圆与圆的位置关系课时练习题(附答案)
高中数学圆与圆的位置关系总结练习含答案解析S
2.2.3 圆与圆的位置关系圆与圆的位置关系及判定1.圆与圆的位置关系圆与圆的位置关系外离外切相交内切内含公共点个数0 ①② 1 02.设两圆半径分别为r1,r2,圆心距为d,则两圆相交时,r1,r2,d的关系为③.两圆外切时,r1,r2,d的关系为④.3.设两圆方程分别为x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,联立得{x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,方程组有两组不同实数解⇔两圆⑤,有⑥实数解⇔两圆相切,无实数解⇔两圆外离.圆系方程的应用1.(2014湖北黄冈期中,★☆☆)圆C1:x2+y2+4x-4y+4=0与圆C2:(x-2)2+(y-5)2=9的公切线有条.思路点拨求出圆心距,即可得出结论.2.(2013江苏白蒲模拟,★★☆)求圆心在直线x-y-4=0上,且经过两圆x2+y2-4x-6=0和x2+y2-4y-6=0交点的圆的方程.思路点拨本题解法较多,可考虑利用公共弦求解,也可以利用圆系方程求解.3.(2014江苏建湖中学训练,★★☆)已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A,B两点,且这两点平分圆N的圆周,求圆心M的轨迹方程,并求圆M的半径最小时的方程.思路点拨从几何性质入手分析,抓住圆心和半径分析圆的方程.4.(2013苏南四校月考,★★★)已知☉O:x2+y2=1和点M(4,2).(1)过点M向☉O引切线l,求直线l的方程;(2)求以点M为圆心,且被直线y=2x-1截得的弦长为4的☉M的方程;(3)设P为(2)中☉M上任一点,过点P向☉O引切线,切点为Q.试探究:平面内是否存在一定点R,使得PQPR为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.一、填空题1.已知圆O1:x2+y2-2x-4y+4=0与圆O2:x2+y2-8x-12y+36=0,两圆的位置关系为.2.圆C1:(x+2)2+(y-m)2=9与圆C2:(x-m)2+(y+1)2=4外切,则m的值为.3.若a2+b2=4,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.4.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是.5.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是.6.点P在圆x2+y2-8x-4y+11=0上,点Q在圆x2+y2+4x+2y+1=0上,则|PQ|的最小值是.7.集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2},且M∩N=N,则r的取值范围是.8.设A={(x,y)|y=√2a2-x2,a>0},B={(x,y)|(x-1)2+(y-√3)2=a2,a>0},若A∩B≠⌀,则a的最大值为.9.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为.10.圆C1:x2+y2=1与圆C2:x2+y2-2x-2y+1=0的公共弦所在直线被圆C3:(x-1)2+(y-1)2=254截得的弦长是.二、解答题11.试分别确定圆C1:x2+y2+4x-6y+12=0与C2:x2+y2-2x-14y+k=0(k<50)外切、内切、相交、内含、外离时,k的取值范围.12.已知圆x2+y2-4ax+2ay+20(a-1)=0(a≠2).(1)求证:对于任意实数a(a≠2),该圆过定点;(2)若该圆与圆x2+y2=4相切,求实数a的值.知识清单①1 ②2 ③|r 1-r 2|<d<r 1+r 2 ④d=r 1+r 2 ⑤相交 ⑥两组相同链接高考1.答案 3解析 C 1(-2,2),r 1=2,C 2(2,5),r 2=3,|C 1C 2|=√(-2-2)2+(2-5)2=5,∵|C 1C 2|=r 1+r 2,∴圆C 1与圆C 2外切.所以圆C 1与圆C 2有3条公切线.2.解析 解法一:由{x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得到两圆公共弦所在直线方程为y=x, 由{y =x ,x 2+y 2-4y -6=0, 解得{x 1=-1,y 1=-1或{x 2=3,y 2=3.∴圆x 2+y 2-4x-6=0和x 2+y 2-4y-6=0的交点分别为A(-1,-1)、B(3,3), 线段AB 的垂直平分线方程为y-1=-(x-1). 由{y -1=-(x -1),x -y -4=0,得{x =3,y =-1. ∴所求圆的圆心为(3,-1), 半径为√(3-3)2+[3-(-1)]2=4. ∴所求圆的方程为(x-3)2+(y+1)2=16. 解法二:由解法一,求得A(-1,-1)、B(3,3). 设所求圆的方程为(x-a)2+(y-b)2=r 2,由{a -b -4=0,(-1-a )2+(-1-b )2=r 2,(3-a )2+(3-b )2=r 2,得{a =3,b =-1,r 2=16. ∴所求圆的方程为(x-3)2+(y+1)2=16. 解法三:设经过两圆交点的圆系方程为 x 2+y 2-4x-6+λ(x 2+y 2-4y-6)=0(λ≠-1), 即x 2+y 2-41+λx-4λ1+λy-6=0. ∴圆心坐标为(21+λ,2λ1+λ),又∵圆心在直线x-y-4=0上, ∴21+λ-2λ1+λ-4=0,即λ=-13,∴所求圆的方程为x 2+y 2-6x+2y-6=0.3.解析 两圆方程相减,得公共弦AB 所在的直线方程为2(m+1)x+2(n+1)y-m 2-1=0, 由于A,B 两点平分圆N 的圆周,所以A,B 为圆N 直径的两个端点, 即直线AB 过圆N 的圆心N,而N(-1,-1),所以-2(m+1)-2(n+1)-m 2-1=0, 即m 2+2m+2n+5=0,即(m+1)2=-2(n+2)(n≤-2), 又圆M 的圆心M(m,n),所以圆心M 的轨迹方程为(x+1)2=-2·(y+2)(y≤-2), 又圆M 的半径r=2+1≥√5(n≤-2), 当且仅当n=-2,m=-1时半径取得最小值,∴当圆M 的半径最小时,圆M 的方程为x 2+y 2+2x+4y=0.4.解析 (1)显然,直线l 的斜率存在.设切线l 的方程为y-2=k(x-4),易得√k 2+1=1,解得k=8±√1915. ∴切线l 的方程为y-2=8±√1915(x-4). (2)圆心到直线y=2x-1的距离为√5,设圆M 的半径为r,则r 2=22+(√5)2=9,∴☉M 的方程为(x-4)2+(y-2)2=9.(3)假设存在这样的点R(a,b),设点P 的坐标为(x,y),相应的定值为λ(λ>0), 根据题意及勾股定理可得PQ=√x 2+y 2-1, ∴√x 2+y 2√(x -a )+(y -b )=λ,即x 2+y 2-1=λ2(x 2+y 2-2ax-2by+a 2+b 2),(*) 又点P 在☉M 上, ∴(x -4)2+(y-2)2=9,即x 2+y 2=8x+4y-11,代入(*)式得,8x+4y-12=λ2[(8-2a)x+(4-2b)y+(a 2+b 2-11)].若系数对应相等,则等式恒成立,∴{λ2(8-2a )=8,λ2(4-2b )=4,λ2(a 2+b 2-11)=-12,解得a=2,b=1,λ=√2或a=25,b=15,λ=√103, ∴可以找到这样的定点R,使得PQPR 为定值.当点R 的坐标为(2,1)时,比值为√2; 当点R 的坐标为(25,15)时,比值为√103.基础过关一、填空题 1.答案 外切解析 由题意得圆的半径分别为1,4,圆心距为√(4-1)2+(6-2)2=5=4+1,故两圆外切. 2.答案 2或-5解析 圆C 1:(x+2)2+(y-m)2=9的圆心为(-2,m),半径为3;圆C 2:(x-m)2+(y+1)2=4的圆心为(m,-1),半径为2.依题意有√(-2-m )2+(m +1)2=3+2, 即m 2+3m-10=0, 解得m=2或m=-5. 3.答案 外切解析 ∵两圆的圆心分别为O 1(a,0),O 2(0,b),半径r 1=r 2=1,∴O 1O 2=√a 2+b 2=2=r 1+r 2,则两圆外切. 4.答案 (x±4)2+(y-6)2=36解析 设所求圆的圆心为(a,6),由两圆内切,得√a 2+(6-3)2=6-1,解得a=±4,则此圆的方程是(x±4)2+(y-6)2=36.5.答案 (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9解析 动圆圆心的轨迹是以已知圆的圆心(5,-7)为圆心,以3或5为半径的圆. 6.答案 3√5-5解析 (x-4)2+(y-2)2=9的圆心为C 1(4,2),半径为r 1=3;(x+2)2+(y+1)2=4的圆心为C 2(-2,-1),半径为r 2=2.又|C 1C 2|=3√5,显然两圆外离,所以|PQ|的最小值是3√5-5. 7.答案 (0,2-√2]解析 由于M∩N=N,故圆(x-1)2+(y-1)2=r 2在圆x 2+y 2=4内部,当两圆内切时,√2=2-r,则r=2-√2,因此r 的取值范围是(0,2-√2].8.答案2(√2+1)解析A表示以O(0,0)为圆心,√2a为半径的半圆,B表示以O'(1,√3)为圆心,a为半径的圆.∵A∩B≠⌀,即半圆O与圆O'有公共点,则当两圆内切时,a最大,即√2a-a=OO'=2,∴a的最大值为2(√2+1).9.答案√7解析记直线y=x+1上任意一点与圆心的距离为h,记切线长为l,则始终有等量关系h2=l2+1.故当h取得最小值时,切线长取最小值,易知h的最小值即为圆心到直线y=x+1的距离,故hmin=2√2,此时l=√7.10.答案√23解析圆C1与圆C2的公共弦所在直线的方程为x2+y2-1-(x2+y2-2x-2y+1)=0,即x+y-1=0.圆心C3到直线x+y-1=0的距离d=√2=√22,所以所求弦长为2√r2-d2=2√254-12=√23.二、解答题11.解析将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C 1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=√50-k(k<50).从而圆心距d=√(-2-1)2+(3-7)2=5.当两圆外切时,d=r1+r2,即1+√50-k=5,解得k=34;当两圆内切时,d=|r1-r2|,即|1-√50-k|=5,解得k=14;当两圆相交时,|r1-r2|<d<r1+r2,即|1-√50-k|<5<1+√50-k,解得14<k<34;当两圆内含时,d<|r1-r2|,即|1-√50-k|>5,解得k<14;当两圆外离时,d>r1+r2,即1+√50-k<5,解得34<k<50.12.解析(1)证明:将圆的方程整理得(x2+y2-20)+a(-4x+2y+20)=0,此方程表示过圆x2+y2=20与直线-4x+2y+20=0的交点的圆系.解方程组{x2+y2=20,-4x+2y+20=0得{x=4,y=-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x-2a)2+(y+a)2=5(a-2)2(a≠2).若两圆外切,则2+√5(a -2)2=√(2a -0)2+(-a -0)2,解得a=1+√55. 若两圆内切,则|2-√5(a -2)2|=√(2a -0)2+(-a -0)2,解得a=1-√55或a=1+√55(舍去). 综上所述,a=1±√55.。
人教版 九年级数学上册 竞赛专题:圆与圆的位置关系(含答案)
