可.解答:解:∵(5)2=25,∴25的算术平方根是5.故选A.点评:本题考查的是算术平方根的概念,即如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.考点:简单几何体的三视图.专题:计算题.分析:找出每个几何体的三视图,即可做出判断.解答:解:几何体中主视图、左视图、俯视图都相同的是,故选B点评:此题考查了简单几何体的三视图,找出几何体的三视图是解本题的关键.3.下列各式计算正确的是()A. a+2a2=3a3B.(a+b)2=a2+ab+b2C. 2(a﹣b)=2a﹣2b D.(2ab)2÷(ab)=2ab(ab≠0)考点:整式的除法;合并同类项;去括号与添括号;完全平方公式.专题:计算题.分析:根据合并同类项对A进行判断;根据完全平方公式对B进行判断;利用去括号法则对C进行判断;根据积的乘方和同底数幂的除法对D进行判断.解答:解:A、a与2a2不是同类项,不能合并,所以A选项错误;B、(a+b)2=a2+2ab+b2,所以B选项错误;C、2(a﹣b)=2a﹣2b,所以C选项正确;D、(2ab)2÷(ab)=4a2b2÷ab=4ab,所以D选项错误.故选C.点评:本题考查了整式的除法:单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.也考查了合并同类项和完全平方公式.4.点A(3,﹣1)关于原点的对称点A′的坐标是()A.(﹣3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣1,3)考点:关于原点对称的点的坐标.分析:直接根据关于原点对称的点的坐标特点即可得出结论.解答:解:∵两个点关于原点对称时,它们的坐标符号相反,∴点A(3,﹣1)关于原点的对称点A′的坐标是(﹣3,1).故选C.点评:本题考查的是关于原点对称的点的坐标,熟知关于原点对称的点的坐标特点是解答此题的关键.5.若|3﹣a|+=0,则a+b的值是()A. 2 B. 1 C. 0 D.﹣1考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b的值,计算即可.解答:解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选:B.点评:本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.6.视力表的一部分如图,其中开口向上的两个“E”之间的变换是()A.平移B.旋转C.对称D.位似考点:几何变换的类型.分析:开口向上的两个“E”形状相似,但大小不同,因此它们之间的变换属于位似变换.如果没有注意它们的大小,可能会误选A.解答:解:根据位似变换的特点可知它们之间的变换属于位似变换.故选D.点评:本题考查了位似的相关知识,位似是相似的特殊形式,平移、旋转、对称的图形都是全等形.7.下列说法正确的是()A.掷一枚硬币,正面一定朝上B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.方差越大,数据的波动越大考点:概率的意义;全面调查与抽样调查;方差;随机事件.分析:利用概率的意义、全面调查与抽样调查、方差及随机事件分别判断后即可确定正确的选项.解答:解:A、掷一枚硬币,正面不一定朝上,故错误;B、某种彩票中奖概率为1%,是指买100张彩票不一定有1张中奖,故错误;C、旅客上飞机前的安检应采用全面调查,故错误;D、方差越大,数据的波动越大,正确,故选D.点评:本题考查了概率的意义、全面调查与抽样调查、方差及随机事件的知识,属于基础题,比较简单.8.如图,EF∥BC,AC平分∠BAF,∠B=50°,则∠C的度数是()A.50°B.55°C.60°D.65°考点:平行线的性质.分析:首先根据平行线的性质,可得∠EAB=∠B=50°,∠C=∠CAF,据此求出∠BAF的度数是多少,然后根据AC平分∠BAF,求出∠CAF的度数是多少,即可求出∠C的度数.解答:解:∵EF∥BC,∴∠EAB=∠B=50°,∠C=∠CAF,∴∠BAF=180°﹣50°=130°,又∵AC平分∠BAF,∴∠CAF=130°÷2=65°,∴∠C=65°.故选:D.点评:此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.9.某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A. 800 B. 600 C. 400 D. 200考点:用样本估计总体;扇形统计图.专题:计算题.分析:利用扇形统计图得到样本中喜欢文学类书籍的人数的百分比为40%,用它表示该校2000名学生中喜欢文学类书籍的人数的百分比,从而可估算出全校喜欢文学类书籍的人数.解答:解:2000×40%=800(人).估计该校2000名学生中喜欢文学类书籍的人数为800人.故选A.点评:本题考查了用样本估计总体:用样本估计总体是统计的基本思想.用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.10.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A. x2=21 B.x(x﹣1)=21 C.x2=21 D. x(x﹣1)=21考点:由实际问题抽象出一元二次方程.分析:赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=.即可列方程.解答:解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故选:B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.11.二次函数y=(x+2)2﹣1的图象大致为()A.B.C.D.考点:二次函数的图象.分析:根据函数解析式判断出抛物线的对称轴、开口方向和顶点坐标即可.解答:解:a=1>0,抛物线开口向上,由解析式可知对称轴为x=﹣2,顶点坐标为(﹣2,﹣1).故选:D.点评:本题主要考查的是二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.12.如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A.﹣1 B.C. 1 D.考点:相似三角形的判定与性质;平移的性质.专题:压轴题.分析:利用相似三角形面积的比等于相似比的平方先求出A′B,再求AA′就可以了.解答:解:设BC与A′C′交于点E,由平移的性质知,AC∥A′C′∴△BEA′∽△BCA∴S△BEA′:S△BCA=A′B2:AB2=1:2∵AB=∴A′B=1∴AA′=AB﹣A′B=﹣1故选A.点评:本题利用了相似三角形的判定和性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二、填空题(本题共5小题,每小题3分,共15分)13.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为9.6×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将9600000用科学记数法表示为9.6×106.故答案为9.6×106.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.分解因式:4ax2﹣ay2= a(2x+y)(2x﹣y).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再利用平方差进行分解即可.解答:解:原式=a(4x2﹣y2)=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.不等式4x﹣3<2x+1的解集为x<2 .考点:解一元一次不等式.分析:利用不等式的基本性质,把﹣3移到不等号的右边,把2x移到等号的左边,合并同类项即可求得原不等式的解集.解答:解:4x﹣3<2x+1,4x﹣2x<1+3,2x<4,x<2,故答案为:x<4.点评:本题考查了解一元一次不等式,以及解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.圆锥的底面直径是8,母线长是5,则这个圆锥的侧面积是20π.考点:圆锥的计算.分析:首先求得圆锥的底面周长,即侧面的弧长,然后根据扇形的面积公式即可求解.解答:解:∵圆锥的底面直径是8,∴底面周长=8π,∴这个圆锥的侧面积=×8π×5=20π.故答案为:20π.