整理小升初找规律

合集下载

小升初特训专题:找规律考题及答案讲解学习

小升初特训专题:找规律考题及答案讲解学习

小升初特训专题:找规律考题及答案专题三:典型找规律问题答案1. 一条直线把圆分为两部分,两条直线可把圆分4部分,3条直线把圆分为(7 )部分,10条直线把圆分为(56)部分。

[规律:1 n (n 1),n表示22. 在平面上画一个圆把平面分为2部分,画2个圆把平面分为4部分,画5个圆把平面分为(22 )部分,画10个圆把平面分为(92 )部分。

[规律:2 n (n 1), n表示圆的个数。

]3. 在平面上画一个三角形把平面分为2部分,画2个三角形把平面分为8部分,画3个三角形把平面分为(20 )部分,画10个三角形把平面分为(272)部分。

[规律:2 3n (n 1), n表示三角形的个数。

]4. 在平面上画一个四边形把平面分为2部分,画2个四边形把平面分为10部分,画5个四边形把平面分为(82)部分,画10个四边形把平面分为(362)部分.[规律:2 4n (n 1), n表示四边形的个数。

]5. 找规律填上合适的数或字母:① 1、2、3、5、8、(13 )、(21 )、34.【斐波那契数列】②1、4、9、16、(25 )、(36 )............. 这个数列中的第90个数是(8100),第100个数是(10000)。

【规律:第n个数二n x n】③1、2、5、10、17、(26 )、(37)......... 这个数列中个数是(8101),第101 个数是(10001 )。

【规律:第n 个数=(n-1)X(n-1)+1 】101,1,98 )、(99,4,100 )、(97,9,102 ) .......... 这个数列中个括号内的三个数分别是(83,100,116 )。

⑤A B C D E FD E A F B CF B D C E A(C E F A B D ). 【规律:每行的第一个字母是上一行的第四个字母。

以此类推】⑥111,31,15,11.8,( 11.16),11.032 【规律:从相邻两数的差80、16、3.2……中发现前一个差是后一个差的5倍】3 1 12 12 16 1 10 1⑦——,一,,,,1 ,(2 ).【规律:分子分母同时乘以6得89 14 79 37 23 2 59 146即可发现:后一个分数的分子是前个分数的分子的2倍,后一个分数的分84母是前个分数的分母小5。

小升初专题(四)--找规律

小升初专题(四)--找规律

知识点梳理找规律是小学阶段常见的题型之一,其类型可分为数字找规律和图形找规律,主要考查学生的数感、归纳和递推的能力。

①数字找规律:先观察数字的趋势,一般地,数字由大到小,算法上必定是乘法、加法。

数字由小到大,算法上必定是除法、减法。

需要注意:如果一列数有小数、分数、百分数等,要先把数化成同一种形式再找规律。

②图形找规律:观察图形的形状、数量、变化趋势,整理成数据表格,对应观察,找出数字的规律。

表格形如:图形 1 2 3 4 ……n 数量注意:有些题型没有直接说明是规律类题型,需要自己尝试找规律,这一类较难。

经典题型【例1】计算:100+99-98-97+96+95-94-93+……+8+7-6-5+4+3-2-1【例2】有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为(), 第n个数为()。

【例3】有一组数:1,4,16,64,……请观察这组数的构成规律,第n个数为()。

【例4】有一组数:2,6,12,20,30,… 请观察这组数的构成规律,用你发现的规律确定第8个数为( ),第n 个数为( )。

【例5】有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【例6】如果2!=2×3,3!=3×4×5,5!=5×6×7×8×9。

请你按此规则计算【例7】△△□ ☆★ △△□ ☆★ △△□ ☆★……左起第30个 图形 是( ),当 □ ☆★一共有18个时, △最多有( )个 。

【例8】一串分数:91,76,75,74,73,72,71,54,53,52,51,32,31 ……其中的第2000个分数是多少?【例9】若3111-=a ,1211a a -=,2311a a -= (2014)的值为多少?【例10】如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?【例11】已知3223222⨯=+,8338332⨯=+,154415442⨯=+……,若bab a ⨯=+288 (a 、b 为正整数),则a+b=( )。