人教版 九年级数学上册 竞赛专题:圆与圆的位置关系(含答案)【例1】 如图,大圆⊙O 的直径a AB =cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2.【例2】 如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B , ⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为( ) A.c a b +=2 B.c a b +=2C.b ac 111+= D.ba c 111+=【例3】 如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证: (1)∠APD =∠BPD ;(2)CB AC PC PB PA ∙+=∙2.B【例4】 如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC .【例5】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上运动(与B ,C 不重合).设PC =x ,四边形ABPD 的面积为y . (1)求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)若以D 为圆心,21为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x 为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积.【例6】 如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,求NCBN的值. PBCDADCPBA【能力与训练】1.如图,⊙A ,⊙B 的圆心A ,B 在直线l 上,两圆的半径都为1cm .开始时圆心距AB =4cm ,现⊙A ,⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为_______秒.2.如图,O 2是⊙O 1上任意一点,⊙O 1和⊙O 2相交于A ,B 两点,E 为优弧AB 上的一点,EO 2及延长线交⊙O 2于C ,D ,交AB 于F ,且CF =1,EC =2,那么⊙O 2的半径为_______.(第1题图)(第2题图)(第3题图)3.如图,半圆O的直径AB =4,与半圆O 内切的动圆O 1与AB 切于点M .设⊙O 1的半径为y ,AM 的长为x ,则y 与x 的函数关系是_________________.(要求写出自变量x 的取值范围)4.已知直径分别为151+和315-的两个圆,它们的圆心距为115-,这两圆的公切线的条数是__________.5.如图,⊙O 1和⊙O 2相交于点A ,B ,且⊙O 2的圆心O 2在圆⊙O 1的圆上,P 是⊙O 2上一点.已知∠A O 1B =60°,那么∠APB 的度数是( ) A.60° B.65° C.70° D.75°6.如图,两圆相交于A 、B 两点,过点B 的直线与两圆分别交于C ,D 两点.若⊙O 1半径为5,⊙O 2的半径为2,则AC :AD 为( )A.52:3B.3:52C.1:52D.2:5 (第5题图) (第6题图) (第7题图)N PB A CD E7.如图,⊙O 1和⊙O 2外切于点T ,它们的半径之比为3:2,AB 是它们的外公切线,A ,B 是切点,AB =64,那么⊙O 1和⊙O 2的圆心距是( )A.65B.10C.610D.1339208.已知两圆的半径分别为R 和r (r R >),圆心距为d .若关于x 的方程0)(222=-+-d R rx x 有两相等的实数根,那么这两圆的位置关系是( )A.外切B.内切C.外离D.外切或内切9.如图,⊙O 1与⊙O 2相交于A ,B 两点,点O 1在⊙O 2上,点C 为⊙O 1中优弧AB ⌒上任意一点,直线CB 交⊙O 2于D ,连接O 1D .(1)证明:DO 1⊥AC ;(2)若点C 在劣弧AB ⌒上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论.图1 图210.如图,已知⊙O 1与⊙O 2外切于点P ,AB 过点P 且分别交⊙O 1和⊙O 2于点A ,B ,BH 切⊙O 2于点B ,交⊙O 1于点C ,H .(1)求证:△BCP ∽△HAP ;(2)若AP :PB =3:2,且C 为HB 的中点,求HA :BC .11.如图,已知⊙B ,⊙C 的半径不等,且外切于点A ,不过点A 的一条公切线切⊙B 于点D ,切⊙C 于点E ,直线AF ⊥DE ,且与BC 的垂直平分线交于点F .求证:BC =2AF .12.如图,AB 为半圆的直径,C 是半圆弧上一点.正方形DEFG 的一边DG 在直径AB 上,另一边DE 过△ABC 得内切圆圆心O ,且点E 在半圆弧上.(1)若正方形的顶点F 也在半圆弧上,求半圆的半径与正方形边长的比;(2)若正方形DEFG 的面积为100,且△ABC 的内切圆半径4 r ,求半圆的直径AB .1.相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,这两圆的圆心距为_______.2.如图,⊙O 过M 点,⊙M 交⊙O 于A ,延长⊙O 的直径AB 交⊙M 于C .若AB =8,BC =1,则AM =_______.D AP(第2题图) (第3题图) (第4题图)3.已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为___________cm .4.如图,已知PQ =10,以PQ 为直径的圆与一个以20为半径的圆相切于点P .正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点Q .若AB =n m +,其中m ,n 为整数,则=+n m ___________.5.如图,正方形ABCD 的对角线AC ,BD 交于点M ,且分正方形为4个三角形,⊙O 1,⊙O 2,⊙O 3,⊙O 4,分别为△AMB ,△BMC ,△CMD ,△DMA 的内切圆.已知AB =1.则⊙O 1,⊙O 2,⊙O 3,⊙O 4所夹的中心(阴影)部分的面积为( )A.(4)(316π--B. (34π-C.(4)(34π-- D. 416π-(第5题图) (第6题图) (第7题图)6.如图,⊙O 1与⊙O 2内切于点E ,⊙O 1的弦AB 过⊙O 2的圆心O 2,交⊙O 2于点C ,D .若AC :CD :BD =2:4:3,则⊙O 2与⊙O 1的半径之比为( )A.2:3B.2:5C.1:3D.1:47.如图,⊙O 1与⊙O 2外切于点A ,两圆的一条外公切线与⊙O 1相切于点B ,若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为( )A.2:5B.1:2C.1:3D.2:38.如图,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线,交⊙O 2于点C ,过点B 作两圆的割线分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P . (1)求证:PA PE PC PD ∙=∙(2)当AD 与⊙O 2相切且P A =6,PC =2,PD =12时,求AD 的长.DA9.如图,已知⊙O 1和⊙O 2外切于A ,BC 是⊙O 1和⊙O 2的公切线,切点为B ,C .连接BA 并延长交⊙O 1于D ,过D 点作CB 的平行线交⊙O 2于E ,F . (1)求证:CD 是⊙O 1的直径;(2)试判断线段BC ,BE ,BF 的大小关系,并证明你的结论.10.如图,两个同心圆的圆心是O ,大圆的半径为13,小圆的半径为5,AD 是大圆的直径,大圆的弦AB ,BE 分别与小圆相切于点C ,F ,AD ,BE 相交于点G ,连接BD . (1)求BD 的长;(2)求2ABE D ∠+∠的度数;(3)求BGAG的值.11.如图,点H 为△ABC 的垂心,以AB 为直径的⊙O 1与△BCH 的外接圆⊙O 2相交于点D ,延长AD 交CH 于点P .求证:P 为CH 的中点.12.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点,以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ,以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A ,⊙B 相切.参考答案例121a 6提示:连接14QP CP ==必过点O ,则34O O ⊥AB ,设⊙3O ,⊙4O 的半径为xcm ,在Rt △31O O O 中,有222a a a x =x 424⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得x= a 6.例2 D 提示:连接AB ,1AA ,1BB ,作2AB ⊥1BB ,则22222ABAB BB =+,即()()2222a b =b a AB ++-,得22211=A B 4ab AB =,同理,211A 4ac C =,2114bc C B =,由111111=A B AC C B +,故.例3 提示:⑴过P 点作两圆的公切线. ⑵即证PA PB PC PD ∙=∙. 例4 12B OC B A C ∠=∠,1112BO D BAC BO C ∠=∠=∠,则1O D 为1BO C ∠的平分线,又11O B O C =,故1O D BC ⊥.例5 ⑴过D 作DQ ⊥BC 于Q ,则BQ=AD=1,AB=DQ=2,CQ=,故B()1y=13x 2=4x2+-⨯-(0<x<3).⑵分两种情况讨论:①当⊙P 与⊙D 外切时,如图1,QC=2,PC=x ,QP= 2x -,PD=x+12,DQ=2,在Rt △DQP 中,由()22212x 2=x+2⎛⎫-+ ⎪⎝⎭得,31x=20,3149y=4=2020-.②当⊙P 与⊙D 内切时,如图2,PC=x ,QC=2,PQ=x-2,PD=x-12,DQ=2,在Rt △DPQ 中,由()2221x 22=x-2⎛⎫-+ ⎪⎝⎭得,31x=12,3117y=4=1212-. 例6 就图1给出解答:连接CP 并延长交AB 于点Q ,连接BP ,得∠BPC90°,又22QAQP CQ QB =∙=,得AQ=QB=12AB ,在Rt △CQP 中,2214BQ QP CQ QP BC CP CQ CP ∙===∙.过Q 作QM ∥BC 交AN 于M ,则MQ=12BN .由△MQP ∽△NCP ,得14MQ QP CN CP ==,故BN NC=2142MQ MQ = .A 级1.12或32 2.2 3.y =214x -+x (0<x <4) 4. 3条 5.D 6.D 7.B 8.D 9.提示:(1)连结AB ,A 1O ,并延长交⊙1O 于E ,连结CE . (2)结论仍然成立. 10.(1)略 (2)提示:设AP =3t ,由BC ·BH =BP ·BA ,BH =2BC ,BC t .易证△HAP ∽△BAH ,得HA =t ,故HABC=11.连结BD ,CE ,作BM ⊥CE 于M ,作HN ⊥CE 于N ,则BM ∥HN .∵H 是BC 的中点,故N 是CM 的中点,∴CN =12CM =12(CE -EM )=12(CE -BD ),而AH =BH -AB =12BC -AB =12 (AB +AC ) –AB =12(AC -AB ),因此CN =AH .由CE ⊥DE ,AF ⊥DE ,得CE //AF ,故∠NCH =∠HAF ,又∠CNH =∠AHF =90°,得△CNH ≌△AHF ,从而BC =2CH =2AF .12. (l :2 提示:由题意,设正方形边长为l ,则22212Rl l ⎛⎫=+ ⎪⎝⎭,得R :l :2.由2ED =AD ×DB ,DE =10,得AD ×DB =l 00.设AC 与内切圆交点S ,CB 与内切圆交点H ,设AD =r ,DB =100x.AB =x +100x, AS =AD =x ,BH =BD =100x.又△ABC 为直角三角形。
2.5 直线与圆、圆与圆的位置关系(精练)(解析版).