点评:本题考查的是圆锥的计算,熟知正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解答此题的关键.17.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是4n+1 .考点:规律型:图形的变化类.分析:仔细观察,发现图形的变化的规律,从而确定答案.解答:解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到4n+1个正方形,故答案为:4n+1.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.三、解答题(本题4个小题,每小题6分,共24分)18.计算:2sin45°+(﹣2)2﹣+(2015﹣π)0.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:先算乘方、0指数幂,代入特殊角的三角函数值,化简二次根式,再进一步合并即可.解答:解:原式=2×+4﹣+1=5.点评:此题考查实数的运算,掌握乘方、0指数幂的计算方法,记住特殊角的三角函数值,化简二次根式,是解决问题的关键.19.解方程:+=1.考点:解分式方程.分析:首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.解答:解:方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解这个方程得:x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,x=﹣3是原方程的解;∴原方程的解是:x=﹣3.点评:本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.20.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.考点:解直角三角形的应用.分析:根据等腰三角形的性质得到DC=BD=5米,在Rt△ADC中,利用∠B的余弦进行计算即可得到AB.解答:解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°≈3.65(米).cos36°=,即AB=≈6.17(米).答:中柱AD(D为底边BC的中点)为3.65米和上弦AB的长为6.17米.点评:本题考查了解直角三角形的应用:在直角三角形中,已知一个锐角和它的邻边,可利用这个角的余弦求出斜边.也考查了等腰三角形的性质.21.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=的图象上.考点:列表法与树状图法;反比例函数图象上点的坐标特征;概率公式.分析:(1)由在一个不透明的口袋里装有分别标有数字1、2、3、4四个小球,小球除数字不同外,其它无任何区别,直接利用概率公式求解即可求得答案;(2)列表得出所有等可能的情况数,找出点(x,y)落在函数y=的图象上的情况数,即可求出所求的概率.解答:解:(1)∵在一个不透明的口袋里装有分别标有数字1、2、3三个小球,小球除数字不同外,其它无任何区别,∴从中任取一球,球上的数字为偶数的概率是:;(2)列表得:1 2 31 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)则点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),积为3的有2种,所以点A(x,y)在函数y=的图象上概率为:.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.正确的列表或树状图是解答本题的关键,难度不大.四、(本题7分)22.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.点评:本题主要考查了平行四边形的性质,全等三角形的判定以及菱形的判定,利用好E、F是中点是解题的关键.五、(本题7分)23.某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成就如下表:(单位:分)项目人员教学能力科研能力组织能力甲86 93 73乙81 95 79(1)根据实际需要,将阅读能力、科研能力、组织能力三项测试得分按5:3:2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.考点:频数(率)分布直方图;统计表;加权平均数.分析:(1)根据加权平均数的计算公式求出甲、乙两人的平均成绩即可;(2)根据频数分布直方图得到85分及以上的人数,作出判断.解答:解:(1)甲的成绩:86×0.5+93×0.3+73×0.2=85.5,乙的成绩:81×0.5+95×0.3+79×0.2=84.8,∴甲将被录用;(2)由频数分布直方图可知,85分及以上的共有7人,∴甲能被录用,乙可能被录用,有可能不被录用.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.六、(本题8分)24.如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP 的延长线交直线l于点C.(1)求证:AB=AC;(2)若PC=2,求⊙O的半径.考点:切线的性质.分析:(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5﹣r,根据AB=AC推出52﹣r2=(2)2﹣(5﹣r)2,求出r,证△DPB∽△CPA,得出=,代入求出即可.解答:证明:(1)如图1,连接OB.∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)如图2,延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5﹣r,则AB2=OA2﹣OB2=52﹣r2,AC2=PC2﹣PA2=(2)2﹣(5﹣r)2,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠PAC,又∵∠DPB=∠CPA,∴△DPB∽△CPA,∴=,∴=,解得:PB=.∴⊙O的半径为3,线段PB的长为.点评:本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.七、(本题10分)25.某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.(1)求每吨水的基础价和调节价;(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;(3)若某月用水12吨,应交水费多少元?考点:一次函数的应用.专题:应用题.分析:(1)设每吨水的基础价为x元,调节价为y元,根据两个月的用水量以及水费列出方程组,求出方程组的解即可得到结果;(2)分两种情况考虑:当0<n≤10时;当n>10时,分别表示出m和n的函数解析式即可;(3)判断12吨大于10吨,代入当n>10时解析式即可得到结果.解答:解:(1)设每吨水的基础价为x元,调节价为y元,根据题意得:,解得:,则每吨水的基础价和调节价分别为1元和1.3元;(2)当0<n≤10时,m=10;当n>10时,m=10+1.3×(n﹣10)=1.3n﹣3;(3)根据题意得:1.3×12﹣3=12.6(元),则应交水费为12.6元.点评:此题考查了一次函数的应用,二元一次方程组的应用,弄清题中水费的收取方法是解本题的关键.八、(本题13分)26.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.考点:一次函数综合题.分析:(1)根据轴对称的性质,可得CDEF与ABEF全等,根据全等,可得答案;(2)根据轴对称,可得△CGF,根据三角形的面积公式,可得答案;(3)分类讨论:当0<t≤3时,根据三角形的面积公式,可得答案;当3<t<6时,根据图形割补法,可得答案.解答:解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCEF落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图2:,四边形DCEF落在第一象限内的图形是四边形DHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当S=4时,S最大值为6.点评:本题考查了一次函数综合题,利用了轴对称的性质:成轴对称的两个图形全等,三角形的面积公式,图形割补法是求面积的重要方法,分类讨论是解题关键,以防遗漏.。