小升初六年级数学总复习:找规律

小升初六年级数学总复习:找规律

6.用形如
的框每次框下表中的两个数,共得到( B )
种不同的和。
1 2 3 4 … 64
A.62
B.63 C.64 D.65
7.按下面的规律摆放三角形,第 5 堆有( D )个三角形。
A.14
B.15
C.16 D.17
8.观察下面各图,找出图中数与数之间的变化规律。“?” 处应填( A )。
A.4 B.5 C.6.6
示例: 102- 92=(10+ 9)×(10- 9)= 10+ 9= 19
3.将 1~50 按下面的方式填在方格中。
(1)用 3×3 的方框框出 9 个数(如阴影部分),方框中 9 个数的 和与方框正中间的数有什么关系?(5 分)
设方框正中间的数是 x (x- 10- 1)+ (x-10)+(x- 10+1)+ (x- 1)+ x+(x+ 1)+ (x + 10-1)+ (x+ 10)+ (x+10+ 1)= 9x 这 9 个数的和是方框正中间的数的 9 倍。
D. 7
9.请同学们伸出左手,如图所示,从这只手大拇指开始的那样 数数字 1,2,3…那么数字 2016 落在( B )上。
A.大拇指 C.中指
B.食指 D.无名指
10.下图是一个装饰物品连续旋转闪烁所成的三个图形,照 此规律闪烁,下一个呈现出来的图形是( B )。
三、解决问题。(38 分) 1.用红、黄、绿、紫、蓝五种颜色去涂下面的圆,每个圆涂 1 种颜色,共有多少种不同的涂法?(8 分)
考点四 加法原理、乘法原理以及抽屉原理
1.加法原理 完成某一件任务共有 n 类办法,在第一类办法中有 m1 种不同 的方法,在第二类办法中有 m2 种不同的方法……在第 n 类办法中 有 mn 种不同的方法,那么完成这件事有 N=m1+m2+…+mn 种 不同的方法。 2.乘法原理 完成某一件任务有 n 个步骤,完成第一步有 m1 种不同的方法, 完成第二步有 m2 种不同的方法……完成第 n 步有 mn种不同的方 法,那么完成这件事有 N=m1×m2×…×mn种不同的方法。

小升初六年级数学专项练习《(6)找规律》知识点总结复习训练

小升初六年级数学专项练习《(6)找规律》知识点总结复习训练

小升初小学六年级数学复习总结·知识点专项练习题+答案(6)找规律知识要点:对题目中给出的图形或数据认真观察分析,找到图形、数据中的数量变化规律,再根据规律递推,找出正确的解答。

这一类题型主要考察学生根据已有条件进行归纳与猜想的能力。

下面的题请同学运用各种学过的方法,如周期性分析,递推法,列表法等找出规律来解答以下各题。

1、数字规律:数字之间和差倍的规律,典型的有:兔子数列、间隔数列、等差数列、等比数列等。

2、图形规律:①图形中数量变化:点数、角数、边数、对称轴数、区域数……②图形中位置变化:一般来说,一组图形中元素个数完全相同,不同的是局部元素位置有变化,这时从位置的角度出发来解题。

位置变化的类型分为平移、旋转、翻转。

③图形的叠加减变化:图形组成的元素部分相似,进行加减同异。

习题精选:1. 按规律填数:5,2,8,6,11,10,14,()。

A.13B.16C.15D.142. 一组按规律排列的数:14,39,716,1325,2136,……,请你推断第6个数是()。

A.2948B.3148C.2949D.31493. 按顺序排列的数:3,4,6,9,14,22,35,.....,中的第八个数是()A.56B.64C.50D.524. 根据下面四个算式,发现其中规律,然后在括号中填入适当的数,其中正确的一组是()。

1×5+4=9=3×3;2×6+4=16=4×4;3×7+4=25=5×5;4X8+4=36=6×6;10×()+4=()=()×()A.14、81、9、9B.14、144、12、12C.12、121、11、11D.以上答案均不对5. 观察前两个图的规律,填出方框中的数。

()A.5B.7C.6D.86. 观察下列图形:它们是按一定规律排列的,依照此规律,第50个图形共有()个★。

A.161B.151C.141D.1317. 根据图形的排列规律,那么第50个图形中有()个小圆点。

小升初专题6找规律(教师版,含例题解析作业测试卷及答案)

小升初专题6找规律(教师版,含例题解析作业测试卷及答案)

小升初专题六找规律例题1与周期相关的找规律问题【例1】、(★★)n7化小数后,小数点后若干位数字和为1992,求n为多少?【解】n7化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。

