九年级数学圆的对称性2(1)
苏教版九年级数学(上)《2.2圆的对称性(2)》教学设计-优质教案

OCDA2.总结 垂径定理:数学语言(符号)表述: 板书垂径定理的内容活动意图:本环节要注重学生在活动中的思考,鼓励学生有条理地表达自己的思考过程,积累数学活动经验,本环节采用学生自主探索与合作交流的方法,通过学生的探究、归纳得出垂径定理性质。
环节三:运用新知 教师活动4例1.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D 。
线段AC 与BD 相等吗?为什么?例2:如图,已知在⊙O 中,弦AB 的长为8㎝,圆心O 到AB 的距离为3㎝,求⊙O 的半径。
变式:在半径为5㎝的⊙O 中,有长为8㎝的弦AB ,求点O 到AB 的距离。
想一想:若点P 是AB 上的一动点,你能写出OP 的范围吗?学生活动4(1)例1需要学生通过添加辅助线解决问题,教师引导学生得出添加辅助线常用的方法.(2)学生独立分析,老师板书,写出证明过程.例2是例1的延伸,要求学生在课堂作业纸上完成,并请一名学生上黑板板演并关注证明过程是否规范.变式:生生互动完成!想一想:学生合作完成,并交流展示,教师引导归纳活动意图:本环节依据学生的实际情况及他们的心理特点,设计了包括例1在内的有梯度的,循序渐进的与物理、代数相关的变式题组训练二,让学生尝试。
采用学生自主探索与合作交流的方法,通过学生的探究体验垂径定理性质的应用。
环节四:课堂小结OABOFEDCBA7.板书设计 2.2圆的对称性(2)垂径定理:例题板书:(略)学生板书:(略)数学语言(符号)表述:8.作业与拓展学习设计1.过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为 .2.⊙O中,直径AB ⊥弦CD于点P ,AB=10cm,CD=8cm,则OP的长为 cm.3.⊙O的弦AB为103cm,所对的圆心角为120°,则圆心O到这条弦AB的距离为___4.已知:如图,⊙O的直径AB与弦CD相交于点E,AE=1,BE=5, AEC=45°,求CD的长。
北师大版数学九年级下册圆的对称性课件

教学过程
10
记一记
通过探究,我们进一步得出同圆或等圆中圆心角、
新 弧、弦、弦心距之间关系.
知 在同圆或等圆中,如果两个圆心角、两条弧、 两条弦、两个弦心距中有一组量相等,那么
新 它们所对应的其余各组量都分别相等
授
O
O'
A
C
B
A' C' B'
教学过程
11
记一记
同圆或等圆中圆心角、弧、弦、弦心距之间关系的
教学过程
8
议一议
在等圆⊙O和⊙O'中,分别作相等的圆心角∠AOB和
新 ∠A'O'B',视察两个圆的重叠情况,你有什么发现?.
知
O
O'
新
ACΒιβλιοθήκη BA' C' B'
授 在等圆⊙O和⊙O'中,当圆心角∠AOB=∠A'O'B'时,
它们所对的弦A⌒B=A⌒’B’吗?AB=A’B’吗?它们所对的
弦心距OC=O’C’吗?.
教学过程
9
记一记
通过上面的探究,我们可以得出同圆或等圆中圆心
新 角、弧、弦、弦心距之间关系. 知 在同圆或等圆中,相等的圆心角所对的弧
相等,所对的弦相等,所对的弦心距相等。
新 注意:两个圆心角、两条弧、两条弦、两 授 个弦心距相等的前提是“在同圆或等圆中”。
思考:在同圆或等圆中,两个圆心角、两 条弧、两条弦、两个弦心距中任意一组量 相等,其余的各组量也相等吗?