2015学年内蒙古呼和浩特中考数学年试题

2015学年内蒙古呼和浩特中考数学年试题

数学试卷 第1页(共6页)数学试卷 第2页(共6页)数学试卷 第3页(共6页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}A x x =<<,{|(1)(3)0}B x x x =--<,则A B =( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z 1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+ 3.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a4.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位5.若m ∈R ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m >D .若方程20x x m +-=没有实根,则0m ≤6.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:甲 乙 9 8 6 1 1 2 38 9 0 1 2①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④7.在区间[0,2]上随机地取一个数x ,则事件“1211log (12x -+≤≤”发生的概率为( )A .34 B .23 C .13D .148.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围为( )A .(,1)-∞-B .0,1-()C .01,()D .(1,)+∞9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )AB C . D .10.设函数3, 1,()2, 1.x x b x f x x -⎧=⎨⎩<≥若5(())46f f =,则b =( )A .1B .78C .34 D.12第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的y 的值是_________.12.若x ,y 满足约束条件131y x x y y -⎧⎪+⎨⎪⎩≤,≤,≥,则z =x +3y 的最大值为_______.13.过点P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB =________.14.定义运算“⊗”:22(,,0)x y x y x y xy xy-⊗=∈≠R .当0x >,0y >时,(2)x y y x⊗+⊗的最小值为__________.15.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为___________.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------- 姓名________________ 准考证号_____________数学试卷 第4页(共6页)数学试卷 第5页(共6页)数学试卷 第6页(共6页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B ,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.17.(本小题满分12分)ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =,sin()A B +=ac =sin A 和c 的值.18.(本小题满分12分)如图,三棱台DEF—ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .19.(本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11{} n n a a + 的前n 项和为21n n +.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()1 2n a n n b a =+ ,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由; (Ⅲ)设函数()min{()()}(min{},m x f x g x p q p q =,,表示中的较小值),求m (x )的最大值.21.(本小题满分14分)平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a bC +=>>:的离心率为,且点12在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144E x y a b+=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.。

2015年内蒙古呼和浩特市中考数学试卷-答案

2015年内蒙古呼和浩特市中考数学试卷-答案

内蒙古呼和浩特市2015 年中考试卷数学答案分析第Ⅰ 卷一、选择题1.【答案】 C【分析】 15℃> -1℃> - 3℃>- 10℃。

【考点】有理数大小比较2.【答案】 A【分析】 A 、是轴对称图形,也是中心对称图形。

故正确;B、不是轴对称图形,是中心对称图形。

故错误;C、是轴对称图形,不是中心对称图形。

故错误;D、是轴对称图形,不是中心对称图形。

故错误。

【考点】中心对称图形,轴对称图形3.【答案】 C【分析】如图,∵ 1 70,∴ 2 170,∵CD∥BE ,∴ B 180 1 180 70 110 。

【考点】平行线的性质,对顶角、邻补角4.【答案】 A【分析】画树状图得:∵共有 12 种等可能的结果,两球恰巧是一个黄球和一个红球的有 6 种状况,∴两球恰巧是一个黄球和一个红球的为: 6 = 1 。

12 2【考点】列表法与树状图法5.【答案】 D【分析】 ∵ 图象的最高点是 ( 2,3) ,∴ y 的最大值是 3,∵图象最低点是 (1,0) ,∴ y 的最小值是 0,∴函数值 y 的取值范围是 0≤ y ≤3 。

【考点】函数的图象6.【答案】 D【分析】∵ m 2 m 2 2m 2 ,∴选项 A 错误; ∵ (m1 )2 m 212 ,mm 2∴选项 B 错误; ∵ (3mn 2 )29m 2 n 4 ,∴选项 C 错误;∵ 2m 2 n m 2mn 2 ,n∴选项 D 正确。

【考点】分式的混淆运算,整式的混淆运算7.【答案】 C【分析】∵ AB 8 , AD6 ,纸片折叠,使得 AD 边落在 AB 边上,∴DB8 6 2, EAD 45,又∵ △ AED 沿 DE 向右翻折, AE 与 BC 的交点为 F ,∴ ABAD DB 6 2 4 , △ABF 为等腰直角三角形,∴ BF AB 4,∴ CF BC BF 6 4 2 , 而 ECDB2 ,12 2=2 。

2【考点】翻折变换(折叠问题) 8.【答案】 BA 465 17% 11.05 万元,故 AB 360 18%【分析】 、 月份三星手机销售额为 错误; 、 三星手机的销售额 万元, 4 月份三星手机销售额为 6517% 11.05 万元,故 B正确; C 、 3 三星手机的销售额 60 18%万元, 4 月份三星手机销售额为65 17% 11.05 万元,故C错误;D、3三星手机的销售额万元, 4 月份三星手机销售额为65 17% 11.05 万元,故D错误。

2015年内蒙古呼和浩特市中考数学试题及解析

2015年内蒙古呼和浩特市中考数学试题及解析

2015年内蒙古呼和浩特市中考数学试卷
一.选择题(每小题3分,共30分)

C D
3.(3分)(2015•呼和浩特)如图,已知∠1=70
°,如果CD ∥BE ,那么∠B 的度数为( )
4.(3分)(2015•呼和浩特)在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随
. C D
5.(3分)(2015•呼和浩特)如果两个变量x 、y 之间的函数关系如图所示,则函数值
y 的取值范围是( )
÷7.(3分)(2015•呼和浩特)如图,有一块矩形纸片ABCD ,AB=8,AD=6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )
B C
8.(3分)(2015•呼和浩特)以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )
9.(3
分)(2015•呼和浩特)如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为( )
10.(3分)(2015•呼和浩特)函数y=
的图象为( )
B C
二.填空题(每小题3分,共18分)。