【例2】、(★★)有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【解】数列除以5的余数为1、2、4、2、1、1、2、4、2、1…这样就使5个数一周期,所以2003÷5=400…3,所以余4。

【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日.问:这人打工结束的那一天是2月几日?【来源】第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。

所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2图表中的找规律问题【例4】、(★★)图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【来源】第十届<小数报>数学竞赛初赛填空题第5题【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;10,因此这-手续使总和减少了10)=(16+93)⨯12×10=588.620没有破,经过2分半钟全部肥皂泡都破了·小明在第20次吹出100个新的肥皂(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。

小学升初中数学衔接班材料 (5)找规律

小学升初中数学衔接班材料    (5)找规律
14、、国移动网手机本地通话收费标准有两种:全球通用户每月基本月租费
50元,并且每分通话费是0.4元;神州行用户免月租费,每分通话费0.6 元。 (1)如果王先生上个月本地通话时间A分,请用字母表示: 用全球通的费用: 用神州行的费用: (2)当王先生的每月本地通话时间为多少分时,两种收费标准所付费用 相同? (3)请你为王先生参谋,在本地他使用全球通合算?还是使用神州行
小学升初中数学衔接班材料(5)找规律及应用
数学
姓名
原毕业学校
给出几个具体的、特殊的数、式或图形,要求找出其中的变化规
律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;
具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;
(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下
例如2+2=2×2。但是在分数中,这种现象却很普遍。请观察下面
的几个例子:
因为:+=4,×=4,所以+=×。
因为:+=4,×=4,所以+=×。
根据以上结果,我们发现了这样的一个规律:两个分数,如果它们的
( )相同,并且(
),那么这两个分数的和等于它们
的积。例如( )+( )=( )×( )。
5、根据你发现的规律填空。
面通过举例来说明这些问题.
例 1、找规律填数:1、2、4、7、11、16、22、(
)。
根据规律填空
2、1/2、2/3、1/5、2/7、1/11、2/13、( )、( )、( )
3、请按数字规律,填出下图中空缺的数。
4、自学下面这段材料,然后回答问题。
我们知道,在整数中“两个数的和等于这两个数的积”的情形并不多,

小升初真题之找规律篇(含答案)

小升初真题之找规律篇(含答案)

小升初真题之找规律篇1 (西城实验考题)有一批长度分别为 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 和 11 厘米的细木条,它们的数量都足够多,从中适当选取 3 根木条作为三条边,可围成一个三角形 ;如果规定底边是 11 厘米,你能围成多少个不同的三角形?2 (三帆中学考题)有 7 双白手套, 8 双黑手套, 9 双红手套放在一只袋子里。

一位小朋友在黑暗中从袋中摸取手套,每次摸一只,但无法看清颜色,为了确保能摸到至少 6 双手套,他最少要摸出手套( )只。

(手套不分左、右手,任意二只可成一双 ) 。

3 (人大附中考题)某次中外公司谈判会议开始 10 分钟听到挂钟打钟 (只有整点时打钟,几点钟就响几下),整个会议当中共听到 14 下钟声,会议结束时,时针和分针恰好成 90 度角,求会议开始的时间结束的时间及各是什么时刻。

4 (101 中学考题)4 道单项选择题,每题都有 A、B 、C 、D 四个选项,其中每题只有一个选项是正确的,有800 名学生做这四道题,至少有 _________人的答题结果是完全一样的?5 (三帆中学考题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要 1 分钟,注满第二个人的桶需要 2 分钟,…… .如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少 .这时间等于_________分钟.预测 1在右图的方格表中,每次给同一行或同一列的两个数加 1,经过若干次后,能否使表中的四个数同时都是 5 的倍数?为什么?1 24 3预测 2甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用 16 天生产上衣, 14 天做裤子,共生产448 套衣服(每套上衣、裤子各一件);乙厂每月用 12 天生产上衣, 18 天生产裤子,共生产720 套衣服。

两厂合并后,每月(按 30 天计算)最多能生产多少套衣服?找规律篇之答案1 (西城实验考题)【解】由于数量足够多,所以考虑重复情况;现在底边是 11,我们要保证的是两边之和大于第三边,这样我们要取出的数字和大于 11.情况如下:一边长度取 11,另一边可能取 1~11 总共 11 种情况;一边长度取 10,另一边可能取 2~10 总共 9 种情况;… …一边长度取 6,另一边只能取 6 总共 1 种;下面边长比 6 小的情况都和前面的重复,所以总共有 1+3+5+7+9+11=36 种。