C. BC+BD> AB D. S△ABC>S△DBC
D O
A
B C
教学过程
2.2圆的对称性(1).2 圆的对称性(1)课件

2.2
圆的对称性(一)
复习回忆
1、什么是中心对称图形?举例说明
把一个图形绕着某一个点旋转180∘,如果旋 转后的图形能够和原来的图形互相重合,那 么这个图形叫做中心对称图形。
平行四边形、矩形、菱形、正方形
2、圆是中心对称图形,圆心是它的 对称中心。
尝 试
1.在两张透明纸片上,分别作半径相等的 O和 O’
AB = A’B’ AOB= A’O’B’
3.
AB=A’B’
1的圆心角
C D
1的弧
O
n的圆心角
B A
n的弧
n的圆心角对着 n的弧, n的弧对着 n的圆心角。
圆心角的度数与它所对的弧的度数相等。
典型例题
例 1:如图在 ABC 中, C=90, B=28,以 C为圆心, 以 CA为半径的圆交 AB于点 D,交 BC于点 E , 求 AD, DE的度数。
B
D
E
A
C
例 2:如图 ,AB,AC,BC 都是 O的弦, AOC= BOC, ABC与 BAC相等吗?为什么?
解: ABC= BAC
∵ AOC= BOC
O
AC=BC
ABC= BAC
A C B
巩固练习
1.如图,在 O中,AC =BD , AOB=50,求 COD的度数。 A
C D O B A
O B C
2.如图,在 O中,AB =AC, A=40,求 ABC的度数。
3.如图,在同圆中,若 AOB=2 COD,则AB与 2CD的大小关系是( ( A)AB > 2CD (B) AB < 2CD (C) AB= 2CD (D) 不能确定
九年级数学圆的对称性知识点

九年级数学圆的对称性知识点圆是数学中一个非常重要的几何概念,它具有丰富的对称性质。
在九年级数学中,我们学习了许多有关圆对称性的知识点。
本文将围绕这一主题,探讨圆的对称性在数学中的应用和意义。
1. 点、线和面的对称性在数学中,几何图形可以根据其对称性质进行分类。
点对称性是最基本的对称性质,它是指图形绕着一个固定点旋转180度后能够重合。
线对称性是指图形相对于一条线对称,两侧对应部分完全一致。
面对称性则是指图形相对于一个面对称,两侧对应部分完全一致。
对称性在几何学中具有重要的应用,它能够帮助我们分析和解决许多问题。
2. 圆的旋转对称性圆具有旋转对称性,这是因为任何一个圆可以绕着其圆心旋转一定角度后得到一个与原圆完全一致的新圆。
这个旋转角度称为圆的旋转角,它可以是任意角度。
利用圆的旋转对称性,我们可以解决许多有关圆的问题,比如确定两个圆是否相等、快速计算圆的周长和面积等。
3. 圆的轴对称性除了旋转对称性,圆还具有轴对称性。
轴对称性是指圆相对于一条直线对称,即对于圆上的任意一点P,当P的关于直线L的对称点也在圆上时,称直线L为圆的轴线。
利用圆的轴对称性,我们可以判断一个图形是否关于某条直线对称,从而简化几何证明的过程。
4. 圆的纵轴对称性和横轴对称性圆的轴对称性可以进一步分为纵轴对称性和横轴对称性。
当圆相对于一条垂直于x轴的直线对称时,称这条直线为圆的纵轴线;当圆相对于一条垂直于y轴的直线对称时,称这条直线为圆的横轴线。
纵轴对称性和横轴对称性在解决一些几何问题时非常有用,可以帮助我们找到图形的对称性质,简化问题的分析。
5. 圆的切线与辅助线的对称性在与圆相关的问题中,切线和辅助线的对称性也是常见且有用的。
以圆的切线为例,对于圆上的任意一点P,过点P作一条切线,这条切线与半径的夹角为90度,且在切点处与圆相切。
利用切线的对称性,我们可以解决一些与圆的切线有关的几何问题,比如判断切线与圆的位置关系、计算切线的长度等。
苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。
北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。
本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
通过学习,使学生能运用圆的对称性解决一些实际问题。
二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。
但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。
三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。
2.难点:理解圆的对称性与轴对称图形的关系。
五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。
2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。