内蒙古呼和浩特市2015年中考数学试题(含详解)

内蒙古呼和浩特市2015年中考数学试题(含详解)

2015年呼和浩特市中考数学详解一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A.-3℃B.15℃C.-10℃D.-1℃考点分析:有理数生活常识数轴初级建模思想详解:选C首先,有理数考点是送分的,本次考点比较有意思,稍微有一点常识的同学都能答对。

这里“-”读“零下”。

为什么提到数轴呢?马上升初三的学生可能已经忘记数轴是如何定义方向的,教材中“一般规定水平向右或者竖直向上为数轴正方向。

”那么家中挂在墙上的温度计就可以看成是一个竖直向上的数轴。

为什么说到建模思想呢?首先来源于数轴0点的定义,数轴0点的另一个作用就是“基准”。

很多同学到了初三早就忘了这个基准,基准是很多数学思想及物理思想中的一个非常重要的概念,类似温度的还有海拔高度。

温度的基准是一个标准大气压下水恰好结冰的温度值,即0℃,高于这个温度取正数(一般省略正号),低于这个温度取负数。

海拔高度更容易理解,即将海平面定为0,单位是米,比海平面高的取正值,比海平面低的取负值。

只有将温度值具体数量化后,尤其是负值的运用,才便于建立与温度有关的数学模型,学过化学后同学知道还有个绝对零度值,但这个绝对零度值在初中阶段也是依靠摄氏温度方式定义的。

2.下列图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.考点分析:轴对称中心对称详解:选A轴对称是一个对折后能完全重合的实际意义上的概念,而中心对称是旋转180°后能重合的实际意义上的概念。

所以,我们通过大体上目测,基本可以上可以挑出我们想要的。

很明显,选项A,C,D是轴对称图形,其中C选项中的梅花图案只有一个对称轴,你能数数选项D中的图形对称轴有几个?选项A,B是中心对称图形。

3.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为A. 70°B. 100°C. 110°D. 120°考点分析:平行与相交——角的关系详解:选C为了便于表述,将AB与CD的交点命名为F点,则∠1就是∠AFC。

2015学年内蒙古呼和浩特中考数学年试题答案

2015学年内蒙古呼和浩特中考数学年试题答案
r
数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
数学试卷 第 3 页(共 6 页)
第Ⅱ卷(非选择题 共 100 分)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.把答案填在题中的横线上.
11. lg 5 2lg 2 (1)1 __________.
2
2
12. 在△ABC 中, AB 6 , A 75 , B 45 ,则 AC __________.
A. {1,2,5,6}
()
B. {1}
C. {2}

D. {1,2,3,4}
数学试卷 第 1 页(共 6 页)
3. 设 p:x 3 , q:1 x 3 ,则 p 是 q 成立的
A. 充分必要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分也不必要条件
4. 下列函数中,既是偶函数又存在零点的是 A. y lnx
(Ⅱ)设点 C 的坐标为 (0, b) , N 为线段 AC 的中点,证明:MN AB.
21.(本小题满分 13 分) 已知函数 f (x) ax (a 0, r 0) . (x r)2
(Ⅰ)求 f (x) 的定义域,并讨论 f (x) 的单调性; (Ⅱ)若 a 400 ,求 f (x) 在 (0,) 内的极值.

题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡
背面规定的地方填写姓名和座位号后两位.
2. 答第Ⅰ卷时,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如
需改动,用橡皮擦干净后,再选涂其他答案标号.

2015年呼和浩特市中考试卷参考答案及评分标准

2015年呼和浩特市中考试卷参考答案及评分标准

2015年呼和浩特市中考试卷参考答案及评分标准汉语文一、选择题(10分)二、简答题(40分)6. 全写对给3分,写错一字扣1分,横平竖直,大小合适,间架结构,方圆有度每项0.5分,共占2分。

评分时要全面考虑,酌情给分,慎给满分·····························5分7.效胁 zhuó zhuì泌 qiāo wǔ rǔ寞阔(每空1分,错字别字,错音别调不给分)·························· 10分8.(1)安居乐业(2)苟延残喘(3)尽态极妍(每空1分,错字别字不给分)··························3分9.(1)小明(对我)说:“明天我陪你去书店。

”··········2分(2)去掉“不”·······················2分(3)语句通顺,表意清楚,句意完整即可酌情给分·········3分(4)仿句前后句意相关联,与原文构成排比句即可酌情给分。