小升初 找规律(学生版)

小升初 找规律(学生版)

个性化教学辅导教案教学目标3、规律的总结是抽象思维能力和计算能力,形象思维能力等的综合考察;4、规律题的积累经验也是非常必要的。

教学过程 教师活动学生活动1、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲2、下午放学时,弟弟以每分钟40米的速度步行回家。

5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家)3、一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?4、环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙。

若二人同时从同一地点反向而行,只要2分钟二人就相遇。

求甲、乙的速度。

5、甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。

出发后10分钟,甲便从乙身后追上了乙。

已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?1、先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),192、先找出下列数排列的规律,然后在括号里填上适当的数。

(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,83、先找出规律,然后在括号里填上适当的数。

(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()(3)3,7,15,31,63,(),()4、下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。

小升初民办初中必考知识点之找规律

小升初民办初中必考知识点之找规律

小升初民办初中必考知识点之找规律
一、 找规律
⑴周期性问题
① 年月日、星期几问题
② 余数的应用
⑵数列问题
① 等差数列
通项公式 a n =a 1+(n-1)d
求项数: n=11n a a d
-+ 求和: S=1()2
n a a n + ② 等比数列
求和: S=1(1)1
n a q q -- ③ 裴波那契数列
⑶策略问题
① 抢报30
② 放硬币
⑷最值问题
① 最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
② 最优化问题
a.统筹方法
b.烙饼问题
二、 算式谜
1. 填充型
2. 替代型
3. 填运算符号
4. 横式变竖式
5. 结合数论知识点
三、数阵问题
1.相等和值问题
2.数列分组
⑴知行列数,求某数
⑵知某数,求行列数
3.幻方
⑴奇阶幻方问题:
杨辉法罗伯法
⑵偶阶幻方问题:
双偶阶:对称交换法
单偶阶:同心方阵法。

小升初专题找规律(图形规律类)

小升初专题找规律(图形规律类)

小升初专题找规律——图形规律类由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻。

这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。

探索发现有关图形所具有的规律性或不变性的问题,它往往给出了一组变化了的图形或条件,要求通过阅读、观察、分析、猜想来探索规律通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律例1.如图,由若干火柴棒摆成的正方形,第①图用了4根火柴,第②图用了7根火柴棒,第③图用了10根火柴棒,依次类推,第⑩图用根火柴棒,摆第n个图时,要用根火柴棒。

①②③例2.按如下规律摆放三角形:则第④堆三角形的个数为;第(n)堆三角形的个数为。

例3.如下图所示,小丽用棋子摆成三角形的图案,观察下面图案并填空:第1个第2个第3个第4个按照这样的方式摆下去,摆第5个三角形图案需要__________枚棋子;摆第n个三角形图案需要__________枚棋子(用含有n的式子表示);摆第100个三角形图案需要__________枚棋子.例4.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第11个图形需要黑色棋子的个数是 .例5.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.例6.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为9根火柴棍时,摆出的正方形所用的火柴棍的根数为 .例7.如图,房间地面的图案是用大小相同的黑、白正方形组合而成.图中,第1个黑色形由3个正方形组成,第2个黑色形由7个正方形组成,…,那么组成第6个黑色形的正方形有( )A .22个B .23个C .24个D .25个例8.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右90图1图2图3 …例9.根据下图中箭头指向的规律,从2015到2016再到2017, 箭头的方向是( )例10.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_______相关练习1.如图①,图②,图③,图④,,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2.如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.3.观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.4.如图,用同样并规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当白色瓷砖为为正整数)n n (2块时,黑色瓷砖有 块(结果写成一个多项式形式).第1个 ……第2个 第3个 第4个 0 284 24 62246 844m6(1) (2) (3) ……5.某校的一间礼堂,第1排的座位数为12,从第2排开始,每一排都比前一排增加x个座位.(1)请你在下表的空格里填写一个适当的式子:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…12x+12x312+…(2)由题可知,第5排座位数是_______________,第15排座位数是________________;(3)已知第15排座位数是第5排座位数的2倍,求第25排有多少个座位?6.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.7.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折n次,可以得到条折痕.8.柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头,第二层有34⨯听罐头,第三层有45⨯听罐头,……根据这堆罐头排列的规律,第n(n为正整数)层有听罐头(用含n的式子表示).9.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。