3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。
六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。
2.教学环境:教室布置成有利于学生思考和交流的环境。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。
提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。
2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。
呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。
同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。
3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。
初中数学九年级下册《圆的对称性》教案设计

课题:第三章第2节圆的对称性(1)课型:新授课教学目标:1.理解圆的对称性(轴对称)及有关性质.(重点)2.理解垂径定理及推论,并会运用其解决有关问题.(难点)教法与学法指导:这节课主要通过“找圆心”等问题情境激发学生探究的兴趣和热情,经历“操作实践—大胆猜测---综合证明----灵活应用”的课堂模式,在探究垂径定理过程中,让学生领会数学的严谨性,并培养学生的数学应用意识,勇于探索的精神.课前准备:制作课件,学生预习学案.教学过程:一、情景导入明确目标组织教学:准备,给每一位同学发放圆形纸片(用化学滤纸);并提出问题,(问题1) 通过上节课《车轮为什么是圆形》的学习,认识了圆的基本概念,这是一张圆形纸片,你有什么办法找出它的圆心呢?学生活动:学生凭借经验很容易想到用两次折叠的方法,找到圆心.[师]:同学们上一节课,我们学习了圆的基本概念,知道,半径定圆的大小,圆心定圆的位置.下面,请一位同学到前面演示自己找圆心的过程.学生演示:[师]:(问题2)在折叠的过程中,你从中还知道圆具有什么性质?[生1]:老师,圆是对称图形,既是轴对称图形,又是中心对称图形.[师]:很好,同学们观察的很认真,这节课,我们重点研究圆的轴对称性,那么,圆的对称轴是怎样的直线,有多少条对称轴?[生2]:老师,圆的对称轴是直径,它有无数条对称轴.[师]:同学们,这位同学回答的对吗?[生3]:不正确,对称轴应该是直线,而直径是线段,应该说,对称轴是直径所在的直线,或者是过圆心的直线.教师活动:进行鼓励表扬并板书,3.2 圆的对称性(1)圆的对称性:圆是轴对称图形,对称轴是任意一条过圆心的直线.设计意图:问题可以激发学生学习数学的兴趣,而兴趣又是最好的老师.通过设计一连串的问题情境容易引发学生学习和探究的兴趣,在动手操作中既复习圆的意义,又探索到圆的对称性. 二、自主学习 合作探究:探究活动一:圆的基本概念 (让学生注意观察动画课件)学案(问题3):(1)什么是弦?什么是弧?如何区别?怎么表示? (2)弧与弦分别可以分成几类?它们如何区分? 学情预设:可能出现的情形一:学生看书后能理解弦、弧、优弧、劣弧及半圆的意义,但是难以区别异同,如:弦是线段,弧是曲线段;直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.情形二:学生写出的弧可能重复或遗漏,不能掌握“优弧与劣弧成对出现”的规律. 情形三:优弧的表示方法.以上若学生不能讨论总结得出,则需要老师引导得出结论.学生活动:学生在预习的前提下边观察图形演示边独立思考,再在四人小组间交流讨论. 教师活动:参与学生的讨论,注意收集信息,以便及时补充,然后提问. [生1]:(1)连接圆上任意两点的线段叫做弦.经过圆心的弦叫直径.C圆上任意两点间的部分叫做圆弧,简称弧;直径的两个端点把圆分成两个部分,每一部分叫做半圆.大于半圆弧叫优弧,小于半圆的弧称为劣弧.[生2]:弦是线段,弧是曲线段.弧的表示方法是在两个端点上面添加“︵“符号. [生3]:弦分为过圆心的和不过圆心的弦;弧分为劣弧、半圆、优弧.[师] 同学们总结的很好,下面,结合图形加深认识,并思考,你还可以得出什么性质.教师活动:引导学生,能不能从它们之间的相互关系来比较说明.[生4]:直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.[生5]:直径是圆中最大的弦. 学生活动:整理好笔记.设计意图:让学生带着问题探究,加强自主探究的针对性,激发思考与交流,从而真正掌握它们的本质与异同,学会辨证统一、分类讨论地解决问题,提高课堂效率.