2015年内蒙古呼和浩特市中考数学试题含答案

2015年内蒙古呼和浩特市中考数学试题含答案

2015年呼和浩特市中考试卷数学注意事项:1.考生务必将自己的姓名、准考证号填在试卷和答题卡的规定位置。

2.考生要将答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分。

考试时间120分钟。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A.-3℃B.15℃C.-10℃D.-1℃2.下列图形中,既是轴对称图形,又是中心对称图形的是A . B. C. D.3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为A.70°B.100°C.110°D.120°4.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为A.12 B.13 C.14 D.165.如果两个变量x 、y 之间的函数关系如图所示,则函数值y 的取值范围是A.-3≤y ≤3B.0≤y ≤2C.1≤y≤3D.0≤y ≤36.下列运算,结果正确的是A.224m m m += B.22211( )m m m m +=+C.2224(3)6mn m n = D.2222m m n mn n÷=7.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为A.12 B.98 C.2 D.48.以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额9.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为A.236π B.136π C.132π D.120π10.函数xx x y 22+=的图象为A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元.12.分解因式:x 3-x =__________.13.如图,四边形ABCD 是菱形,E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒落到阴影区域内的概率是__________.14.一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为__________.15.若实数a 、b 满足(4a +4b )(4a +4b -2)-8=0,则a+b=__________.16.以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补.②边数相等的两个正多边形一定相似.各月手机销售总额统计图三星手机销售额占该手机店当月手机销售总额的百分比统计图③等腰三角形ABC 中,D 是底边BC 上一点,E 是一腰AC 上的一点,若∠BAD =60°且AD =AE ,则∠EDC =30°.④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.其中正确命题的序号为__________.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤)17.(10分)计算(1)(5分)计算:63--11()3-+24(2)(5分)先化简,再求值:2232237()5102a b a b ab a b +÷,其中a =52,b =-1218.(6分)如图,□ABCD 的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.19.(6分)如图,热气球的探测器显示,从热气球A 处看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为65°,热气球与高楼的水平距离AD 为120m .求这栋高楼的高度.(结果用含非特殊角的三角函数及根式表示即可)20.(6分)若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >-32,求出满足条件的m 的所有正整数值.21.(7分)某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象.以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10).请你结合表格和图象:(1)指出付款金额和购买量哪个变量是函数的自变量x ,并写出表中a 、b 的值;(2)求出当x>2时,y 关于x 的函数解析式;(3)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该玉米种子,分别计算他们的购买量和付款金额.付款金额(元)a 7.51012b 购买量(千克)1 1.52 2.5322.(9分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.23.(7分)如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=45,反比例函数y= kx的图象的一支经过AO的中点C,且与AB交于点 D.(1)求反比例函数解析式;(2)若函数y=3x与y=kx的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.24.(9分)如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,∠PAC =∠ABC(1)求证:PA 是⊙O 的切线;(2)连接PB 与AC 交于点D ,与⊙O 交于点E ,F 为BD 上的一点,若M 为BC ⌒的中点,且∠DCF =∠P ,求证:BD PD =FD ED =CD AD.25.(12分)已知:抛物线y =x 2+(2m -1)x +m 2-1经过坐标原点,且当x <0时,y 随x 的增大而减小.(1)求抛物线的解析式,并写出y <0时,对应x 的取值范围;(2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于另一点D ,再作AB ⊥x 轴于点B ,DC ⊥x 轴于点C.①当BC =1时,直接写出矩形ABCD 的周长;②设动点A 的坐标为(a ,b ),将矩形ABCD 的周长L 表示为a 的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A 的坐标;如果不存在,请说明理由.2015年呼和浩特市中考试卷数学参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案C A C A D D C B B D二、填空题(本大题共6小题,每小题3分,共18分)题号111213141516答案 4.1×106x (x +1)(x -1)1212π-12或1②③④三、解答题(本大题共9小题,满分72分)17.(10分)(1)(5分)解:原式=3-6-3+26……………3分=6…………………………5分(2)(5分)解:原式=32232()5107a b ab ab +⨯=3232223257107a b a b ab ab ⨯+⨯=22433535a b a b +=25a b …………………………………………3分当a =52,b =-12时,原式=-18…………………5分18、(6分)(1)证明:∵ABCD∴BO=DO,AO=OC∵AE=CF∴AO -AE=OC -CF即:OE=OF在△BOE 和△DOF 中,OB OD BOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩∴△BOE ≌△DOF (SAS )……………………4分(2)矩形………………………………………6分19.(6分)在Rt △ABD 中,∵tan 30°=BDAD∴BD =AD·tan 30°=120×33=403………………………………………2分在Rt △ACD 中,∵tan 65°=CDAD∴CD =120·tan 65°……………………………………………………4分∴BC =BD +CD =403+120·tan 65°答:这栋高楼的高度为(403+120·tan65°)米……………………………6分20.(6分)解:解:23224x y m x y +=-+⎧⎨+=⎩①②①+②得:3(x +y )=-3m +6∴x +y =-m +2∵x +y >-32……………………………………2分∴-m +2>-32∴m <72…………………………………………………………………………4分∵m 为正整数∴m =1、2或3…………………………………………………………………6分21.(7分)解:(1)购买量是函数中的自变量x …………1分a =5…………2分b=14…………3分(2)当x >2时,设y 与x 的函数关系式为:y =kx +b∵y =kx +b 经过点(2,10)又x =3时,y =14∴210314k b k b +=⎧⎨+=⎩解得42k b =⎧⎨=⎩∴当x >2时,y 与x 的函数关系式为:y =4x +2………………………………5分(3)当y =8.8时,x =8.85=1.76当x =4.165时,y =4×4.165+2=18.66∴甲农户的购买量为1.76千克,乙农户的付款金额为18.66元.…………7分22.(9分)解:(1)乙的平均成绩:73+80+82+834=79.5…………………1分∵80.25>79.5∴应选派甲……………………………………2分(2)甲的平均成绩:85×2+78×1+85×3+73×410=79.5…………………5分乙的平均成绩:73×2+80×1+82×3+83×410=80.4………………8分∵79.5<80.4∴应选派乙…………………………………9分23.(7分)解:(1)∵A 点的坐标为(8,y )∴OB =8∵sin ∠OAB =45,∴OA =8×54=10,AB =6∵C 是OA 的中点,且在第一象限∴C(4,3)∴反比例函数的解析式为y =12x ………………………………2分(2)1212322,1266y x y x x x y y =⎧==-⎧⎧⎪⎪⎪⎨⎨⎨===-⎪⎪⎪⎩⎩⎩解方程组得∵M 是直线与双曲线另一支的交点∴M (-2,-6)………………………………………………3分∴S △OMB =12·OB·|-6|=12×8×6=24∵S 四边形OCDB =S △OBC +S △BCD =12+12·DB ·4……………………5分D 在双曲线上,且D 点横坐标为8∴D (8,32),即BD =32∴S 四边形OCDB =12+3=15∴S △OMBS 四边形OCDB =85…………………7分24、(9分)证明:(1)连接CM∵∠PAC =∠ABC ,∠M =∠ABC∴∠PAC =∠M∵AM 为直径∴∠M +∠MAC =90°∴∠PAC +∠MAC =90°即:∠MAP =90°∴MA ⊥AP∴PA 是⊙O 的切线…………………………………………3分(2)连接AE∵M 为BC ⌒中点,AM 为⊙O 的直径∴AM ⊥BC∵AM ⊥AP∴AP ∥BC∴△ADP ∽△CDB∴BD PD =CD AD…………………………………………5分∵AP //BC∴∠P =∠CBD∵∠CBD =∠CAE∴∠P =∠CAE∵∠P =∠DCF∴∠DCF =∠CAE∵∠ADE =∠CDF∴△ADE ∽△CDF∴CD DA =FD ED………………………………………………………………………7分∴BD PD =FD ED =CD AD…………………………………………………………………9分25、(12分)解:(1)∵抛物线经过坐标原点(0,0)∴m 2-1=0∴m =±1∴y =x 2+x 或y =x 2-3x ……………………………………………………………………2分∵x <0时,y 随x 的增大而减小∴y =x 2-3x ………………………………………………………………………………3分由图象知:y <0时,0<x <3………………………………………………………………4分(2)①当BC =1时,由抛物线的对称性知点B 的纵坐标为-2.所以矩形的周长为6…5分②∵点A 的坐标为(a ,b )∴当点A 在对称轴左侧时,矩形ABCD 的一边BC =3-2a ,另一边AB =3a -a 2周长L =-2a 2+2a +6,其中0<a <32……………………………………………………7分当点A 在对称轴右侧时,矩形的一边BC =3-(6-2a )=2a -3,另一边AB =3a -a 2周长L =-2a 2+10a -6,其中32<a <3……………………………………………………9分∴当0<a <32时,L =-2(a -12)2+132∴当a =12时,L 最大=132,A 点坐标为(12,-54)当32<a <3时,L =-2(a -52)2+132∴当a =52时,L 最大=132,A 点坐标为(52,-54)……12分(说明:本试卷各题只要方法合理,可依据情况酌情给分)。

