平面内两直线位置关系.ppt

合集下载

212空间中直线与直线之间的位置关系共31张PPT

212空间中直线与直线之间的位置关系共31张PPT
栏目 导引
第二章 点、直线、平面之间的位置关系
跟踪训练
3.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB, E、F分别是BD1和AD中点,则异面直线CD1,EF所成的 角的大小为________.
栏目 导引
第二章 点、直线、平面之间的位置关系
解析:取 CD1 的中点 G,连接 EG,DG, ∵E 是 BD1 的中点,∴EG∥BC,EG=12BC.
栏目 导引
第二章 点、直线、平面之间的位置关系
做一做 3.若正方体ABCD-A1B1C1D1中∠BAE=25°, 则异面直线AE与B1C1所成的角的大小为________.
答案:65°
栏目 导引
第二章 点、直线、平面之间的位置关系
典题例证技法归纳
【题型探究】 题型一 直线位置关系的判定
例1 a,b,c是空间中的三条直线,下面给出的几 种说法:①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a,b与c成等角,则a∥b. 其中正确的是________(只填序号)
E,F
分别是另外两条对边
AD,BC
上的点,且AE=BF ED FC
=12,EF= 5,求 AB 和 CD 所成的角的大小.
栏目 导引
第二章 点、直线、平面之间的位置关系
解:如图,过 E 作 EO∥AB,交 BD 于点 O,连接 OF, ∴AEED=BOOD.又∵AEED=BFFC,∴BOOD=BFFC, ∴OF∥CD,∴∠EOF(或其补角)是 AB 和 CD 所成的角. 在△EOF 中,OE=23AB=2,OF=13CD=1. 又 EF= 5,∴EF2=OE2+OF2,∴∠EOF=90°, 即异面直线 AB 和 CD 所成的角为 90°.

直线和平面的位置关系PPT完美课件

直线和平面的位置关系PPT完美课件

应用举例1 (2)点A是平面外的一点,过A和 平面平行的直线有 无数 条。
A α
应用举例1
(3)点A是直线l 外的一点,过A 和直线l 平行的平面有无数 个。
A
应用举例1
(4)过两条平行线中的一条和另 一条平行的平面有 无数 个。
直线和平面的位置关系PPT完美课件
应用举例1
(5)过两条异面直线中的一条和另 一条平行的平面有 且仅有一 个。
直线和平面的位置关系PPT完美课件
直线和平面的位置关系PPT完美课件
应用举例1
(6)如果l1 // l2 , l1 平行于 平面,则l2 或 // 平面
l2 l1
l2
直线和平面的位置关系PPT完美课件
直线和平面的位置关系PPT完美课件
应用举例1
(7)如果两直线a,b相交,a平行于 平面,则b与平面的位置关系 是 相交或平行 。
知识三
线面平行的性质
(1)如果一条直线与一个平面平行, 则这条直线与这个平面无公共点
(2)如果一条直线与一个平面平行, 则这条直线与这个平面内的直线成 异面直线或平行直线 (3)如果一条直线与一个平面平行, 经过这条直线的平面和这个平面相 交,则这条直线与交线平行。
直线和平面的位置关系PPT完美课件
2、如图,两个全等的正方形ABCD和ABEF
所在平面交于AB, M.N分别是对角线上
的点,AM=FN,求证:MN//面BCE。
A
DM B
F
N
∵△AFN∽ △BNH
∴ AN/NH=FN/BN ∴ AN/NH=AM/MC
EH
∴ MN//CH
C
∴ MN //面BCE
直线和平面的位置关系PPT完美课件

七年级数学下册-:两条直线的位置关系---课件-(15张PPT)

七年级数学下册-:两条直线的位置关系---课件-(15张PPT)