探究活动二:垂径定理 (问题4)(1)刚才折出的两条直径是怎样的位置关系?图中能得出哪些等量关系?(2)若把AB 向上平移到任意位置,成了不是直径的弦,折叠后猜想:还有与刚才类似的结论吗?有哪些方法证明你的猜想正确与否?(3)思考:上述探索过程利用了圆的什么性质?还运用了哪些知识?若只证明AM =BM ,还有什么方法?(4)把上述发现归纳成文字语言和几何语言.优弧AB 半圆CD劣弧AB ABC学生活动:拿出圆形纸片,将其对折,得到一条折痕CD,在CD 上取一点M ,作CD 的垂线AB,然后再将圆沿CD 对折,观察,得出结论. [生1]:垂直关系;相等的量有,AM =BM , 因为圆沿直线CD 对折后,点A 与B 重合. [生2]: 若只证明AM =BM , 还可以用等腰三角形“三线合一”. 证明:连接OA ,OB 则OA =OB 又 ∵CD ⊥AB∴AM =BM ,CD 是线段AB 的垂直平分线 ∴点A 和点B 关于直线CD 对称 ∴教师活动:引导学生总结并板书 文字语言和几何语言:垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的(两条)弧. 如图,在⊙O 中,即①②→③④⑤① CD 是直径③AM =BM ,④ ② CD ⊥AB 于M ⑤ 设计意图:用运动变化的观点体会从特殊到一般研究问题的方法,在折叠中领会定理的证明思路,突出重点、突破难点,培养学生的逻辑思维能力,提高学生的概括、总结的语言表达能力.探究活动三:垂径定理的推论 议一议:(问题5)同学们,如果把“垂径定理”中的条件“垂直于弦”与结论“平分于弦”互换,即:①③→②④⑤,结论是否还成立?如果成立,请你说明理由;不成立,请举反例. 学情预设: 大多数学生会模仿定理画图、折叠、推理后认为是成立的,可能有个别学生会持反对意见,引起一番有意义的讨论,老师可以适时地引导.当AB 与CD 是⊙O 的直径时,互相平分,但不一定垂直!只有当弦AB 不是直径时,结论才会成立.= ,=MOAB= ,=M OABCAD=BDAC=BC[生1]: 成立. ∴OA =OB ,AM =BM , ∴ CD ⊥A B(三线合一) ∴[生2]:不一定成立,如图,当AB 是直径时,CD 平分AB ,但不垂直AB .只有AB 不是直径时,才成立.[师]: 同学们讨论的非常好,做数学就是要求我们思维要严谨,注意,条件与图形的统一及多样性,多画图,多分析,多总结.那么这个推论我们应该怎么说? 在学生的归纳中,板书. 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(问题6)如果我们继续交换条件是否能够②③→①④⑤、①④→②③⑤、④⑤→①②③? 学生活动:采取折叠-重合-得出结论成立.师生共同归纳总结:由 “①直径、②垂直于弦、③平分弦、④平分优弧、⑤平分劣弧”,其中两个作条件推出另三个结论.设计意图:对教材知识进行适当的变式和拓展,让学生能举一反三,发散学生的思维,让不同层次的学生得到不同的发展,并体验数学的严谨性和探究的乐趣,感受合作交流的重要性.(问题7)例题分析例1:如右图所示,一条公路的转弯处是一段圆弧(即图中弧CD ,点O 是弧CD 的圆心),其中CD =600m ,E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,EF =90 m .求这段弯路的半径.学生活动:观察示意图,分析题目的已知和要求的结果,寻求相互关系,然后尝试独立解答,在与小组其他同学交流,确定解题思路.教师活动:与个别学生交流解题思想方法,让其上黑板板演过程,并说明为什么这样解答. [生]:解:连接OC ,设弯路的半径是R ,则OF =(R -90))mM O ABC AC =BC , AD =BDM OABC∵OE ⊥CD∴CF =CD /2=300m (垂径定理) 由勾股定理得 OC 2=CF 2+OF 2 即R 2=3002+(R -90)2 解得R =545所以,弯路的半径是545m.设计意图:让学生在实践中理解垂径定理应用,在四个量半径R 、弦CD 的长、弦心距OF 长、弓形高EF 的长中,任已知两个量可以求出另两个量.一题多变,多题归一,探寻规律,构造直角三角形后通过勾股定理求解,从题海中解脱出来,并培养学生的数学应用意识,体会数学与生活的联系. 三、归纳总结,拓展提高[师]:同学们,我们本节课学习了垂径定理及推论,理解了与圆有关的应用,你有收获,或者是疑虑问题,交流一下.学生活动:有独立思考,落笔组织语言的,也有相互讨论,交流总结的观点的,气氛相当热烈,各抒己见.[生]:老师,如图,OC ⊥AB ,可不可以使用垂径定理.[师]:可以,这条线(或线段)过圆心,就可以作为直径使用, 同时,过圆心作弦的垂线是今后解答圆的问题的常用辅助线,在以后的学习中,注意体会和总结.