小升初数学规律归纳总结

小升初数学规律归纳总结

小升初数学规律归纳总结数学作为一门学科,对于小学生来说是非常重要的,而在小学数学学习的过程中,我们会发现有很多规律与归纳需要总结。

本文将从小升初数学的不同章节切入,逐一归纳总结其中的规律及方法。

一、整数运算规律在整数运算中,有几个常见的规律需要注意:1. 相反数规律:两个数的和等于0,则这两个数互为相反数,例如2和-2,5和-5。

2. 加法和乘法交换律:两个数相加或相乘的结果不会受到数的顺序的影响,即a+b=b+a,a*b=b*a。

3. 减法和除法不满足交换律:两个数相减或相除的结果会受到数的顺序的影响,即a-b≠b-a,a/b≠b/a。

4. 加法与乘法结合律:当有多个数相加或相乘时,结果不会受到运算顺序的影响,即(a+b)+c=a+(b+c),(a*b)*c=a*(b*c)。

5. 乘法分配律:两个数相乘,再与另外一个数相加,等于两个数分别与这个数相乘再相加,即a*(b+c)=a*b+a*c。

二、几何问题规律总结几何问题是小学数学中的重要内容,以下是一些几何问题的规律总结:1. 线段长度的比较:当两条线段相互比较长度时,可以通过直观比较或利用尺规作图来确定长短关系。

2. 直角三角形规律:直角三角形的斜边平方等于两个直角边平方和,即a²+b²=c²,这被称为勾股定理。

3. 等边三角形规律:等边三角形的三条边相等,三个内角均为60度。

4. 面积计算规律:不同形状的图形有不同的计算公式,例如长方形的面积为长乘以宽,三角形的面积为底乘以高再除以2。

三、分数的规律归纳小学阶段,分数的学习和掌握是非常重要的,以下是分数相关的规律归纳:1. 分数的比较大小:分数大小的判断可以通过通分后的分子比较,或者利用小数形式的换算来进行。

2. 分数的加减法:分数的加减法需要找到它们的最小公倍数,并根据最小公倍数将分数化为相同的分母,然后进行加减操作。

3. 分数的乘法:分数的乘法直接将分子相乘得到新的分子,分母相乘得到新的分母。

小升初专题之找规律

小升初专题之找规律

第三讲 找规律题有一颗棋子放在如图中的1号位置,现按顺时针方向,第一次跳1步,跳到2号的位置;第二次跳2步,跳到4号的位置;第三次跳3步又跳到1号位置…这样一直进行下去,求哪几号位置永远跳不到?有一列规律明显的数:2,5,8,11,14,17,,其中2006是第 个数。

李明画了许多个长一样、宽不一样的长方形,量出了它们的长、宽,计算出了它们的面积,然后把宽和面积所对应的点描在方格纸上,当他把这些点顺次连接起来后,惊喜地发现了一个“秘密”,这个“秘密”是( )把1到2008从左往右依次排列起来,每隔三个数字点一个“,”如123,456,789,……那么,第100个逗号前的数字是( )。

已知100个自然数123100a a a a ⋯⋯、、、满足等式:()()()121102100n n n a n a n ----+=≤≤,且100199a =。

求123100a a a a +++⋯⋯+。

瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而打开了光谱奥妙地大门,请按照这种规律写出第七个数据是( )。

一列数,前两个是1,3,从第三个开始,每个数据都是前两个数地和,即1,3,4,7,11,18,29…到第2006个数,共有()个奇数。

观察下面按规律排起的一列数:1121231234123451,,,,,,,,,,,,,,,1213214321543216(1)若将左起第m 个数记为()F m ,当()22001F m =时,求m 的值和这个m 个数的积。

(2)在此列数中,未经约分且分母为2的数记为a ,他后面的一个数记为b ,且存在这样的两个数a 和b ,使ab=2001000,求出a 和b 。

如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到第20层(n=20)时,需要根火柴杆.动脑筋,找规律:(1)找规律,填数字。

①3,6,9,,,。

②5,10,20,40,,,。

小升初找规律知识点总结

小升初找规律知识点总结

小升初找规律知识点总结一、常见的找规律题型在小升初数学考试中,找规律的题目种类繁多,以下是一些较为常见的找规律题型:1. 数列问题:给定一组数字,要求根据一定的规律,推算出下一个数字是什么。