2015年内蒙古呼和浩特市中考数学试卷-答案

2015年内蒙古呼和浩特市中考数学试卷-答案

内蒙古呼和浩特市2015年中考试卷数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】151310℃>-℃>-℃>-℃。

【考点】有理数大小比较2.【答案】A【解析】A 、是轴对称图形,也是中心对称图形。

故正确;B 、不是轴对称图形,是中心对称图形。

故错误;C 、是轴对称图形,不是中心对称图形。

故错误;D 、是轴对称图形,不是中心对称图形。

故错误。

【考点】中心对称图形,轴对称图形3.【答案】C【解析】如图,∵170∠=︒,∴2170∠=∠=︒,∵CD BE ∥,∴180118070110B ∠=︒-∠=︒-︒=︒。

【考点】平行线的性质,对顶角、邻补角4.【答案】A【解析】画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况, ∴两球恰好是一个黄球和一个红球的为:61=122。

【考点】列表法与树状图法5.【答案】D【解析】∵图象的最高点是(2,3)-,∴y 的最大值是3,∵图象最低点是(1,0),∴y 的最小值是0,∴函数值y 的取值范围是03y ≤≤。

【考点】函数的图象6.【答案】D【解析】∵2222m m m +=,∴选项A 错误; ∵22211()2m m m m+=++, ∴选项B 错误;∵222439)(mn m n =,∴选项C 错误; ∵2222m m n mn n÷=, ∴选项D 正确。

【考点】分式的混合运算,整式的混合运算7.【答案】C【解析】∵8AB =,6AD =,纸片折叠,使得AD 边落在AB 边上,∴862DB =-=,45EAD ∠=︒, 又∵AED △沿DE 向右翻折,AE 与BC 的交点为F ,∴624AB AD DB =-=-=,ABF △为等腰直角三角形,∴4BF AB ==,∴642CF BC BF =-=-=,而2EC DB ==,122=22⨯⨯。

【考点】翻折变换(折叠问题)8.【答案】B【解析】A 、4月份三星手机销售额为6517%11.05⨯=万元,故A 错误;B 、3三星手机的销售额6018%10.8⨯=万元,4月份三星手机销售额为6517%11.05⨯=万元,故B 正确;C 、3三星手机的销售额6018%10.8⨯=万元,4月份三星手机销售额为6517%11.05⨯=万元,故C 错误;D 、3三星手机的销售额6018%10.8⨯=万元,4月份三星手机销售额为6517%11.05⨯=万元,故D 错误。