2.5直线与圆、圆与圆的位置关系(精练)1直线与圆的位置关系1.(2022·山东滨州)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定【答案】D【解析】直线()22:1(32)250l m m x m y m +++---=,即2(2)(2)(35)0x m x y m x y -+-++-=,由2020350x x y x y -=⎧⎪-=⎨⎪+-=⎩解得21x y =⎧⎨=⎩,因此,直线l 恒过定点(2,1)A ,又圆22:20C x y x +-=,即22(1)1x y -+=,显然点A 在圆C 外,所以直线l 与圆C 可能相离,可能相切,也可能相交,A ,B ,C 都不正确,D 正确.故选:D2(2021·黑龙江)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B3.(2022·辽宁·瓦房店市高级中学高二期末)直线()1R y kx k =+∈与圆22(1)(1)4x y -+-=的位置关系是()A .相交B .相切C .相离D .不确定【答案】A【解析】直线()1R y kx k =+∈恒过定点()0,1,又22(01)(11)14-+-=<,即点()0,1在圆22(1)(1)4x y -+-=内部,所以直线与圆相交;故选:A4.(2022·湖北省武汉市汉铁高级中学高三阶段练习)直线230kx y k +--=与圆22450x y x +--=的位置关系是()A .相离B .相切C .相交D .相交或相切【答案】C【解析】直线230kx y k +--=即()()320k x y -+-=,过定点()3,2,因为圆的方程为22450x y x +--=,则223243540+-⨯-=-<,所以点()3,2在圆内,则直线与圆相交.故选:C5.(2021·重庆市两江中学校高二阶段练习)已知过点(3,1)P 的直线与圆22(1)(2)5x y -+-=相切,且与直线10x my --=垂直,则m =()A .12-B .12C .2-D .2【答案】C【解析】设过点(3,1)P 的直线为l .(1)当l 的斜率不存在时,直线l :3x =.圆22(1)(2)5x y -+-=的圆心到l 的距离为312-=≠,所以不是圆的切线,不合题意.(2)当l 的斜率存在时,直线l :()13y k x -=-.=k =2.因为l 与直线10x my --=垂直,所以121m⨯=-,解得:m =-2.故选:C6.(2022·全国·高二课时练习)若直线:420l kx y k -++=与曲线y =有两个交点,则实数k 的取值范围是()A .{}1k k =±B .3{|}4k k <-C .3{|1}4k k -≤<-D .3{|1}4k k -≤<【答案】C【解析】由题意,直线l 的方程可化为(2)40x k y +-+=,所以直线l 恒过定点(2,4)A -,y =可化为224(0)x y y +=≥其表示以(0,0)为圆心,半径为2的圆的一部分,如图.当l 与该曲线相切时,点(0,0)到直线的距离24221kd k +==+,解得34k =-.设(2,0)B ,则40122AB k -==---.由图可得,若要使直线l 与曲线24y x =-314k -≤<-.故选:C.7.(2022·贵州遵义·高二期末(文))若直线():100l ax by ab +-=>始终平分圆()()22:124C x y -+-=的周长,则11a b+的最小值为()A .322+B .6C .7D .32+【答案】A【解析】圆C 的圆心为()1,2C ,由题意可知,直线l 过圆心C ,则21a b +=,因为0ab >,则0a >且0b >,因此,()1111222332322b a b a a b a b a ba b a b ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭当且仅当2a b 时,等号成立,故11a b+的最小值为322+.故选:A.8.(2022·广西梧州·高二期末(文))已知对任意的实数k ,直线l :0kx y k t --+=与圆C :2210x y +=有公共点,则实数t 的取值范围为()A .[3,0)-B .[3,3]-C .(,3](0,3]-∞-D .(,3)[0,3]-∞-【答案】B【解析】由直线0kx y k t --+=可化为(1)-=-y t k x ,则直线l 过定点(1,)t ,因为直线l :kx y k t --+0=与圆C :2210x y +=有公共点,所以定点(1,)t 在圆C 上或圆C 内,可得22110t +≤,解得33t -≤≤,故选:B9.(2022·江西上饶·高二期末(文))已知直线2y kx =-与圆22(1)1x y -+=相交,则实数k 的取值范围是()A .3,4⎛⎤-∞ ⎥⎝⎦B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由题意,圆心()1,0到直线20kx y --=1,即22441k k k -+<+,解得34k >故选:D10.(2022·浙江·温州中学高二期末)已知直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,则实数k 的取值范围是()A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎛⎫ ⎪⎝⎭C .30,4⎡⎤⎢⎥⎣⎦D .3,04⎛⎫- ⎪⎝⎭【答案】B【解析】因为直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,1<,即2860k k -<,解得304k <<,所以实数k 的取值范围是30,4⎛⎫⎪⎝⎭,故选:B.2直线与圆的弦长1.(2021·浙江高二期末)已知过点()1,3P 的直线l 被圆()2224x y -+=截得的弦长为l 的方程是()A.43130x y +-=B.34150x y +-=C.34150x y +-=或1x =D.43130x y +-=或1x =【答案】D【解析】圆()2224x y -+=的圆心为点()2,0,半径为2r =,圆心到直线l 的距离为1d ==.①若直线l 的斜率不存在,则直线l 的方程为1x =,此时圆心到直线l 的距离为1,合乎题意;②若直线l 的斜率存在,可设直线l 的方程为()31y k x -=-,即30kx y k -+-=,圆心到直线l的距离为1d ==,解得43k =-.此时直线l 的方程为43130x y +-=.综上所述,直线l 的方程为43130x y +-=或1x =.故选:D.2(2022·贵溪市)直线y kx =被圆222x y +=截得的弦长为()A.B.2C.D.与k 的取值有关【答案】A【解析】由于圆222x y +=的圆心在直线y kx =上,所以截得弦为圆222x y+=,故截得的弦长为.故选:A 3.(2022·江苏·高二)过点(-2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦最长的直线的方程是()A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0【答案】A【解析】由题意得,圆的方程为()221(2)5x y -++=,∴圆心坐标为()1,2-.∵直线被圆截得的弦长最大,∴直线过圆心()1,2-,又直线过点(-2,1),所以所求直线的方程为211221y x +-=+--,即10x y ++=.故选:A .4.(2022·全国·模拟预测)(多选)已知直线l :()()121740m x m y m ---+-=,圆C :2224200x y x y +---=,则()A .直线l 恒过定点()1,3B .直线l 与圆C 相交C .圆C 被x 轴截得的弦长为D .当圆C 被直线l 截得的弦最短时,34m =【答案】BD【解析】依题意,直线l :()()121740m x m y m ---+-=可化为()2740x y m x y --+++-=,由27040x y x y --+=⎧⎨+-=⎩解得3x =,1y =,即直线l 过定点()3,1P ,A 不正确;圆C :22(1)(2)25x y -+-=的圆心(1,2)C ,半径=5r ,||PC r =<,即点P 在圆C 内,直线l 与圆C 恒相交,B 正确;圆心C 到x 轴的距离2d =,则圆C 被x 轴截得的弦长为==C 不正确;由于直线l 过定点()3,1P ,圆心(1,2)C ,则直线PC 的斜率121312k -==--,当圆C 被直线l 截得的弦最短时,由圆的性质知,l PC ⊥,于是得1221m m -=-,解得34m =,D 正确.故选:BD5.(2022·湖北恩施·高二期末)(多选)已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是()A .6B .7C .8D .5【答案】BC【解析】由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM ==,则2AB r ≤≤,即8AB ≤≤.故选:BC.6.(2022·辽宁辽阳市·高二期末)已知圆22:4850C x y x y +-+-=,直线:20l mx y m --=.(1)证明:直线l 与圆C 相交.(2)设l 与圆C 交于,M N 两点,若MN =,求直线l 的倾斜角及其方程.【答案】(1)证明见解析;(2)答案见解析.【解析】(1)证明:直线:2()0l m x y --=过定点()2,0,因为224250-⨯-<,所以点()2,0在圆C 的内部,故直线l 与圆C 相交.(2)圆C 的标准方程为()2225()42x y -++=,则圆C 的圆心坐标为4(2,)C -,半径为5,且圆心C 到直线l 的距离()22242411m md m m ---==++因为2225213MN d =-=,所以23d =由24231m =+,得33m =±当33m =时﹐直线l 的方程为()323y x =-,倾斜角为6π当33m =-时﹐直线l 的方程为()323y x =--,倾斜角为56π3圆与圆的位置关系1.(2022·西藏)圆x 2+y 2-2x +4y =0与直线2x +y +1=0的位置关系为()A .相离B .相切C .相交D .以上都有可能【答案】C【解析】圆x 2+y 2-2x +4y =0的圆心坐标为(1,2)-,半径5r =圆心(1,2)-到直线2x +y +1=0的距离2221(2)15521d ⨯+-+==+由555d r =<=,可得圆与直线的位置关系为相交.故选:C2.(2022·陕西渭南)已知圆1C :()()22321x y -++=与圆2C :()()227150x y a -+-=-,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于()A .14B .34C .14或45D .34或14【答案】D【解析】圆1C :()()22321x y -++=的圆心为()113,2,1C r -=,圆2C :()()227150x y a -+-=-的圆心为()227,1,50C r a =-()()221237215C C -+--=,因为圆1C 与圆2C 有且仅有一个公共点,故圆1C 与圆2C 相内切或外切,故215r -=或215r +=,从而26=r 或24r =,所以2506r a =-=或2504r a =-=,解得:34a =或14a =所以实数a 等于34或14故选:D3.(2022广东)圆2220x y x +-=与圆22(1)(2)9x y -++=的位置关系为()A.内切B.相交C.外切D.相离【答案】A【解析】圆221:20C x y x +-=,即22(1)1x y -+=,表示以1(1,0)C 为圆心,半径等于1的圆.圆222:(1)(2)9C x y -++=,表示以2(1,2)C -为圆心,半径等于3的圆.∴两圆的圆心距|20|2d =--=,231=-,故两个圆相内切.故选:A.4.(2022·江西)已知圆()221:210C x y x my m R +-++=∈关于直线210x y ++=对称,圆2C 的标准方程是()()222316x y ++-=,则圆1C 与圆2C 的位置关系是()A.相离B.相切C.相交D.内含【答案】B【解析】22210x y x my +-++=即()222124m m x y 骣琪-++=琪桫,圆心1,2m ⎛⎫- ⎪⎝⎭,因为圆1C 关于直线210x y ++=对称,所以圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,即12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,()()22111x y -++=,圆心()1,1-,半径为1,()()222316x y ++-=,圆心()2,3-,半径为4,5=,因为圆心间距离等于两圆半径之和,所以圆1C 与圆2C 的位置关系是相切,故选:B.5.