2. 图形问题:给定一组图形,要求找出它们之间的规律,推算下一个图形是什么。

3. 字母或符号问题:给定一组字母或符号排列,要求找出它们之间的规律,推算下一个字母或符号是什么。

二、找规律的方法在解决找规律的问题时,可以采用以下几种方法:1. 观察法:首先,要仔细观察给定的数列、图形或字母排列,找出其中的一些规律性质。

2. 补充法:在观察的基础上,可以尝试补充一些可能的数字、图形或字母,看看它们是否符合规律。

3. 推理法:通过观察和补充,可以逐步推断出规律,最终得到正确的结果。

三、一些常见的规律1. 数列问题在数列问题中,常见的规律包括等差数列、等比数列和斐波那契数列。

等差数列是指相邻两项的差是一个常数,等比数列是指相邻两项的比是一个常数,而斐波那契数列是指从第三项开始,每一项都是前两项的和。

2. 图形问题在图形问题中,常见的规律包括平移、旋转和对称。

平移是指在相邻的图形中移动一定的距离,旋转是指在相邻的图形中以一定角度进行旋转,而对称是指在相邻的图形中进行折叠对称。

3. 字母或符号问题在字母或符号问题中,常见的规律包括字母顺序、字母个数和字母的组合。

在这类问题中,要注意字母的顺序和组合形式,可以尝试逆序、翻转或者改变字母的组合方式来寻找规律。

四、练习题1. 数列问题【例题】8,12,16,20,?请问“?”处应该填入什么数字?解析:观察给定的一组数字,可以发现每个数字都是前一个数字加上4得到的。

因此,下一个数字应该是20+4=24。

2. 图形问题【例题】第1题:⭐⭐⭐第2题:⭐⭐第3题:⭐⭐⭐⭐第4题:⭐⭐请问第5题应该是什么图形?解析:观察给定的一组图形,可以发现每个图形的“⭐”的数量都是与题号有关。

因此,第5题应该是⭐⭐⭐⭐⭐。

小升初数学专题复习-专题五 探索规律 通用版

小升初数学专题复习-专题五  探索规律    通用版

专题五探索规律考点扫描1.数字规律(1)数列:按一定次序排列的一列数叫做数列。

数列中的规律:①规律隐含在相邻两数的和或差中;②规律隐含在相邻两数的倍数中;③前后几项为一组,以组为单位隐含一定的规律;④相隔的项之间存在着一定的规律;⑤数列的各项分别是项数的平方数;⑥数列中的下一项是前几项的和。

2.图形规律(1)图形的规律是指根据一组相关图形总结出图形变化所反映的规律;(2)解决图形规律问题的方法有两种:一种是数字图形,将图形转化成数字规律,再用数字规律解决问题;另一种是通过图形的直观性,从图形的变化中直接寻找规律。

3.算式中的规律(1)利用计算器独立探索,发现规律;(2)利用规律来完成计算。

抛砖引玉【例1】找出下列各数列的规律,并按其规律在( )内填上合适的数:(1) 4,7,10,13,( ),( ).(2) 84,72,60,( ),( ).(3) 2,6,18,( ),( ).(4) 625,125,25,( ),( ).(5) 1,4,9,16,( ).(6) 2,6,12,20,( ),( ).【解析】通过对已知的几个数的前后两项的观察、分析,可发现:(1)的规律是:前项+3=后项。

所以应填16;(2)的规律是:前项-12=后项。

所以应填48,36;(3)的规律是:前项×3=后项。

所以应填54,162;(4)的规律是:前项÷5=后项。

所以应填5,1;(5)的规律是:数列各项依次为1=1×1,4=2×2, 9=3×3,16=4×4,所以应填5×5=25;(6)的规律是:数列各项依次为2=1×2,6=2×3,12=3×4,20=4×5,所以,应填 5×6=30,6×7=42;答案:(1)16.(2)48;36.(3)54;162.(4)5;1.(5)25.(6)30;42.【例2】寻找规律填数:(1)(2)(1)_______、________;(2)_______、________。