最新初中中考数学题库 2015呼和浩特市中考数学试卷及答案

最新初中中考数学题库 2015呼和浩特市中考数学试卷及答案

2015年 呼 和 浩 特 市 中 考 试 卷数 学注意事项:1.考生务必将自己的姓名、准考证号填在试卷和答题卡的规定位置。

2.考生要将答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分。

考试时间120分钟。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A .-3℃B .15℃C .-10℃D .-1℃ 2.下列图形中,既是轴对称图形,又是中心对称图形的是A .B .C .D .3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为A . 70°B . 100°C . 110°D . 120°4.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为A . 12B . 13C . 14D . 16 5.如果两个变量x 、y 之间的函数关系如图所示,则函数值y 的取值范围是A . -3≤y ≤3B . 0≤y ≤2C . 1≤y ≤3D . 0≤y ≤36.下列运算,结果正确的是A .224m m m += B . 22211( )m m m m +=+ C . 2224(3)6mn m n = D . 2222mm n mn n÷=7.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为A . 12B . 98C . 2D . 4 8.以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额9.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为A . 236πB . 136πC . 132πD . 120π10.函数xx x y 22+=的图象为A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元. 12.分解因式:x 3-x =__________.13.如图,四边形 ABCD 是菱形, E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒落到阴影区域内的概率是__________. G HFA CBDE 各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图14.一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为__________. 15.若实数a 、b 满足(4a +4b ) (4a +4b -2)-8=0,则a +b=__________. 16.以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补. ②边数相等的两个正多边形一定相似.③等腰三角形ABC 中, D 是底边BC 上一点, E 是一腰AC 上的一点,若∠BAD =60°且AD =AE , 则∠EDC =30°.④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点. 其中正确命题的序号为__________.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤)17.(10分)计算 (1) (5分)计算3-11()3-+24(2) (5分)先化简,再求值:2232237()5102a b a b ab a b +÷,其中a = 52,b =-1218.(6分)如图, ABCD 的对角线AC 、BD 相交于点O ,AE =CF . (1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.19.(6分)如图,热气球的探测器显示,从热气球A 处看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为65°,热气球与高楼的水平距离AD 为120m .求这栋高楼的高度. (结果用含非特殊角的三角函数及根式表示即可)AD BFE O20.(6分)若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x + y >-32,求出满足条件的m 的所有正整数值.21.(7分)某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象.以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10).请你结合表格和图象:(1)指出付款金额和购买量哪个变量是函数的自变量x ,并写出表中a 、b 的值; (2)求出当x>2时,y 关于x 的函数解析式;(3)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该玉米种子,分别计算他们的购买量和付款金额.22.(9分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.23.(7分)如图,在平面直角坐标系中A 点的坐标为(8,y ) ,AB ⊥x 轴于点B , sin ∠OAB = 45 ,反比例函数y = kx 的图象的一支经过AO的中点C ,且与AB 交于点D.(1)求反比例函数解析式;(2)若函数y = 3x 与y = kx 的图象的另一支交于点M ,求三角形OMB 与四边形OCDB 的面积的比.24.(9分)如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,∠P AC =∠ABC(1) 求证:P A 是⊙O 的切线;若M 为BC ⌒的中点,且(2) 连接PB 与AC 交于点D ,与⊙O 交于点E ,F 为BD 上的一点,∠DCF =∠P ,求证:BD PD = FD ED = CDAD.25.(12分)已知:抛物线y = x 2+(2m -1)x + m 2-1经过坐标原点,且当x < 0时,y 随x 的增大而减小. (1)求抛物线的解析式,并写出y < 0时,对应x 的取值范围;(2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C.①当BC =1时,直接写出矩形ABCD 的周长;②设动点A 的坐标为 (a ,b ),将矩形ABCD 的周长L 表示为a 的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A 的坐标;如果不存在,请说明理由.2015年 呼 和 浩 特 市 中 考 试 卷数学参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)C二、填空题(本大题共三、解答题(本大题共9小题,满分72分)17.(10分) (1) (5分)解:原式=3-6-3+26 ……………3分 =6 …………………………5分(2) (5分)解:原式=32232()5107a b ab ab +⨯=3232223257107a b a b ab ab ⨯+⨯=22433535a b a b+=25a b…………………………………………3分当a =52,b =-12时,原式=-18…………………5分 18、(6分) (1)∴BO=DO,AO=OC ∵AE=CF∴AO -AE=OC -CF 即:OE=OF在△BOE 和△DOF 中,OB ODBOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩∴△BOE ≌△DOF (SAS ) ……………………4分 (2)矩形 ………………………………………6分19. (6分) 在Rt △ABD 中,∵tan 30°=BDAD∴BD = AD·tan 30°=120×33= 40 3 ………………………………………2分 在Rt △ACD 中, ∵tan 65°=CDAD∴CD =120·tan 65° ……………………………………………………4分 ∴BC =BD +CD =403+120·tan 65°答:这栋高楼的高度为(403+120·tan65°)米……………………………6分 20. (6分)解: ADBCFEO解:23224x y m x y +=-+⎧⎨+=⎩①②①+②得:3(x +y )=-3m +6 ∴x +y =-m +2 ∵x +y >-32 ……………………………………2分∴-m +2>-32∴m <72…………………………………………………………………………4分∵m 为正整数∴m =1、2或3…………………………………………………………………6分 21. (7分)解:(1) 购买量是函数中的自变量x …………1分a =5 …………2分b=14 …………3分(2) 当x >2时,设y 与x 的函数关系式为:y = kx +b ∵y = kx +b 经过点(2,10) 又x =3时,y =14 ∴210314k b k b +=⎧⎨+=⎩解得42k b =⎧⎨=⎩∴当x >2时,y 与x 的函数关系式为:y = 4x +2………………………………5分 (3)当y = 8. 