(2022云南)已知圆1C 的标准方程是()()224425x y -+-=,圆2C :22430x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为()A.相离B.相切C.相交D.内含【答案】C【解析】由题意可得,圆()()221:4425C x y -+-=的圆心为()4,4,半径为5因为圆222:430C x y x my +-++=关于直线10x ++=对称,所以2102m-+=(),得m =,所以圆()(222:24C x y -++=的圆心为(2,,半径为2,则两圆圆心距12C C =1252725C C -<<=+,所以圆1C 与圆2C 的位置关系是相交,故选:C .6.(2022·上海中学东校高二期末)已知圆22:28M x y ax +-=截直线:0l x y -=所得的弦长M 与圆22:(1)4N x y +-=的位置关系是()A .内切B .相交C .外切D .相离【答案】B【解析】由22:28M x y ax +-=,即()2228y a x a +=+-,故圆心(),0M a ,半径M r =所以点M 到直线:0l x y -=的距离d =故解得:1a =±;所以()1,0M ±,3M r =;又22:(1)4N x y +-=,圆心()0,1N ,2N r =,所以MN ==,且15M N M N r r r r -=<<=+,即圆M 与圆N 相交,故选:B.7.(2022·湖南岳阳·高二期末)圆221:1O x y +=与圆222:680O x y x y m +-++=外切,则实数m =_________.【答案】9【解析】圆1O 的圆心()10,0O ,半径11r =,圆2O 的圆心()23,4O -,半径2r =125O O =根据题意可得:1212O O r r =+,即51=9m =故答案为:9.8.(2022·上海徐汇·高二期末)已知圆221:(2)(2)1C x y -+-=和圆2222:()(0)C x y m m m +-=>内切,则m 的值为___________.【答案】72【解析】圆1C 的圆心为()2,2,半径为11r =,圆2C 的圆心为()0,m ,半径为2r m =,所以两圆的圆心距()()22202d m =-+-,又因为两圆内切,有()()222021d m m =-+-=-,解得72m =.故答案为:72.9.(2023·全国·高三专题练习)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________.【答案】34【解析】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m 由两圆向外切可知()()224030225-+--=+-m ,解得16m =所以2:C ()()22439x y -++=2C 到直线的距离为22431211-==+d ,设圆2C 的半径为R则直线:0l x y +=被圆2C 所截的弦长为221229342-=-=R d 故答案为:344圆与圆的弦长1.(2021·辽宁高三其他模拟)圆O :229x y +=与圆1O :()()222316x y -+-=交于A 、B 两点,则AB =()A.6B.5C.67813D.123913【答案】D【解析】圆O 的半径3r =,圆1O 的半径14r =,113OO =故在1AOO中,22211111cos sin21313r OO rAOO AOOr OO+-∠===⇒∠=⋅,故1sin21313ABr AOO AB=∠=⇒=.故选:D2.(2021·山东济南市·高二期末)(多选)已知圆221:1C x y+=和圆222:40C x y x+-=的公共点为A,B,则()A.12||2C C=B.直线AB的方程是14x=C.12AC AC⊥D.||2AB=【答案】ABD【解析】圆1C的圆心是()0,0,半径11r=,圆()222:24C x y-+=,圆心()2,0,22r=,122C C∴=,故A正确;两圆相减就是直线AB的方程,两圆相减得1414x x=⇒=,故B正确;11AC=,22AC=,122C C=,2221212AC AC C C+≠,所以12AC AC⊥不正确,故C不正确;圆心()0,0到直线14x=的距离14d=,2AB===,故D正确.故选:ABD3.(2021·全国高二课时练习)(多选)圆221:20x y xO+-=和圆222:240O x y x y++-=的交点为A ,B ,则有()A.公共弦AB 所在直线方程为0x y -=B.线段AB 中垂线方程为10x y +-=C.公共弦AB的长为2D.P 为圆1O 上一动点,则P 到直线AB 距离的最大值为212+【答案】ABD【解析】对于A,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==,故C 不正确;对于D,P 为圆1O 上一动点,圆心1O ()1,0到0xy -=的距离为2d =,半径1r =,即P 到直线AB 距离的最大值为12+,故D 正确.故选:ABD4.(2022·全国·高二专题练习)已知圆22110C x y +=:与圆22222140C x y x y +++-=:.(1)求证:圆1C 与圆2C 相交;(2)求两圆公共弦所在直线的方程;(3)求经过两圆交点,且圆心在直线60x y +-=上的圆的方程.【答案】(1)证明见解析(2)20x y +-=(3)226620x y x y +--+=【解析】(1)证明:圆2C :2222140x y x y +++-=化为标准方程为()()221116x y +++=,()21,1C ∴--,4r =圆221:10C x y +=的圆心坐标为()10,0C ,半径为=R,12C C ∴44<,∴两圆相交;(2)解:由圆221:10C x y +=与圆222:22140C x y x y +++-=,将两圆方程相减,可得2240x y +-=,即两圆公共弦所在直线的方程为20x y +-=;(3)由22222214010x y x y x y ⎧+++-=⎨+=⎩,解得3113x x y y ==-⎧⎧⎨⎨=-=⎩⎩或,则交点为()3,1A -,()1,3B -,圆心在直线60x y +-=上,设圆心为()6,P n n -,则AP BP ==3n =,故圆心()3,3P ,半径4r AP ==,∴所求圆的方程为()22(3)316x y -+-=.5.(2021·湖南·嘉禾县第一中学高二阶段练习)已知圆1C :222220x y x y +++-=,圆2C :22410x y y +--=.(1)证明:圆1C 与圆2C 相交;(2)若圆1C 与圆2C 相交于A ,B 两点,求AB .【答案】(1)证明见解析;【解析】(1)圆1C 的标准方程为()()22114x y +++=,圆心为()1,1--,半径为2,圆2C 的标准方程为()2225x y +-=,圆心为()0,2∴圆1C 和圆2C =22<,可知:圆1C 和圆2C 相交,得证.(2)由(1)结论,将圆1C 与圆2C 作差,得:直线AB 的方程为2610x y +-=,圆2C 的圆心()0,2到直线AB=,∴AB =6.(2022·江苏·高二单元测试)已知圆221:210240 C x y x y +-+-=和圆222:2280C x y x y +++-=.(1)试判断两圆的位置关系;(2)求公共弦所在直线的方程;(3)求公共弦的长度.【答案】(1)相交(2)240x y -+=(3)【解析】(1)将两圆方程化为标准方程为221:(1)(5)50C x y -++=,222:(1)(1)10C x y +++=,则圆1C 的圆心为(1,5)-,半径1r =圆2C 的圆心为(1,1)--,半径2r =12C C =12r r +=12r r -=121212r r C C r r ∴-<<+,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线的方程为240x y -+=.(3)由22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩,∴两圆的交点坐标为(4,0)-和(0,2).∴=5切线问题1.(2022·全国·高二课时练习)设圆221:244C x y x y +-+=,圆222:680C x y x y ++-=,则圆1C ,2C 的公切线有()A .1条B .2条C .3条D .4条【答案】B【解析】由题意,得圆()()2212:312C x y -+=+,圆心()11,2C -,圆()()2222:534C x y ++=-,圆心()23,4C -,∴125353C C -<=+,∴1C 与2C 相交,有2条公切线.故选:B .2.(2022·全国·高二课时练习)(多选)已知圆()221:9C x y a +-=与圆()222:1C x a y -+=有四条公切线,则实数a 的取值可能是()A .-4B .-2C .D .3【答案】AD【解析】圆心()10,C a ,半径13r =,圆心()2,0C a ,半径21r =.因为两圆有四条公切线,所以两圆外离.又两圆圆心距d =31>+,解得a <-或a >3.(2022·全国·高二课时练习)(多选)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列是M ,N 两圆公切线的直线方程为()A .y =0B .3x -4y =0C.20x y -=D.20x y -=【答案】ACD【解析】圆M 的圆心为M (2,1),半径11r =.圆N 的圆心为N (-2,-1),半径21r =.圆心距2d =>,两圆相离,故有四条公切线.又两圆关于原点O 对称,则有两条切线过原点O ,设切线方程为y =kx1=,解得k =0或43k =,对应方程分别为y =0,4x -3y =0.另两条切线与直线MN 平行,而1:2MN l y x =,设切线方程为12y x b =+1=,解得2b =±,切线方程为20x y -+=,20x y --=.故选:ACD .4.(2022·全国·高二专题练习)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=5.(2022·全国·高二专题练习)求过点()13M -,的圆224x y +=的切线方程__________.【答案】326122633y x ++=+或326122633y x --=+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:326122633y x ++=+或326122633y x --=+.6(2022·广东·中山一中高三阶段练习)已知圆22:240C x y x y m +--+=.若圆C 与圆22:(2)(2)1D x y +++=有三条公切线,则m 的值为___________.【答案】11-【解析】由22240x y x y m +--+=,得22(1)(2)5x y m -+-=-,所以圆C 的圆心为()1,2C 因为圆22:(2)(2)1D x y +++=,所以圆D 的圆心为()22D ,--,半径为1,因为圆C 与圆D 有三条公切线,所以圆C 与圆D 相外切,即1CD ==+,解得11m =-,所以m 的值为11-.故答案为:11-.7.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 的值为___________.【答案】34或14【解析】设圆1C ,圆2C 的半径分别为1r ,2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-.由两圆相切,得1212C C r r =+或1212C C r r =-.因为11r =,125C C ==,所以215r +=或215r -=,可得24r =或26=r 或24r =-(舍去),因此5016a -=或5036a -=,解得34a =或14a =.故答案为:34或148.(2022·贵州黔东南·高二期末(理))若圆221x y +=与圆()()22416x a y -+-=有3条公切线,则正数a =___________.【答案】35=∴3,0,3a a a =±>∴=又6最值问题1.(2022·广东·高三阶段练习)已知C :222220x y x y +---=,直线l :220x y ++=,M 为直线l 上的动点,过点M 作C 的切线MA ,MB ,切点为A ,B ,当四边形MACB 的面积取最小值时,直线AB 的方程为____.