【例3】直线AB,CD相交于点O,已知∠AOC=75°,OE把
∠BOD分成两部分,且∠BOE∶∠EOD=2∶3,求∠AOE.
解:设∠BOE=2x,则∠EOD=3x,
∵∠AOC=75°
(已知)
∴∠BOD=∠AOC=75°,(对顶角相等)
∴2x+3x=75°,解得x=15°,
∴∠BOE=2x=30°,
∵∠AOE+∠BOD=180°(平角的定义)
∴∠AOE=180°-∠BOD=180°-30°=150°.(等式的基本性质)
【例4】如图,已知∠AOB=145°,∠AOC=∠BOD=90°. (1)写出与∠COD互余的角;
D
解:(1)∵∠AOC=∠BOD=90°, A
C
∠COD+∠AOD=90°,
∠COD+∠BOC=90°
∴与∠COD互余的角是∠AOD和∠BOC; O
B
【例4】如图,已知∠AOB=145°,∠AOC=∠BOD=90°. (2)求∠COD的度数;
D
解:(2)如图,
C A
∵∠AOB=145°,∠AOC=∠BOD=90°,
∴∠BOC=∠AOB-∠AOC
=145°-90°
O
B
=55°
∴∠COD=∠BOD-∠BOC
解:如图,
∵∠DOF=50°,
(已知)
∴∠COE=∠DOF=50°.
(对顶角相等)
∵∠AOC=65°
(已知)
∠BOE+∠COE+∠AOC=180°,(平角的定义)
∴∠BOE=180°-∠COE-∠AOC
=180°-50°-65°
=65°.
(等式的基本性质)
【例2】已知一个角的补角比这个角的余角的3倍大10°,求这个角 的度数.

1、直线和平面有哪几种位置关系?PPT完美课件

1、直线和平面有哪几种位置关系?PPT完美课件


5. 这是一篇托物言志的铭文,本文言 简义丰 、讲究 修辞。 文章骈 散结合 ,以骈 句为主 ,句式 整齐, 节奏分 明,音 韵和谐 。

6.了解和名著有关的作家作品及相关 的诗句 、名言 、成语 和歇后 语等, 能按要 求向他 人推介 某部文 学名著 。

7.能够根据所提供的有关文学名著的 相关语 言信息 推断作 品的作 者、作 品的名 称和人 物形象 ,分析 人物形 象的性 格和作 品的思 想内容 并进行 简要评 价。
P A B1A M ,P CB1C N ,
求证 M/N : 平 / A 面 BCD D 1
C1
A1
B1
M D
P N
C
A
B
1、直线和平面有哪几种位置关系?PP T完美 课件
1、直线和平面有哪几种位置关系?PP T完美 课件
证明:
D1
连结AC、A1C1 长方体中 A1A//C1C A1C1 // AC
1、直线和平面有哪几种位置关系?PP T完美 课件
1、直线和平面有哪几种位置关系?PP T完美 课件
证明平行的 转化思想:
线//线
小结
(1)平行公理 (2)三角形中位线 (3)平行线分线段成比例 (4)相似三角形对应边成比例 (5)平行四边形对边平行
线//面
面//面
要证 a//,通过构造过直线 a 的平面 与平面
相交于直线b,只要证得a // b即可。
1、直线和平面有哪几种位置关系?PP T完美 课件
练习(P68习题5) 1、直线和平面有哪几种位置关系?PPT完美课件
已知:如图,AB//平面 ,AC//BD,且
AC、BD与 分别相 交于点C, D.

直线与平面的位置关系

直线与平面的位置关系



如果一条直线和一个平面平行,经过这条 直线的平面和这个平面相交,那么这条直 线就和交线平行.
a∥

∩=b
a
a∥b

线面平行线线平行
例1 若三个平面两两相交于三条直线,并 且其中两条交线平行,那么第三条交线也 和它们平行. 变式:若三个平面两两相交于三条直线,并 且其中两条直线相交,那么第三条交线必 经过前两条直线的交点.
M P

A
问题:如果两条直线同垂直于一 个平面,那么这两条直线的位置关 系如何?
直线和平面垂直的性质定理
如果两条直线同垂直于一个平面, 那么这两条直线平行.
因为a ,b ,所以a∥ b.
a b O b'

若a , 则点到平面的距离:AB的长度.
面外一点与这个平面内各点的连结而 成的线段中,垂直于平面的线段最短.
D1 A1 E
D A N C1
B1
M
C
B
9.已知:四边形ABCD是平行四边形, 点P是平面ABCD外一点,M是PC的中点, DM上取一点G,过AP和G作平面交平面 BDM于GH.求证:AP∥GH.
P M D
H
G O
B
C
A
直线与平面垂直
问题:将课本竖放在讲台上,指出书脊(想 象成一条直线)、各书页与桌面的交线, 由于书脊和书页底边(即与桌面接触的一 边)垂直,得出书脊和桌面上所有直线垂 直.
F G
E
D
A
B
C
已知点A是平面BCD外的一点,AB CD, AC BD,求证:AD BC.
A
B C
D
例:四面体ABCD中,AC=BC,AD=BD, BE⊥CD于E,AH⊥BE于H,求证:AH⊥ A 平面BCD.