8时, x =8.85=1.76 当x = 4.165时,y = 4×4.165+2 =18.66∴甲农户的购买量为1.76千克,乙农户的付款金额为18.66元. …………7分 22.(9分)解:(1)乙的平均成绩:73+80+82+834=79.5 …………………1分∵80.25 >79.5 ∴应选派甲……………………………………2分 (2)甲的平均成绩:85×2+78×1+85×3+73×410 = 79.5…………………5分乙的平均成绩:73×2+80×1+82×3+83×410= 80.4………………8分∵79.5<80.4 ∴应选派乙 …………………………………9分 23.(7分) 解:(1) ∵A 点的坐标为(8,y ) ∴OB =8 ∵sin ∠OAB = 45,∴OA =8×54=10,AB =6∵C 是OA 的中点,且在第一象限 ∴C(4,3) ∴反比例函数的解析式为y =12x………………………………2分(2)1212322,1266y x y x x x y y =⎧==-⎧⎧⎪⎪⎪⎨⎨⎨===-⎪⎪⎪⎩⎩⎩解方程组得 ∵M 是直线与双曲线另一支的交点∴M (-2,-6)………………………………………………3分 ∴S △OMB = 12·OB·|-6| = 12×8×6 =24∵S 四边形OCDB = S △OBC +S △BCD =12+12·DB ·4……………………5分D 在双曲线上,且D 点横坐标为8 ∴D (8,32),即BD =32∴S 四边形OCDB =12+3=15∴S △OMB S 四边形OCDB= 85…………………………………………………7分24、(9分)证明:(1) 连接CM∵∠P AC =∠ABC ,∠M =∠ABC ∴∠P AC =∠M ∵AM 为直径 ∴∠M +∠MAC =90° ∴∠P AC +∠MAC =90° 即:∠MAP =90° ∴MA ⊥AP∴P A 是⊙O 的切线…………………………………………3分 (2) 连接AE∵M 为BC ⌒中点,AM 为⊙O 的直径 ∴AM ⊥BC ∵AM ⊥AP ∴AP ∥BC ∴△ADP ∽△CDB ∴BD PD = CD AD………………………………………………………………………5分 ∵AP //BC ∴∠P =∠CBD ∵∠CBD =∠CAE ∴∠P =∠CAE ∵∠P =∠DCF ∴∠DCF =∠CAE ∵∠ADE =∠CDF ∴△ADE ∽△CDF ∴CD DA = FD ED………………………………………………………………………7分 ∴BD PD = FD ED = CD AD…………………………………………………………………9分 25、(12分)解:(1)∵抛物线经过坐标原点(0,0)∴m 2-1=0 ∴m = ±1∴y = x 2+x 或y = x 2-3x ……………………………………………………………………2分 ∵x <0时,y 随x 的增大而减小∴ y = x 2-3x ………………………………………………………………………………3分 由图象知:y <0时,0<x <3 ………………………………………………………………4分 (2)①当BC =1时,由抛物线的对称性知点B 的纵坐标为-2.所以矩形的周长为6 …5分 ②∵点A 的坐标为(a ,b )∴当点A 在对称轴左侧时,矩形ABCD 的一边BC =3-2a ,另一边AB =3a -a 2周长L =-2a 2+2a +6 ,其中 0<a <32 ……………………………………………………7分当点A 在对称轴右侧时,矩形的一边BC =3-(6-2a )=2a -3, 另一边AB =3a -a 2 周长L =-2a 2+10a -6,其中32<a <3……………………………………………………9分∴当0<a <32时,L =-2(a -12)2+132∴当a = 12时,L 最大= 132,A 点坐标为(12,-54)当32<a <3时,L =-2(a -52)2+ 132∴当a = 52时,L 最大= 132,A 点坐标为(52,-54) ……12分 (说明:本试卷各题只要方法合理,可依据情况酌情给分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二图表信息问题
强化突破
1.(2014·随州)某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是( C )
A.只有①②B.只有③④
C.只有①②③D.①②③④
2.(2013·台湾)以下表示小勋到商店购买2个单价相同的布丁和10根单价相同的棒棒糖的经过.
小勋:“我要2个布丁和10根棒棒糖.”
老板:“谢谢!这是您要的2个布丁和10根棒棒糖,总共200元!”
老板:“小朋友,我钱算错了,我多算2根棒棒糖的钱,我退还你20元.”
根据上文,判断布丁和棒棒糖的单价相差多少元?( B )
A.20元B.30元C.40元D.50元
3.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.求被移动石头的质量为多少克?( A )
A.5克
B.10克
C.15克
D.20克
4.(2013·鄂州)下列几个命题中正确的个数为__1__个.
①“掷一枚均匀骰子,朝上点数为负”为必然事件;(骰子上各面点数依次为1,2,3,4,5,6)
②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92;
③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定;
④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.
5.在学校组织的游艺晚会上,掷飞镖游艺区游戏规则如下:如图,掷到A 区和B 区的得分不同,A 区为小圆内部分,B 区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:
(1)求掷中A 区、B 区一次各得多少分? (2)依此方法计算小明的得分为多少分?
解:(1)设掷中A 区一次x 分,B 区一次y 分,依题意得⎩⎨⎧5x +3y =77,
3x +5y =75,
解得⎩⎪⎨⎪⎧x =10y =9 (2)4x
+4y =76(分)
6.根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高__2__cm ,放入一个大球水面升高__3__cm ; (2)如果要使水面上升到50cm ,应放入大球、小球各多少个?
解:设应放入大球m 个,小球n 个,由题意得⎩⎨⎧m +n =10,3m +2n =50-26,解得⎩⎨⎧m =4,
n =6,
∴如果
要使水面上升到50 cm ,应放入大球4个,小球6个
7.(2014·衢州)为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
(1)求m 的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
解:(1)由题意得90m =75
m -3,解得m =18 (2)设购A 型号设备x 台,则18x +15(10-x)
≤165,∴x ≤5,∵x 为自然数,∴共有6种方案.设处理污水量为w 吨,w =220x +180(10-x)=40x +1800,∴当x =5时,w 最大=2000吨
8.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:
一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额; 二、个人所得税纳税税率如下表所示:
(1)
(2)若乙每月工资收入额不超过12000元,他每月应缴纳的个人所得税能超过月工资的7.5%吗?若能,请求出乙的月工资范围;若不能,请说明理由.
解:(1)甲每月应缴纳的个人所得税为1500×3%+(6000-3500-1500)×10%=145(元) (2)设乙的月工资为x 元,当3500<x ≤5000时,显然纳税金额达不到月工资的7.5%;当5000<x ≤8000时,由1500×3%+(x -5000)×10%>7.5%x ,得x >18200,不满足条件;当8000<x ≤12000时,由1500×3%+3000×10%+(x -8000)×20%>7.5%x ,得x >10040,故10040<x ≤12000,则乙的工资大于10040元且不超过12000元时,纳税金额能超过月工资的7.5%
9.(2014·舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y =-200x 2+400x 刻画;1.5时后(包括1.5时)y 与x 的关系可近似地用反比例函数y =k
x
(k >0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x =5时,y =45,求k 的值. (2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低
度白酒,第二天早上7:00能否驾车去上班?请说明理由.
解:(1)①y =-200x 2+400x =-200(x -1)2+200,∴喝酒后1小时,酒精含量达到最大值200毫克/百毫升 ②当x =5,y =45时,由y =k x 得k =225 (2)当y =20时,y =225
x 得x
=11.25,喝完酒经过11.25时为第二天早上7:15,∴第二天早上7:15以后才可以驾车,7:00时不能去上班。

相关文档
最新文档