【答案】210x y ++=【解析】C :222220x y x y +---=的标准方程为22(1)(1)4x y -+-=,则圆心()11C ,,半径2r =.因为四边形MACB 的面积2•2CAMS SCA AM AM ====,要使四边形MACB 面积最小,则需CM 最小,此时CM 与直线l 垂直,直线CM 的方程为()121y x -=-,即21y x =-,联立21220y x x y =-⎧⎨++=⎩,解得()0,1M -.则CM =则以CM 为直径的圆的方程为221524x y ⎛⎫-+= ⎪⎝⎭,与C 的方程作差可得直线AB 的方程为210x y ++=.故答案为:210x y ++=.2.(2021·广东·南海中学高二阶段练习)已知圆22:(4)(3)1C x y -++=和两点(,0)A a -、(,0)(0)B a a >,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .1B .6C .3D .4【答案】D【解析】由90APB ∠=︒得点P 在圆222x y a +=上,所以,点P 在圆222x y a +=上,又在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为()4,3-,半径为1.所以,|1|1a OC a -≤≤+,即|1|5146a a a -≤≤+⇒≤≤所以,a 的最小值为4.故选:D3.(2021·吉林油田高级中学高二开学考试)已知圆P 的方程为22680x y x y ++-=,过点()1,2M -的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A .B .10C .D .5【解析】圆P 的方程可化为()()223425x y ++-=,则(3,4),5P r -=,因为()()22132425-++-<,故点()1,2M -在圆内,过点()1,2M -的最长弦一定是圆P 的直径,当AB PM ⊥时,AB 最短,此时PM =则AB ==故选:A .4.(2022·浙江·杭州市富阳区场口中学高二期末)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是()A .()()22515x y -++=B .()()225113x y -+-=C .()()224413x y -++=D .()()221652x y -++=【答案】B【解析】过点()7,2A -作直线2360x y -+=的垂线,垂足为B ,则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,其中AB =(),B a b ,则221732360b a a b +⎧⨯=-⎪-⎨⎪-+=⎩,解得:34a b =⎧⎨=⎩,故AB 的中点,即圆心为7342,22+-⎛⎫ ⎪⎝⎭,即()5,1,故该圆为()()225113x y -+-=故选:B5.(2022·江苏·高二专题练习)已知M 是圆22:1C x y +=上一个动点,且直线1:310(R)l mx y m m --+=∈与直线2:310(R)l x my m m +--=∈相交于点P ,则||PM 的取值范围是()A.1,1⎤⎦B.1⎤⎦C.1,1⎤⎦D.1⎤⎦【答案】B【解析】直线1:310(R)l mx y m m --+=∈整理可得,(3)(1)0m x y ---=,即直线1l 恒过(3,1),同理可得,直线2l 恒过(1,3),又()110m m ⨯+-⨯=,∴直线1l 和2l 互相垂直,∴两条直线的交点P 在以(1,3),(3,1)为直径的圆上,即P 的轨迹方程为22(2)(2)2x y -+-=,设该圆心为M ,圆心距||1MC =>,∴两圆相离,1||1PM ∴-+ ,||PM ∴的取值范围是1].故选:B .。
人教A版高中数学选择性必修第一册2.5.2 圆与圆的位置关系 课时分层练习题含答案解析
2.5.2 圆与圆的位置关系基础练习一、单选题1.已知圆C :x 2+y 2=4,则圆C 关于直线l :x ﹣y ﹣3=0对称的圆的方程为( ) A .x 2+y 2﹣6x +6y +14=0 B .x 2+y 2+6x ﹣6y +14=0 C .x 2+y 2﹣4x +4y +4=0 D .x 2+y 2+4x ﹣4y +4=02.过圆4x y +=上一点P 作圆:()0O x yr r +=>的两条切线,切点分别为,若2APB π∠=,则r =( )A .1BC D3.圆224x y +=与圆:219C x y -+-=的位置关系是( ) A .内切B .相交C .外切D .相离A .210x y --=B .20x y -+=C .20x y --=D .210x y -+=【答案】B【分析】两圆的方程消掉二次项后的二元一次方程即为公共弦所在直线方程.【详解】由x 2+y 2-4=0与x 2+y 2-4x +4y -12=0两式相减得:4480x y -+=,即20x y -+=.5.已知圆1C :2220x y x ++=,圆2C :2260x y y +-=相交于P ,Q 两点,则||PQ =( )A B .5C D6.设圆1:244C x y x y +-+=,圆2:680C x y x y ++-=,则圆1,2的公切线有( )A .1条B .2条C .3条D .4条7.如图,点()2,0A ,()1,1B ,()1,1C -,()2,0D -,CD 是以OD 为直径的圆上一段圆弧,CB 是以BC 为直径的圆上一段圆弧,BA 是以OA 为直径的圆上一段圆弧,三段弧构成曲线Ω,则( )A .曲线Ω与x 轴围成的图形的面积等于32π B .CB 与BA 的公切线的方程为10x y +-C .BA 所在圆与 CB 所在圆的公共弦所在直线的方程为0x y -=D .CD 所在的圆截直线y x =所得弦的长为8.已知圆:211M x y -+-=,圆:211N x y +++=,则下列是M ,N 两圆公切线的直线方程为( )A .y =0B .3x -4y =0C .20x y -=D .20x y -=【答案】ACD9.已知圆O :224x y +=和圆C :231x y -+-=.现给出如下结论,其中正确的是 A .圆O 与圆C 有四条公切线B .过C 且在两坐标轴上截距相等的直线方程为5x y +=或10x y -+= C .过C 且与圆O 相切的直线方程为916300x y -+=D .P 、Q 分别为圆O 和圆C 上的动点,则PQ 3+3 10.两圆22230x y y +--=与2220x y x ++=的公共弦所在直线的方程为______. 【答案】2230x y ++=【分析】两圆相减,消去22,x y 即为答案.【详解】22230x y y +--=与2220x y x ++=相减得:2230x y ++=,即为公共弦所在直线的方程.故答案为:2230x y ++=11.已知圆C 1:2264120x y x y +-++=与圆C 2:22620x y x y a +--+=,若圆C 1与圆C 2有且仅有一个公共点,则实数a 的值为___________.12.圆230x y x +--=与224230x y x y +-++=的交点坐标为______. 【答案】()12-,和()30, 【分析】联立两圆的方程即可求解.【详解】联立22222304230x y x x y x y ⎧+--=⎨+-++=⎩,两式相减得=3x y +,将其代入22230x y x +--=中得0y =或2y =-,进而得30x y =⎧⎨=⎩或12x y =⎧⎨=-⎩, 所以交点坐标为()()1230,,,- 13.已知圆221:2440C x y x y +-+-=,圆222:2220C x y x y ++--=,则两圆的公切线条数是___________.14.若圆221x y +=与圆416x a y -+-=有3条公切线,则正数a =___________.15.设两圆1与圆2的公共弦所在的直线方程为_______ 【答案】2410x y --=【分析】利用两圆的方程相减即可求解.【详解】因为圆22110C x y +-=:①,圆222240C x y x y +-+=:②,由-①②得,2410x y --=,所以两圆的公共弦所在的直线方程为2410x y --=.16.已知以()4,3C -为圆心的圆与圆221x y +=相切,则圆C 的方程是______.A B B A B 且45A ∠=,则C 的坐标为______.(坐标分量精确到0.1)45,且A 在直线AC 上,所以18.若平面上的点P 及半径为R 的圆C ,我们称2CP R -为点P 对圆C 的幂,则平面上对圆1C :221x y +=及圆2C :()()22234x y -++=幂相等的点P 的坐标所满足的等式是______.【答案】2x -3y -5=0【分析】设出点P 坐标,依题意列出等式即可. 【详解】由题知:圆心1(0,0)C ,2(2,3)C -, 圆1C 的半径11R =,圆2C 的半径22R =,设点(,)Px y ,则点P 对圆1C 的幂为:()221x y +-,点P 对圆2C 的幂为:()()22234x y -++-,所以有:()()()22221234x y x y +-=-++-,化简得:2x -3y -5=0, 故答案为:2x -3y -5=0. 四、解答题19.若圆224x y +=与圆22260x y ay ++-= (0a >)的公共弦的长为a 的值.。
圆与圆的位置关系综合练习
圆与圆的位置综合练习一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣32.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或73.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>56.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是_________.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为_________s.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是_________米.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于_________.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为_________cm2.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是_________.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有_________个.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是_________.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为_________;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.圆与圆的位置综合练习参考答案与试题解析一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣3考点:圆与圆的位置关系.专题:压轴题.分析:本题直接告诉了两圆的半径及位置关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).解答:解:设数轴上点B所表示的实数是b,则AB=||b﹣(﹣2)|=|b+2|,⊙B与⊙A外切时,AB=2+1,即|b+2|=3,解得b=1或﹣5,故选C.点评:本题考查了由数量关系及两圆位置关系求圆心坐标的方法.2.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或7考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切,包括了内切或外切,即d=R+r,d=R﹣r,分别求解.解答:解:∵这两圆相切∴⊙O1与⊙O2的位置关系是内切或外切,O1O2=5,⊙O1的半径r1=2,所以r1+r2=5或r2﹣r1=5,解得r2=3或7.故选D.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.3.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm考点:圆与圆的位置关系.专题:压轴题.