空间两条直线的位置关系ppt 人教课标版

空间两条直线的位置关系ppt 人教课标版

C A
例9. 如图,设E、F、G、H分别是空间四
边形ABCD的边AB、BC、CD、DA上的点,
CF CG AE AH , 且 CB CD AB AD
求证:(1)当μ ≠λ时,四边形EFGH是梯 形;
(2)当μ=λ且AC=BD时,EG⊥FH.
A H
E
D G B F C
例10. 已知平面α∩平求证:b, c是异面直线
例3. 如图,在正方体ABCD-A1B1C1D1中, E为AB的中点,F为AA1的中点,求证: (1)E、C、D1、F四点共面; (2)CE、D1F、DA三线交于同一点
P
例4.两个全等的正方形ABCD和ABEF所 在平面相交于AB,M∈AC,N∈FB,且 AM=FN,求证:MN∥平面BCE.
D M C P
空间两条直线的位置关系
中国人民大学附属中学
一.平面概述: 1. 平面的两个特征: ①无限延展 ②平的(没有厚度) 2. 平面的画法:通常画平行四边形来表示 平面 3. 平面的表示:用一个小写的希腊字母α、 β、γ等表示,如平面α、平面β;用表示 平行四边形的两个相对顶点的字母表示, 如平面AC。
二.三个公理和三个推论: 公理1:若一条直线上有两个点在一个平 面内,则该直线上所有的点都在这个平面 内:A∈l, B∈l, A∈α, B∈α l 公理2:如果两个平面有一个公共点,那
V
B
O
C A
例7.如图所示,已知正方体ABCD—A1B1 C1D1中,E、F、G、H分别为A1D1,A1B1, BC,CD的中点,求证:EF⊥GF.
M
例8.如图,在直三棱柱ABC-A1B1C1中, AB=BC,D、E分别为BB1、AC1的中点, 证明:ED为异面直线BB1与AC1的公垂线.

一,平面内两直线位置关系PPT课件

一,平面内两直线位置关系PPT课件

(2)两直线斜率不存在且两直线不重合
l1: x=x1
l2: x=x2
l1∥l2
讨论
x1≠x2
已知直线 l1 : A1x+B1y+C1 = 0 , l2 : A2x+B2y+C2= 0 (A1B1C1 ≠ 0
那么l1 ∥l2 的充要条件是什么?
A2B2C2≠ 0 ).l1 Nhomakorabea∥l2A1 A2
=
B1 B2
一平面内两直线位置关系1平行2重合垂直垂直3相交斜交二两直线平行的条件1两直线斜率存在且两直线不重合当直线l1和l2有斜截式方程l1
一,平面内两直线位置关系
(1)平行
(2)重合 (3)相交
垂直 斜交
二,两直线平行的条件
(1)两直线斜率存在且两直线不重合
当直线l1和l2有斜截式方程
l1:y=kx+b1, l2:y=k2x+b2时,
l1∥l2
k1=k2且b1≠b2.
如果l1∥l2(如图),那么直线l1和l2在y轴上的截距不相等, 即b1≠b2,但它们的倾斜角相等,即α1=α2. ∴tanα1=tanα2即k1=k2. 反过来,如果b1≠b2,则l1和l2不重合.又如果k1=k2,即 tanα1=tanα2,那么由0°≤α1<180°,0°≤α2<1 80°,并利用正切函数的图象,可知 α1=α2,所以l1∥l2.
ab
a b 0
1×1+k1·k2=0
即l1⊥l2
k1·k2=-1.
(2)两直线斜率有不存在或有零时
例3.已知两条直线: l1 : 2x 4 y 7 0,l2 : 2x y 5 0,
求证: l1 l2 .
例4.求过点A(2,1),且与直线 2x y 10 0 垂直的直线 l 的方程.