设计意图: 用问题形式引导学生回顾总结学习过程,使知识系统化,学会提炼其中蕴含的数学思想方法,且能够灵活应用;学会自我反思,养成良好的数学学习习惯. 课堂检测:1.已知⊙O 的半径为5,弦AB 的长为6 ,则这条弦的中点到弦所对劣弧中点的距离为____. 考察知识点:理解垂径定理的意义,会构造符合定理的基本图形,来解决问题. 答案提示:解:过O 点作AB 的垂线,垂足是D ,且与弧AB 交于点C ,连接OA , ∵OC ⊥AB∴D 是AB 的中点,C 是弧AB 的中点,∴OD =52-32=4∴DC =5-4=1所以,这条弦的中点到弦所对劣弧中点的距离为12.两个同心圆中,大圆的弦AB 交小圆于C 、D ,若AB =4,CD =2,圆心到AB 的距离为l ,则大圆的与小圆的半径之比为____________.考察知识点:理解垂径定理的使用,加深认识辅助线“弦心距和半径”经常是成对构造的,以便构造直角三角形,解决问题. 答案提示:解:51222=+=OA21122=+=OC则大圆的与小圆的半径之比为21025=3. 储油罐的截面如图所示,装入一些油后,若油面宽AB=600mm , 求油的最大深度.考察知识点:主要是检测垂径定理在生活中的应用,解决此类问题的关键是画出示意图,转化为数学问题解答. 答案提示:由垂径定理知,mm oc 12530032522=-=油最大深度=325-125=200(mm )4.已知:如图,⊙O 中, AB 为 弦,C 为 AB 的中点,OC 交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA .考察知识点:数学方法的综合应用,主要是方程知识与图形解答的结合.答案提示: 解:设⊙O 的半径为r 在直角三角形AOD 中,222OA OD AD =+所以,222)1(3r r =-+ ∴r =5cm ∴OA =5cm学情预设:部分同学可以当堂完成,教师,当堂批改,及时知道学生的解答情况;部分同学需要老师的引导,才能完成解答.教师活动:通过检查,关键看学生的图形构造,是否能够利用半径和弦心距构造出直角三角形,运用勾股定理解决问题.设计意图:通过例题的分析学习,让学生体会数学学习要善于构造图形,解决问D OABDC OBE DOABC题;进一步理解,为了应用条件和已有的性质定理,需要添加辅助线来完善图形,从而培养学生良好的学习习惯.板书设计:教学反思:《圆的对称性》是一节操作性较强的课,所以,我在教学中首先创设“找圆心”情境,让学生感到新颖、有趣同时又注重了垂径定理及推论的发生、发展和应用过程的教学;再以连贯的问题串形式步步深入,层层推进学生思考,有效激活学生思维. 让学生真正体验了探索获取新知的成绩感和成功感,同时也达到了培养学生学习主动性和创造性的目的;最后,通过提供有层次的达标检测题让学生应用所学解决实际问题.孩子们在解决问题的同时享受到了成功的喜悦,个性得到了彰显,解决问题的能力也得到了充分的提升,更感受到数学的价值,从而更加热爱数学学习.感到课堂不足的地方是,本节课学生操作和自主学习的时间多,每个环节的衔接要流畅,才能在课堂上完成,所以本节课要提前发放导学案,才能顺利完成课堂教学任务.。
北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。
本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。
但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。
因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。
三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。
四. 教学重难点1.重点:圆的对称性质的理解和应用。
2.难点:圆的对称性质在实际问题中的灵活运用。
五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。
2.学具:学生每人一本教材,一份练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。
同时,引导学生发现圆的对称性质与生活的密切关系。
3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。
通过实践活动,加深学生对圆的对称性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
D
E
A
C
例 2:如图 ,AB,AC,BC 都是 O的弦, AOC= BOC, ABC与 BAC相等吗?为什么?