分析:半径不相等的两圆相切有两种情况:内切和外切,不要只考虑其中一种情况.由⊙O1与⊙O2的直径分别为9cm和4cm得两圆的半径分别为4.5cm、2cm;当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm),所以O1O2的值为6.5cm或2.5cm.注意,相同半径的两圆只有外切与外离,而没有内切与内含的位置关系.解答:解:∵⊙O1和⊙O2相切,∴两圆可能内切和外切,∴当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm);∴O1O2的长是2.5cm或6.5cm.∴故选D.点评:本题考查两圆的位置关系.特别注意:两圆相切,则可能有两种情况,内切或外切.4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈考点:圆与圆的位置关系.专题:压轴题;转化思想.分析:根据自身的周长和滚动的周长求解.解答:解:设圆的半径是r,则另一枚沿着其边缘滚动一周所走的路程是以2r为半径的圆周长,即是4πr,它自身的周长是2πr.即一共滚了2圈.故选C.点评:此题要特别注意正确分析另一枚则沿着其边缘滚动一周所走的路程.5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>5考点:圆与圆的位置关系.专题:压轴题.分析:若两圆没有公共点,则可能外离或内含,据此考虑圆心距的取值范围.解答:解:若两圆没有公共点,则可能外离或内含,外离时的数量关系应满足d>5;内含时的数量关系应满足0≤d<1.故选D.点评:考查了两圆的位置关系和数量关系之间的等价关系.6.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切考点:圆与圆的位置关系.专题:压轴题.分析:由两圆的半径分别2和3,圆心距为5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别为2和3,圆心距为5,又∵2+3=5,∴两圆的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm考点:圆与圆的位置关系.专题:压轴题;分类讨论.分析:根据两圆的位置关系与圆心距和两圆半径之间的数量关系之间的联系即可解决问题.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:两圆相切时,有两种情况:内切和外切.当外切时,另一圆的半径=9+4=13cm;当内切时,另一圆的半径=9﹣4=5cm.故选D.点评:本题考查了两圆相切时,两圆的半径与圆心距的关系,注意有两种情况.8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含考点:圆与圆的位置关系.分析:此题要求两个圆的位置关系,可观察两个圆之间的交点个数,一个交点两圆相切(内切或外切),两个交点两圆相交,没有交点两圆相离(外离或内含).解答:解:外离或内含时,两圆没有公共点.故选D.点评:此题考查的是两个圆之间的位置关系,解此类题目时可根据两个圆的交点个数来判断两个圆的位置关系.9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切考点:圆与圆的位置关系;等边三角形的性质.专题:压轴题.分析:要判断两圆的位置关系,需要明确两圆的半径和两圆的圆心距,再根据数量关系进一步判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:根据题意,得:圆O的直径是10,点B到点O的距离是5,则5>5+2,所以⊙B与⊙O的位置关系为外离.故选B.点评:本题考查了由数量关系来判断两圆位置关系的方法.10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14考点:相交两圆的性质.分析:利用了连心线垂直平分公共弦,勾股定理求解,注意两圆相交的情况有两种情况.解答:解:如图,圆A与圆B相交于点C,D,CD与AB交于点E,AC=15,BC=13,由于连心线AB垂直平分CD,有CE=12,△ACE,△BCE是直角三角形,由勾股定理得,AE=9,BE=5,而两圆相交的情况有两种,当为左图时,AB=AE﹣BE=9﹣5=4,当为右图时,AB=AE+BE=14.故选D.点评:本题利用了连心线垂直平分公共弦,勾股定理.二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是12.考点:相切两圆的性质;含30度角的直角三角形;勾股定理;矩形的判定与性质;切线长定理.专题:计算题;压轴题.分析:设⊙O1的半径是R,求出⊙O2的半径是1,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,推出D、O2、O1三点共线,∠CDO1=30°,求出四边形CFO2E是矩形,推出O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,推出R+1=2(R﹣1),求出R=3,求出DO1,在Rt△CDO1中,由勾股定理求出CD,求出AH==AB,根据梯形面积公式得出×(AB+CD)×BC,代入求出即可.解答:解:∵⊙O2的面积为π,设⊙O2的半径是r,则π×r2=π∴⊙O2的半径是1,∵AB和AH是⊙O1的切线,∴AB=AH,设⊙O1的半径是R,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,∵⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线DC、DA,∠ADC=60°,∴D、O2、O1三点共线,∠CDO1=30°,∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°,∴四边形CFO2E是矩形,∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,∴DO2=2O2E=2,∠HAO1=60°,∵O1O2=2O1F(在直角三角形中,30度角所对的直角边等于斜边的一半),又∵O1F=R﹣1,O1O2=R+1,∴R+1=2(R﹣1),解得:R=3,即DO1=2+1+3=6,在Rt△CDO1中,由勾股定理得:CD=3,∵∠HO1A=90°﹣60°=30°,HO1=3,∴AH==AB,∴四边形ABCD的面积是:×(AB+CD)×BC=×(+3)×(3+3)=12.故答案为:12.点评:本题考查的知识点是勾股定理、相切两圆的性质、含30度角的直角三角形、矩形的性质和判定,本题主要考查了学生能否运用性质进行推理和计算,题目综合性比较强,有一定的难度.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为或3s.考点:圆与圆的位置关系.专题:压轴题;数形结合;分类讨论.分析:首先设点A平移到点A1,所用的时间为ts,根据题意求得AB=2cm,AA1=2tcm,BB1=tcm,再分别从内切与外切四种情况分析求解,即可求得答案.解答:解:设点A平移到点A1,所用的时间为ts,根据题意得:AB=2cm,AA1=2tcm,A1B=(2﹣2t)cm,BB1=tcm,如图,此时外切:2﹣2t=1+t,∴t=;如图,此时内切:2﹣2t=1﹣t,∴t=1,此时两圆心重合,舍去;或2﹣2t=t﹣1,解得:t=1,此时两圆心重合,舍去;如图,此时内切:2t﹣t+1=2,∴t=1,此时两圆心重合,舍去;如图:此时外切:2t﹣t﹣1=2,∴t=3.∴点A平移到点A1,所用的时间为1或3s.故答案为:或3.点评:此题考查了圆与圆的位置关系.解题的关键是注意数形结合与方程思想,分类讨论思想的应用,注意别漏解.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是米.考点:相切两圆的性质.专题:压轴题.分析:连接三个圆的圆心,构造等边三角形.根据等边三角形的性质进行求解.解答:解:连接三个圆的圆心,构造等边三角形,则等边三角形的边长是1.根据等边三角形的三线合一和勾股定理,得等边三角形的高是.则其最高点与地面的距离是(1+)米.点评:此题主要是构造等边三角形,根据等边三角形的性质进行计算.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于19:7.考点:相切两圆的性质.专题:压轴题;规律型.分析:首先正确求得第一个图形的面积,然后结合图形发现面积增加的规律,从而进行分析求解.解答:解:设圆的半径是1,在第一个图形中,阴影部分的面积是3π﹣π=π;观察图形发现:阴影部分的面积依次增加1.5π.所以第四个图形的面积是2.5π+1.5π×3=7π,第12个图形的面积是2.5π+1.5π×11=19π.所以它们的比值是.点评:此类题的关键是找规律,根据规律进行计算.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为4πcm2.考点:圆与圆的位置关系.分析:根据圆的中心对称性,大圆与小圆之间的部分全等,故阴影部分的面积是两圆面积差的一半.解答:解:观察图形,发现:阴影部分的面积是两圆面积差的一半,即S阴影=(S大圆﹣S小圆)=(π×32﹣π×12)=4π.点评:这里要能够把阴影部分合到一起整体计算.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是内含.考点:圆与圆的位置关系.分析:先计算两圆半径的和与差,再与圆心距比较,得出结论.解答:解:因为5﹣3>1,根据圆心距与半径之间的数量关系可知,⊙O1与⊙O2的位置关系是内含.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有4个.考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切有内切和外切两种情况,本题只要画出图形加以判断即可.解答:解:如图:与两圆相切的有4个.点评:本题考查的是圆与圆的位置关系,解此类题目常常要结合图形再进行判断.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是9.考点:圆内接四边形的性质;解分式方程;圆与圆的位置关系;相交两圆的性质;相似三角形的判定与性质.专题:压轴题.分析:连接公共弦AB,构成圆内接四边形ABED,根据圆内接四边形的性质,可证明△ABC∽△EDC,从而得出与AD、BC、BE有关的比例线段,根据AD:BC:BE=1:1:5,设线段长度,代入比例式可求CD、CE的长,在Rt△EDC中,用勾股定理求ED.解答:解:连接AB,在圆内接四边形ABED中,∠BAC=∠E,∠ABC=∠EDC,因为AC为⊙O2直径,则∠ABC=90°,于是△ABC∽△EDC,因为AD:BC:BE=1:1:5,所以,设AD=x,BC=x,BE=5x;于是:=,即6x2=36+6x,x2﹣x﹣6=0,解得x=3,x=﹣2(负值设去),在Rt△EDC中,ED==9.点评:本题考查的是对圆心角和圆周角的关系,以及圆的内接四边形的外角和相应的内对角关系的应用.解答此类题关键是通过角的关系,在解题中应用中间角来寻找等量关系.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为16;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.考点:相切两圆的性质;勾股定理;菱形的性质.分析:(1)根据菱形性质求出AO长,OB=OD,AC⊥BD,根据勾股定理求出BO,即可求出BD;(2)设PB=x,则PD=BD﹣PB=16﹣x.在Rt△PFD中,求出DF=DP•cos∠ADB=(16﹣x),分为两种情况:①当⊙P与⊙D外切时:第一种情况,当P点在点O的左侧,PO=8﹣x,根据相切两圆性质得出PO+DF=PD,代入得出方程(8﹣x)+(16﹣x)=16﹣x,求出x即可;第二种情况,当P点在点O的右侧,PO=x﹣8,根据相切两圆的性质得出PO+DF=PD,代入得出方程(x﹣8)+(16﹣x)=16﹣x,求出方程的解即可;②当⊙P与⊙D内切时:第三种情况,PO=PB﹣OB=x﹣8,根据OP﹣DF═PD,得出方程(x﹣8)﹣(16﹣x)=16﹣x,求出即可;第四种情况,点P在点D右侧时,PF=OD=8,则DP=10,PB=26.解答:(1)解:∵四边形ABCD是菱形,∴AO=OC=AC=6,OB=OD,AC⊥BD,由勾股定理得:BO===8,∴BD=16,故答案为:16.(2)PB=x,则PD=BD﹣PB=16﹣x.