空间直线和平面的位置关系ppt课件

空间直线和平面的位置关系ppt课件

a
④求异面直线A1B与B1C1的距离
2a 2Biblioteka 例3:如图,已知长方体ABCD-A’B’C’D’的
棱长AA’=3cm,AB=4cm,AD=5cm.
(1)求点A和C’的距离;
(2)求点A到棱B’C’的距离;
(3)求棱AB和平面A’B’C’D’的距离;
(4)求异面直线AD和A’B’的距离.
D
C
A
B
D’
C’
取一点M,我们把__点__M___到___平__面____的___距___离_____
叫做直线l 和平面的距离。
3)平面和平面的距离: 设平面平行于平面β,在平面上任取一点M,我
们把_点__M__到_平__面__β_的__距__离__叫做平面和平面β
的距离。
M
MN
N
4)异面直线的距离
思考:和两条异面直线都垂直的直线有多少条?
练习:1. 选择题:
(1) 直线 m 与平面 平行的充分条件是 ( )
A. 直线 m 与平面 内一条直线平行;
B. 直线 m 与平面 内无数条直线平行; C. 直线 m 与平面 内所有直线平行; D. 直线 m 与平面 没有公共点;
(2) 过直线 l 外两点,作与 l 平行的平面,这样的平面 ( ) A. 能作无数个; B. 只能作一个;
(2) 过一点有且只有一个平面和一条直线垂直 .
(3) 平面的垂线一定与平面相交,交点就是垂足 .
A
直线和平面垂直,记作
l
2、判定直线和平面垂直的方法 (1)根据定义
直线l与平面上的任何直线都垂直
(2)直线和平面垂直的判定定理
定理2:如果直线l与平面上的两条相交直线a,b都 垂直,那么直线l与平面垂直.

北师大版数学七年级下册第二章1两条直线的位置关系(共76张PPT)

北师大版数学七年级下册第二章1两条直线的位置关系(共76张PPT)

图2-1-5 注意 (1)垂线是直线,垂线段特指一条线段,点到直线的距离是指垂线段 的长度. (2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后 计算或度量垂线段的长度,在实际问题中要应用其“最近性”解决问题.
1 两条直线的位置关系
例4 在图2-1-6所示的各图中,分别过点P作AB的垂线.
点拨 除了互补的两个角和为180°外,由平角的定义也可以得到和为180°.
1 两条直线的位置关系
栏目索引
题型二 垂线性质在生活中的应用
例2 如图2-1-9所示,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政 府准备投资修建一个蓄水池.
图2-1-9 (1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄距离之 和最小; (2)计划把河水引入蓄水池H中,怎样开渠使水渠最短?并说明理由.
1 两条直线的位置关系
栏目索引
知识点三 余角和补角 1.如果两个角的和是90°,那么称这两个角互为余角. 2.如果两个角的和是180°,那么称这两个角互为补角. 3.余角、补角的性质:同角或等角的余角相等,同角或等角的补角相等. 注意 (1)互余、互补都是指两个角之间的关系.当∠1+∠2+∠3=90°时,不 能说∠1、∠2、∠3互余;当∠1+∠2+∠3=180°时,也不能说∠1、∠2、 ∠3互补.(2)互余的两个角都是锐角,而互补的两个角可能是一个锐角一个 钝角,也可能都是直角.(3)互余和互补都是反映两个角的数量关系,而不是 位置关系.
栏目索引
②必须强调“平面内”,否则,在空间里,经过一点与已知直线垂直的直线 有无数条. (2)直线外一点与直线上各点连接的所有线段中,垂线段最短,简称:垂线段 最短.

用空间向量研究直线、平面的位置关系PPT课件

用空间向量研究直线、平面的位置关系PPT课件
的基本元素.因此,为了用空间向量解决立体几何问题,首先要用向量表示空间中的点、直线
和平面.
(一)点的位置向量
1.思考:如何用空间向量表示空间中的一个点?

2.点的位置向量
如图 ,在空间中,我们取一定点 作为基点,
那么空间中任意一点 就可以用向量来表示:我
们把向量称为点 的位置向量.
向量称为点 的位置向量.


探究新知2——平面的法向量(互学)
注:其中符号
,
,
= − ;
4.平面法向量的三种求法
(3)求法三:叉乘法(该方法只适合选择题、填空题,不可用于解答题)
已知两个不共线的空间向量 = , , 与 = , , ,设向
量 = , , 为向量与确定平面的法向量,则

探究新知2——平面的法向量(互学)
1.平面法向量的定义
我们知道,给定空间一点 和一条直线,则过点 且

垂直于直线的平面是唯一确定的.由此得到启发,我们可以
利用点和直线的方向向量来确定平面.
如图,直线 ⊥ ,取直线的方向向量,我们称向量为
平面的法向量.
给定一个点 和一个向量,那么过点A,且以向量为
是直线上的任意一点,由向量共线的条件可知,点在
直线上的充要条件是存在实数,使得
= ,即 =


探究新知1——空间中点、直线和平面的向量表示(互学)
2.直线的向量表示
进一步地,如图,取定空间中的任意一点,可以得
到点在直线上的充要条件是存在实数,使
= ,
, , ;
③列方程:由 ⊥ ⇔ ∙ = 列出方程