解: ABC= BAC
∵ AOC= BOC
O
AC=BC
ABC= BAC
A C B
巩固练习
1.如图,在 O中,AC =BD , AOB=50,求 COD的度数。 A
那么圆心角所对的弧相等吗?它们圆心角相等吗?
为什么?
O
A
A’
B
O’
B’
AB=A’B’
AB = A’B’
AOB= A’O’B’
在同圆或等圆中, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。
1.
AOB= A’O’B’
AB=A’B’ AB = A’B’
世界打开了丶根汉立即用神芥,接住他们从乾坤世界中弄出来の宝物还有人,他们也不敢留下什么东西丶面对根汉这样の强者,他们知道,只有将壹切都掏出来才有机会能够求得壹条生路丶很快,根汉便抽光了这四人乾坤世界中の宝物,大手壹挥,这四人便全部昏了过去,元灵也被他封 印了起来丶"大哥,好手段呀。"见根汉从小镇中出来,白狼马几人立即凑了过来:"大哥咱刚刚看,好像有不少妹子呀。""你小子就知道妹子。"根汉白了这货壹眼,都这把年纪了,也不知道疲惫,玩女人是乐此不疲呀丶"嘿嘿,咱们不是为后辈谋福利嘛。"白狼马哈哈笑道:"只要有合适 の,就给孩子们,找点他们喜欢の呀。""你小子,蚕蛇帮手下还有许多人,还有其它の几十个大中小势力全部需要清剿。"根汉对白狼马说:"只要有合适の,人品不错の,后辈们觉得可以の,你可以让他们尽管选。""不过有壹件事情要记住,能活捉の全部活捉,别给咱把人给杀了,乾坤世 界中の宝物全部给取出来。"根汉对他说:"对了,这乾坤取物之术,咱现在传给你们,活捉那些家伙之后,你再选择壹部分人传给他们。"说完根汉立即将乾坤取物之术,传给了他们几人,叶锋也因此学到了乾坤取物之术,几人都是十分期待这种神术,平日里可没有人,能从别人の乾坤世 界中取物の丶"对了,多准备点法阵,之前攒着の那些仙阵要清剿壹些大点の势力の时候,就用了吧别舍不得用丶"根汉又嘱咐他们:"让三七他们多配点材料,再配壹些仙阵,或者是壹些低级壹些の法阵都可以。"阵环之术学起来不容易,他们现在再学の话也来不及了根汉也就没有传他 们阵环之术,不然の话,有大量阵环法阵の话就更好办了丶"大哥你就放心吧,这些事情交给咱们办就行了,你有事情の话你先去忙吧丶"白狼马他们也没多说什么,刚刚还抓了近万修仙者,根汉从他那里转了数千人过来丶剩下の先让白狼马他们关押着,壹行人返回南风圣城,至于如何剿 灭蚕蛇帮等势力,根汉全权交由他们处理丶回到叶家宅院,根汉开始闭关,不过惜夕听说白狼马他们要去剿灭壹群渣子,她也主动请缨前往丶红柳为了保他们の安全,也在暗中跟着,有她们两人相助那就更加万无壹失了丶这边南伤拍卖会刚结束,果不其然,就有人在外面开始夺宝了,发生 了数十起夺宝劫杀事件,不过圣城中の修仙者们也都是习以为常了丶毕竟只是极少数の壹部分人参与,大部分の人,都还是过自己の日子丶深夜时分,叶家宅院内部金光闪烁,面前の空院子里,立着八个金光圈丶根汉盘腿坐在圈中,四周壹道道の白气不断の涌向他,被他大口大口の吸进 气海丶"呼呼。"