小升初-探索规律

小升初-探索规律

探索规律知识集结知识精讲探索规律知识讲解一、数列中的规律按一定的次序排列的一列数,叫做数列.(1)规律蕴涵在相邻两数的差或倍数中.例如:1,2,3,4,5,6…相邻的差都为1;1,2,4,8,16,32…相邻的两数为2倍关系.(2)前后几项为一组,以组为单位找关系,便于找到规律.例如:1,0,0,1,1,0,0,1…从左到右,每四项为一组;1,2,3,5,8,13,21…规律为,从第三个数开始,每个数都是它前面两个数的和.(3)需将数列本身分解,通过对比,发现规律.例如,12,15,17,30,22,45,27,60…在这里,第1,3,5…项依次相差5,第2,4,6…项依次相差15.(4)相邻两数的关系中隐含着规律.例如,18,20,24,30,38,48,60…相邻两数依次差2,4,6,8,10,12…二、算术中的规律在数学算式中探索规律,应认真观察算式的特点,再观察结果的特点,进而,根据规律填出这一类算式的结果.例如:1×1=1;11×11=121;111×111=12321;1111×1111=1234321;通过观察发现:每个算式中,两个因数各个数位上的数字都是1,且个数相同.积里的数字呈对称形式,且前半部分是从1开始,写至某个数字(此数即因数的位数),积的后半部分再顺次写出.①一个数乘11,101的规律一个数乘11的规律:可采用“两头一拉,中间相加”的方法计算.如:123×11=1353一个数乘101的规律:可采用“两两一位,隔位一加”的方法计算.如:58734×101=5932134②一个数乘5,15,25,125的规律一个数乘5,转化为一个数乘10,然后,再除以2.如:28×5=28×10÷2=280÷2=140这种情况可以概括为“添0求半”.根据同级运算可交换位置的性质,也可以先除以2,再乘10.如:28×5=28÷2×10=14×10=140.即“求半添0”的方法.一个数乘15,可分解为先用这个数乘10,再加上这个数乘5,乘5的方法同上.如:264×15=264×10+264×5=2640+264×10÷2=2640+2640÷2=2640+1320=3960.这种情况可以概括为“添0补半”一个数乘125,因为125×8=1000,所以,可将一个数乘125转化为先乘1000,再除以8,或先除以8,再乘1000.如:864×125=864×1000÷8=864000÷8=108000.三、“式”的规律把一些算式排列在一起,从中发现规律,也是探索规律的重要内容.在探索“式”的规律时,要从组成“式”的要素中去探索.四、数与形结合的规律在探索数与形结合的规律时,一方面要考虑图形的对称(上下对称和左右对称),另一方面要考虑数的排列规律,通过数形结合、对应等方法,来解决问题.例题精讲探索规律例1.循环小数的小数部分的第50位上的数字是()A.5 B.6 C.7例2.按如图所示3×3方格中的规律,在下面4个符号中选择一个,填入第三行的空格内,你选的是()A.B.C.D.例3.〇〇◎◎◎□〇〇◎◎◎□……像这样画下去,第34个图形是()A.〇B.◎C.□D.不确定例4.如图,每次框出连续的3个数,共可得到()个不同的和.A.27 B.28 C.29 D.30例5.现有一堆建筑需要清运,它第一次运走总量的.第二次运走余下的,第三次运走余下的,第四次运走余下的,第五次运走余下的,依次规律继续运下去,当运走49次后,余下废料是总量的__。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.观察下列图形,则第n 个图形中三角形的个数是( )
2.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数
3.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.第n 个( )
4.
221.4135-
=⨯; 222.5237-=⨯; 223.6339-=⨯
224.74311-=⨯…………
则第n (n 是正整数)个等式为________.
5.王婧同学用火柴棒摆成三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒( ).
6.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________
第1个图形
第2个图形
第3个图形
第4个图形

……
第1个
第2个
第3个
7.请写出第20行,第21列的数字.
8.图6是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.
9.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有()个.
10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”
的个数为.
(1)(2)(3)
……
……
第一行
第二行
第三行
第四行
第五行
第一列第二列第三列第四列第五列
1 2 5 10 17 …
4 3 6 11 18 …
9 8 7 12 19 …
16 15 14 13 20 …
25 24 23 22 21 …
……
图8
图6
(1) (2) (3)
……
第1个第2个第3个
11.观察下表,回答问题:

个图形中“△”的个数是“○”的个数的5倍.
12.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.
13.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
14.观察下列一组数:21,43,65,8
7
,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .
序号
1 2 3 …
图形

第1列 第2列 第3列 第4列 第1行 1 2 3 第2行 6 5 4 第3行 7 8 9 第4行 12 11 10 ……。

相关文档
最新文档