∙ =

中职数学基础模块下册《两条直线的位置关系》课件

中职数学基础模块下册《两条直线的位置关系》课件

在其他学科中的应用
物理学
在物理学中,利用两条直线的位置关系可以解释一些物理现象, 如光的反射和折射、力的合成与分解等。
化学
在化学中,利用两条直线的位置关系可以解释一些化学反应的原 理,如酸碱中和反应、氧化还原反应等。
经济学
在经济学中,利用两条直线的位置关系可以分析一些经济现象, 如供需关系、成本与收益分析等。
在几何图形中的应用
确定几何图形的形状和大小
通过两条直线的位置关系,可以确定几何图形的形状和大小,如 平行四边形、矩形、菱形等。
解决几何问题
利用两条直线的位置关系,可以解决一些几何问题,如求角度、求 距离等。
证明几何定理
通过两条直线的位置关系,可以证明一些几何定理,如平行线的性 质定理、垂直平分线的性质定理等。
相交直线
相交直线的定义
相交直线
两条直线在同一平面内只有一个公共点时,这两条直线称为相交直线。
平行直线
两条直线在同一平面内没有公共点时,这两条直线称为平行直线。
相交直线的性质
唯一性
两条相交直线只有一个交 点。
不平行性
两条相交直线不能是平行 的。
对称性
两条相交直线关于它们的 交点对称。
相交直线的交点与方程
交点坐标
求解方法
两条直线的交点坐标可以通过联立两 直线的方程求解得到。
解方程组的方法包括代入法、加减法 、消元法等。
方程联立
通过将两条直线的方程联立,可以消 去一个变量,从而求解出交点的坐标 。
CHAPTER 04
重合直线
重合直线的定义
重合直线的定义
两条直线在同一平面内,没有其他公共点,则这两条直线重合。
中职数学基础模块下 册《两条直线的位置 关系》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:p251 1
五 点到直线的距Байду номын сангаас公式
点P(x0,y0)到直线l:Ax+By+C=0的距离
d=
Ax0 By0 C
A2 B2
例:求原点到直线x+2y-5=0的距离。 练习:p253 1,2
例:求 l 1 :2 x 4 y 7 0 , l 2 :x 2 y 5 0 的距离。 练习:p253 3
例:a为何值时,直线(a-1)x-2y+4=0与x-ay-1=0,
(1)平行;(2)垂直.
补充 (1)已知△ABC的顶点坐标为A(1,2),B(-1,1),
C(0,3),求BC边上的高所在的直线方程.
(2)已知两点A(7,-4),B(-5,6),求线段AB 的垂直平分线的方程.
四 两直线相交 直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的
证明 : l 1 ∥ l 2
例2.求过点A(1,-4)且与直线 2x3y50
平行的直线的方程. 练习:p248 2,3(垂直改平行)
三 两直线垂直 两直线斜率存在且不为零
l1:y=k1x+b1 l2:y=k2x+b2
请问此时两直线夹角是多少度?
1 两直线夹角 不大于90° tan k2 k1
1 k1k2
090
请问此时两直线垂直时两斜率有什么关系?
2 l1 l2 k1·k2=-1
例3.已知两条直线: l 1 :2 x 4 y 7 0 ,l 2 :2 x y 5 0 , 求两直线夹角
例4.求过点A(2,1),且与直线 2xy100 垂直的直线 l 的方程.
练习:p248 1,3,4
探究提高 (1)与直线Ax+By+C=0平行的直线系方程是: Ax+By+m=0 (m∈R且m≠C) (2)与直线Ax+By+C=0垂直的直线系方程是 Bx-Ay+m=0 (m∈R)
公共点的坐标与方程组
A1xB1yC10 A2xB2yC20
的解一一对应.
相交方程组有 唯一解,交点坐标就是方程组的解;
平行 方程组 无解 ; 重合 方程组有 无数个解 .
例 求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的 交点,且垂直于直线l3:3x-5y+6=0的直线l的方程.
(1)先求出l1与l2的交点,再用点斜式; (2) 可利用直线系方程求解.
§9-3 平面内两直线的位置关系
一 平面内两直线位置关系
(1)平行
(2)重合 (3)相交
垂直 斜交
二 两直线平行 斜率存在
l1:y=k1x+b1 l2:y=k2x+b2
l1 l 2
α1=α2
tanα1=tanα2即k1=k2.
例1.已知直线方程, l 1 :2 x 4 y 7 0 , l 2 :x 2 y 5 0
六 两平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0

(C1≠C2)间的距离为d=
C2 C1 A2 B
2
相关文档
最新文档