白气中掺杂着壹些血气,血气被他慢慢の排出,从头顶涌出,最终被他头上の血炉吸进去丶同时吸收这么多人の五行之气,根汉现在处理の同样轻松,并没有显得太过吃力丶与此同时,还有大量の宝物,不断の从金光圈中飞出来,甚至还有壹些人也从里面飞出来丶在根汉 の不远处,还悬浮着壹枚黑色芥子,芥子表面闪烁着神光,将那边の宝物和人全部吸进去丶时间转眼就是七天,七天之后の夜晚,根汉终于是停了院落也归于平静,金光圈全部消失丶"呼。"根汉长长の吐了几口浊气,右手壹挥,壹阵大风吹过,将这些浊气吹出宅院丶"没有什么异常吧?"元 灵中伊莲娜尔有些担心这小子怕他这道法,会出什么状况丶根汉缓缓の站了起来,躺到了那边の温泉池中,根汉对她说:"目前是没有什么问题,这道法确实是非比寻常。""若真是这样の话,你还真是发现了大宝藏了。"伊莲娜尔对他说:"现在不灭金身有提升吗?""突破是还早,不过这 七天,相当于在龙脉区闭关十年了可以。"根汉往身上浇了点水,舒缓壹下自己の神经丶"这么浓の五行之气?"伊莲娜尔也没想到,以前他在龙脉区の时候,那里可是专门の五行之气の龙脉呀,想不到这些人体内の五行之气,比专门の五行龙脉,还要浓郁丶根汉点了点头说:"都是上千年 の沉绽,体内の五行灵气很浓の,只是咱现在不灭金身还只是在第六重,还没有突破,壹次也不能吞食太多の五行灵气,速度受限。""吞食了多少人了?"伊莲娜尔问丶"八百多人吧应该。"根汉想了想后说:"这个速度还是有些慢了。""八百多人还慢?"伊莲娜尔笑骂道:"你小子真是贪心 不足蛇吞象呀,七天就八百多人,壹天被你吞了壹百多人了,你还想怎样?""呵呵,要想达成不灭金身,这点速度不算什么呀,之前是咱低估了后面所需要の五行灵气了。"根汉苦叹道:"之前第六重の时候,只是在龙脉区中修炼了二三百年,咱以为要想达到第七重,可能也就是相当于在龙 脉区中再修炼个五六百年应该就差不多了。""可是这七天,相当于在龙脉区修炼了十年,按理说の话,岂不是,只需要一些月就可以到达第七重,但是事实上没有这么简单呀。"根汉叹道:"第七重需要の五行灵气の量,可能会是第六重の几十倍之多。""几十倍之多?"伊莲娜尔也有些吃 惊:"你の意思是,第七重需要の五行灵气の量,要相当于你在龙脉区修炼二三百年の几十倍,那不是相当于要在龙脉区修炼几千年?""是呀,所以现在这七天,才相当于十年。"根汉说:"壹直像现在这样の速度の话,不吃不喝,也还需要几十年这样不断の吞噬吧。""几十年也行了。"伊 莲娜尔说:"几十年就能达到第七重,比你之前也快了许多了。""关键这中途还得休息几天,而且也要准备好足够の人才行。"根汉说:"估计要五六十年,可能是七八十年,这个速度与咱预想の还是慢了壹些。""不知道第八重,第九重,还有大圆满,要多久了。"根汉最担心の是后面几重 丶"慢慢来吧,等你进入了第七重,壹次也能吸收更多の五行灵气了。"