∵PF⊥AD,∴在Rt△PFD中,DF=DP•cos∠ADB=(16﹣x);①当⊙P与⊙D外切时:情况一:当P点在点O的左侧,PO=OB﹣PB=8﹣x,此时PO+DF=PD,∴(8﹣x)+(16﹣x)=16﹣x,解得,x=6;情况二:当P点在点O的右侧,PO=PB﹣OB=x﹣8,此时PO+DF=PD,∴(x﹣8)+(16﹣x)=16﹣x,解得,x=;②当⊙P与⊙D内切时:情况三:点P在D的左侧时,PO=PB﹣OB=x﹣8,∵PD>DF,∴DF﹣OP═PD,∴(x﹣8)﹣(16﹣x)=16﹣x,解得,x=;情况四:点P在点D右侧时,DF=OD=8,则DP=10,PB=26,综上所述,PB的长为6或或或26.点评:本题考查了解直角三角形,菱形的性质,勾股定理,相切两圆的性质等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,难度偏大,注意要进行分类讨论.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.考点:相似三角形的判定与性质;勾股定理;相切两圆的性质.专题:压轴题;探究型.分析:(1)先根据AD∥BC,∠B=90°求出∠EAG=∠B=90°,在Rt△AEG中根据勾股定理可用x表示出EG的值,再根据平行线分线段成比例可得出=,进而可得到关于x、y的关系式,由二次根式有意义的条件求出x的取值范围即可;(2)由△DFG∽△EAG可得到=,可用x表示出GD的值,再把AD=11代入即可求出x的值,进而得出AG的长;(3)①当⊙E与⊙F外切时,EF=EG+FD=EG+FG,再由△DFG∽△EAG即可求出AG=AE=2,进而可得出⊙E与⊙F的半径;②当⊙E与⊙F内切时,EF=FD﹣EG,再把EF、FD及ED的关系式代入即可求出x的值,由勾股定理即可求出两圆的半径.解答:解:(1)∵AD∥BC,∠B=90°,∴∠EAG=∠B=90°,∴EG==,∵=,∴FG===,∵∠DFG=∠EAG=90°,∠EGA=∠DGF,△DFG∽△EAG,∴=,∴=,∴y关于x的函数解析式为y=,定义域为0<x≤4.(2)∵△DFG∽△EAG,∴=,∴=,∴GD=.当AD=11时,x+=11,x1=1,x2=,经检验它们都是原方程的根,且符合题意,所以AG的长为1或.(3)当⊙E与⊙F外切时,EF=EG+FD=EG+FG,∴FD=FG,∵△DFG∽△EAG,∴∠E=∠AGE=∠FGD=∠GDF.∴AG=AE=2;∴⊙E的半径EG=,⊙F的半径FD=.当⊙E与⊙F内切时,EF=FD﹣EG,∴3=﹣,∵≠0,∴3=,∴x=1,∴⊙E的半径EG==,⊙F的半径FD=,∴⊙E的半径为2,⊙F的半径为4;或⊙E的半径为,⊙F的半径为4.点评:本题考查的是相似三角形的判定与性质、勾股定理及两圆相切的性质,涉及面较广,难度较大,在解(3)时要注意分两圆外切与内切两种情况进行讨论.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.考点:垂径定理;勾股定理;圆与圆的位置关系;坐标与图形变化-平移.专题:作图题.分析:(1)连接AB,根据垂径定理求出BO,根据勾股定理求出AB即可;(2)根据已知画出图形即可,根据平移规律求出D的坐标即可;(3)根据图形即可得出结论.解答:(1)解:∵x轴⊥y轴,A在x轴上,∴BO=CO=4,连接AB,由勾股定理得:AB==5,答:⊙A的半径是5.(2)解:如图:圆心D的坐标是(﹣5,6).(3)解:⊙D 与⊙A 的位置关系是外切.点评:本题考查了对勾股定理,垂径定理,圆与圆的位置关系,坐标与图形变化﹣平移等知识点的应用,解此题的关键是根据题意画出图形,培养了学生分析问题的能力,同时也培养了学生观察图形的能力,题型较好,难度适中.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.考点:相切两圆的性质;勾股定理;切线的性质.专题:计算题.分析:(1)设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得出AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,在△ABM中根据勾股定理得出D和x的方程,求出即可;(2)根据(1)结合图形仍能得出函数解析式,即可得出答案.解答:(1)解:如图设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得:AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,∵AC=AB,AM⊥BC,∴BM=CM=(x﹣100)=x﹣50,在Rt△ABM中,由勾股定理得:AB2=AM2+BM2,∴=+,即D=x2﹣x+25.(2)解:当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式能仍然适用,因为那样时,三圆同时与平台相切,有两大圆都与小圆相切时,得出的方程与(1)中的方程相同,所有上面所求得的D与x的函数关系式能仍然适用.点评:本题考查了相切两圆的性质,切线的性质,勾股定理等知识点的应用,能根据题意得出方程是解此题的关键,主要考查学生的观察能力和构造直角三角形的能力,题目比较典型,有一定的难度.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.考点:相切两圆的性质;勾股定理.专题:计算题.分析:分为两种情况:(1)并列摆放,根据烟的直径和烟盒的长、宽得出只能放14根;(2)若错位摆放,连接O1O2、O2O3、O3O1,解答:解:(1)若并列摆放,如图①,因为烟的直径为8mm,所以AD方向上能并排放(根)烟,而在AB方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图②,连接O1O2、O2O3、O3O1,则O2O3=O3O1=8mm,△O1O2O3为等腰三角形,过O3作O3E⊥O1O2,则E是O1O2的中点.=7(mm).所以在Rt△O1O3E中,(mm).故排列后中排所需空间长度=(mm),三排所需宽度为AB=22mm,故此摆放符合要求.点评:本题考查了对相切两圆的性质,勾股定理,等腰三角形性质的运用,主要培养学生分析问题和解决问题的能力,注意:分类讨论啊.。
初中数学【与圆有关的位置关系】练习题
初中数学【与圆有关的位置关系】练习题一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.34.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤58.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.59.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<810.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为;点D坐标为(8,﹣2),连接CD,直线CD 与⊙M的位置关系是.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.答案一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定【解答】解:∵圆心P的坐标为(﹣10,1),∴OP==.∵⊙O的半径为10,∴>10,∴点P在⊙O外.故选:B.2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【解答】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.3【解答】解:设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选:B.4.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选:C.5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选:A.6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定【解答】解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5【解答】解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.8.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.5【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.19.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A 的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选:B.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8【解答】解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0);点D坐标为(8,﹣2),连接CD,直线CD与⊙M的位置关系是相切.【解答】解:(1)如图,经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).故答案为(2,0);(2)连接MC,MD,MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线;故答案为:相切.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMC~△ABO,∴,即,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为4.【解答】解:∵d、R是方程x2﹣4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16﹣4m=0,解得,m=4,故答案为:4.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.【解答】解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°﹣2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.。
人教A版高中数学选择性必修第一册第2章 2.5.2 圆与圆的位置关系课时练习题
2.5.2圆与圆的位置关系1.圆C 1:x 2+y 2+4x +8y -5=0与圆C 2:x 2+y 2+4x +4y -1=0的位置关系为()A .相交B .外切C .内切D .外离答案C解析由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d =|C 1C 2|=2, 所以d =|r 1-r 2|,所以两圆内切.2.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为()A .(1,0)和(0,1)B .(1,0)和(0,-1)C .(-1,0)和(0,-1)D .(-1,0)和(0,1)答案C解析由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0, 解得⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.所以两圆的交点坐标为(-1,0)和(0,-1).3.已知圆C 1:x 2+y 2-m =0,圆C 2:x 2+y 2+6x -8y -11=0,若圆C 1与圆C 2有公共点,则实数m 的取值范围是()A .m <1B .m >121C .1≤m ≤121D .1<m <121答案C解析圆C 1的方程可化为x 2+y 2=m (m >0),则圆心为C 1(0,0),半径r 1=m ; 圆C 2的方程可化为(x +3)2+(y -4)2=36,则圆心为C 2(-3,4),半径r 2=6.∵圆C 1与圆C 2有公共点,∴|r 1-r 2|≤|C 1C 2|≤r 1+r 2, 即|m -6|≤(-3-0)2+(4-0)2≤m +6, ∴⎩⎪⎨⎪⎧|m -6|≤5,m +6≥5,解得1≤m ≤121.4.(多选)设r>0,圆(x-1)2+(y+3)2=r2与圆x2+y2=16的位置关系不可能是()A.内切B.相交C.外离D.外切答案CD解析两圆的圆心距为d=(1-0)2+(-3-0)2=10,两圆的半径之和为r+4,因为10<r+4,所以两圆不可能外切或外离,故选CD.5.