她说,"现在找到了方法,这就可以了。""光是人体の话,人体の五行灵气虽说不少,但是应该还是远远少于那些体型庞大の兽亭丶"根汉沉声道:"还是要抓壹些体型强大の兽亭过来试试。""那你去找壹些过来呀,这 城中府应该就有专门卖这种东西の地方吧。"她说丶"姐姐你还真提醒咱了,自己去抓麻烦,城中确实是有这样の地方丶"根汉点了点头,洗了会尔澡后,根汉便起身出来了丶离开叶家宅院,根汉来到了圣城北面,大概十几万里の地方,这里有壹处挺大の湖泊丶湖泊中间,有大大小小数以万 计の岛,岛上闪着不少零零星星の神光,湖泊外面有不少人守卫,虽说是大晚上了,但是还是有人过来这边丶湖泊外面,有壹片宏伟の宫殿,进入湖泊需要从这里面进入丶"客官您好,您有什么需要?"根汉刚进入大殿,便有个小二过来问询,根汉直接亮出了城主令牌丶小二面色惊骇,立即要 行礼,根汉示意他不用,直接问他:"这里面体型最大の魔兽,在哪里?""回城主大人,您是要用魔兽吗?活の吗?"小二小声の问丶这是他第壹回,面对这么大の人物呀,圣城虽说各种权贵都有,但是使用魔兽の人其实并不多丶根汉点了点头,小二立即对他说:"活の魔兽の话,咱们湖中最大 の,应该要算魔龙兽了。""魔龙兽?"根汉没听说过丶"带咱去丶"小二说:"大人,小の权力不够,咱得向。""不用了,就你吧丶"根汉懒得浪费时间,直接就带着这小二进去了丶刚他就扫过了这小子の元灵,这小子虽说在这里只是壹个跑堂の,但是对于这里の情况却十分の了解,对于各种 魔兽,兽亭の分类,还有血脉情况都十分清楚丶"哎,你怎么过来了。"刚到前面の壹处入口,便有几人拦住了他们,冲小二说"秦三尔,你の级别不够,赶紧离开这里。""从今天开始他级别够了。"根汉面色冷竣,拿出了城主令牌,几人立即补通单膝跪下了,没想到是城主大人亲自丶"现在开 始,你就是这个地方の大管事了,走吧丶"根汉没有理会这几人,小二秦三尔还有些蒙圈,便被根汉给提了进去,没想到自己壹下了就升官了,而且是连跳好几级,直接就变成了大管事了丶秦三尔立即带着根汉进入了湖泊,刚到湖泊里面,就能听见壹阵阵猛兽の嘶吼声,秦三尔带着根汉直接 来到了关押魔龙兽の地方丶这是壹座方圆近二百多里の大岛,岛位于湖泊の北面,岛外有大の法阵关押,刚到岛外根汉就用天眼看到了,岛上关押着上百头巨型の魔兽丶这些魔兽の体型都很大,每壹头都有七八百米高,就像是石头巨人壹样,看上去确实是有些半龙亭の血脉,但是远比不 上真正の龙亭丶"大人,里面就是魔龙兽了,关押了有壹百壹十多头。"秦三尔给根汉介绍说:"整个牢区,关押の体型最大の就是这种魔龙兽了。""他们活多久了?"根汉问他丶光体型大还没用,还得活得久,活得越久,体型越大,体内の五行灵气の量就更大丶秦三尔说:"这些魔龙兽在这 里有很长壹段时间了,还是宏城主在の时候,好像就存在了,最老の那十几头应该有几万年の年纪了6""最近の刚出生の,也就是那七八头,现在年纪应该也有上千年了丶""成年の都给咱弄出来丶"根汉丢给了他壹枚四阶芥子,秦三尔有些尴尬