圆O1:x2+y2-6x+16y-48=0与圆O2:x2+y2+4x-8y-44=0的公切线条数为() A.4条B.3条C.2条D.1条答案C解析圆O1为(x-3)2+(y+8)2=121,O1(3,-8),r=11,圆O2为(x+2)2+(y-4)2=64,O2(-2,4),R=8,∴|O1O2|=(3+2)2+(-8-4)2=13,∴r-R<|O1O2|<R+r,∴两圆相交.∴公切线有2条.6.若圆x2+y2-2ax+a2=2和x2+y2-2by+b2=1外离,则a,b满足的条件是_____________.答案a2+b2>3+2 2解析由题意可得两圆的圆心坐标和半径长分别为(a,0),2和(0,b),1.因为两圆外离,所以a2+b2>2+1,即a2+b2>3+2 2.7.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A,B两点,则直线AB的方程是_______.答案x+3y=0解析圆的方程(x-1)2+(y-3)2=20可化为x2+y2-2x-6y=10.又x2+y2=10,两式相减得2x+6y=0,即x+3y=0.8.经过直线x+y+1=0与圆x2+y2=2的交点,且过点(1,2)的圆的方程为________________.答案x 2+y 2-34x -34y -114=0 解析由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34, 故所求圆的方程为x 2+y 2-34x -34y -114=0. 9.已知圆O 1:x 2+(y +1)2=4,圆O 2的圆心O 2(2,1).若圆O 2与圆O 1交于A ,B 两点,且|AB |=22,求圆O 2的方程.解设圆O 2的方程为(x -2)2+(y -1)2=r 22, 因为圆O 1的方程为x 2+(y +1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在的直线方程为4x +4y +r 22-8=0,作O 1H ⊥AB ,H 为垂足,则AH =12AB =2, 所以O 1H =r 21-AH 2=4-2= 2.由圆心O 1(0,-1)到直线4x +4y +r 22-8=0的距离为 |r 22-12|42=2,得r 22=4或r 22=20, 故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.10.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.(1)m 取何值时两圆外切?(2)m 取何值时两圆内切?(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6),半径分别为11和61-m .(1)当两圆外切时,(5-1)2+(6-3)2=11+61-m , 解得m =25+1011.(2)当两圆内切时61-m -11=5,解得m =25-1011.(3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,即4x +3y -23=0,∴公共弦长为2(11)2-⎝ ⎛⎭⎪⎪⎫|4×1+3×3-23|42+322=27.11.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是()A .(x -5)2+(y -7)2=25B .(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15C .(x -5)2+(y -7)2=9D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9答案D 解析设动圆圆心为(x ,y ),若动圆与已知圆外切,则(x -5)2+(y +7)2=4+1,∴(x -5)2+(y +7)2=25;若动圆与已知圆内切,则(x -5)2+(y +7)2=4-1, ∴(x -5)2+(y +7)2=9.12.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于()A .4B .42C .8D .8 2答案C解析∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2,即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根,整理得x 2-10x +17=0,∴a +b =10,ab =17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,∴|C1C2|=(a-b)2+(a-b)2=32×2=8.13.如果圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,则实数a的取值范围是() A.(-22,0)∪(0,22) B.(-22,22)C.(-1,0)∪(0,1) D.(-1,1)答案A解析∵圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,∴圆O:x2+y2=4与圆C:(x-a)2+(y-1)2=1相交.|OC|=a2+1,由2-1<|OC|<2+1,得1<a2+1<3,∴0<|a|<22,∴-22<a<0或0<a<2 2.14.若圆O:x2+y2=5与圆O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A 处的切线互相垂直,则线段AB的长为________.答案4解析连接OO1,记AB与OO1的交点为C,如图所示,在Rt△OO1A中,|OA|=5,|O1A|=25,∴|OO1|=5,∴|AC|=5×255=2,∴|AB|=4.15.过两圆x2+y2-2y-4=0与x2+y2-4x+2y=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程是____________________.答案x2+y2-3x+y-1=0解析设圆的方程为x2+y2-4x+2y+λ(x2+y2-2y-4)=0,则(1+λ)x2-4x+(1+λ)y2+(2-2λ)y-4λ=0,把圆心⎝ ⎛⎭⎪⎫21+λ,λ-11+λ代入l :2x +4y -1=0的方程,可得λ=13, 所以所求圆的方程为x 2+y 2-3x +y -1=0.16.已知动点P 与两个定点O (0,0),A (3,0)的距离的比为12. (1)求动点P 的轨迹C 的方程;(2)已知圆Q 的圆心为Q (t ,t )(t >0),且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.解(1)设P (x ,y ),则||AP =2||OP ,即||AP |2=4OP |2,所以(x -3)2+y 2=4(x 2+y 2),整理得(x +1)2+y 2=4.所以动点P 的轨迹C 的方程为(x +1)2+y 2=4.(2)因为点Q 的坐标为(t ,t )(t >0),且圆Q 与x 轴相切,所以圆Q 的半径为t ,所以,圆Q 的方程为(x -t )2+(y -t )2=t 2.因为圆Q 与圆C 有公共点,又圆Q 与圆C 的两圆心距为 ||CQ =()t +12+()t -02=2t 2+2t +1,所以||2-t ≤||CQ ≤2+t ,即(2-t )2≤2t 2+2t +1≤(2+t )2,解得-3+23≤t ≤3.所以,实数t 的取值范围是[]-3+23,3.。
《圆与圆的位置关系》练习题(含答案)
10题B A O'O O 3O 218题O 1A 20题B A 19题16题P O 《圆与圆的位置关系》练习题1.⊙O 1与⊙O 2的半径分别为3cm 和8cm,①若两圆相切,则圆心距O 1O 2= ;②若O 1O 2=4㎝,则两圆 ;③若两圆相交,则圆心距O 1O 2的取值范围为 ;④若两圆有公共点,则圆心距O 1O 2的取值范围为 。
2.相切两圆的半径分别为8㎝和x ㎝,圆心距为10㎝,则x 的值为 。
3.⊙O 1与⊙O 2相切,⊙O 1的半径为6cm ,①若O 1O 2=4㎝,则⊙O 2的半径为 ;②若O 1O 2=8㎝,则⊙O 2的半径为 。
4.两圆半径之比为3︰5,若两圆相外切,且圆心距为8㎝,则两圆相内切时,圆心距为 .5.在平面直角坐标系中,A 、B 两点的坐标分别是(0,5)、(12,0),分别以A 、B 为圆心作⊙A 、⊙B ,①若两圆的半径分别是8、3,则两圆的位置关系为 ;②若两圆的半径分别是15、2,则两圆的位置关系为 ;③若两圆的半径分别是7、6,则两圆的位置关系为 ;④若⊙A 的半径为8㎝,则当⊙B 的半径为 时,两圆相切。
6.半径分别为2、4、6的三个圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为 .7.△ABC 的三边分别为AB=5㎝、BC=6㎝、AC=7㎝,若分别以A 、B 、C 三点为圆心作⊙A 、⊙B 、⊙C ,它们两两外切,则⊙A 、⊙B 、⊙C 的半径分别为 。
8.若两圆半径分别为r 1、r 2,圆心距为d,关于x 的一元二次方程x 2-2r 1x+(r 2-d)2=0有两个相等的实数根,则这两圆的位置关系为 。
9. ⊙O 1与⊙O 2是等圆,且两圆交于A 、B 两点,⊙O 1经过⊙O 2的圆心O 2,连接O 1A 、O 1B 、O 2A 、O 2B ,则四边形O 1AO 2B 的形状为 。
10.如图所示,两个等圆⊙O 与⊙O ’相外切,则∠AOB 的度数为 。
圆与圆的位置关系(含答案)
圆与圆的位置关系班级:____________ 姓名:__________________一、选择题1.已知0<r<2+1,则两圆x2+y2=r2与(x-1)2+(y+1)2=2的位置关系是()A.外切B.相交C.外离D.内含2.若两圆x2+y2-2x+10y+1=0,x2+y2-2x+2y-m=0相交,则m的取值范围是() A.(-2,39) B.(0,81) C.(0,79) D.(-1,79)3.圆C1:x2+y2+4x-4y+7=0和圆C2:x2+y2-4x-10y+13=0的公切线有() A.2条B.3条C.4条D.0条4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是() A.(x-5)2+(y+7)2=25B.(x-5)2+(y+7)2=17或(x-5)2+(y+7)2=15C.(x-5)2+(y+7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=95.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系式是() A.a2-2a-2b-3=0B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0D.3a2+2b2+2a+2b+1=06.若集合A={(x,y)|x2+y2≤16},B={(x,y)|x2+(y-2)2≤a-1}且A∩B=B,则a的取值范围是() A.a≤1 B.a≥5 C.1≤a≤5 D.a≤57.两圆相交于A(1,3)和B(m,-1)两点,且两圆圆心都在直线x-y+c=0上,则m+c的值是() A.-1 B.2 C.3 D.08.若圆x2+y2-ax+2y+1=0与圆x2+y2=1关于直线y=x-1对称,且过点C(-a,a)的圆P与y轴相切,则圆心P的轨迹方程为()A.y2-2x+2y+8=0 B.y2+2x-2y+8=0C.y2+4x-4y+8=0 D.y2-4x+4y+8=0二、填空题9.若圆x2+y2=4与圆x2+y2-2ax+a2-1=0相内切,则a=________.10.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0 ,若A∩B中有且仅有一个元素,则r的值是__________.11.若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是__________.12.已知点M在圆C1:(x+3)2+(y-1)2=4上,点N在圆C2:(x-1)2+(y+2)2=4上,则|MN|的最大值是__________.三、解答题13.a为何值时,两圆x2+y2-2ax+4y+a2-5=0和x2+y2+2x-2ay+a2-3=0.(1)外切;(2)内切.14.点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.15.已知圆A:x2+y2+2x+2y-2=0,若圆B平分圆A的周长,且圆B的圆心在直线l:y=2x上,求满足上述条件的半径最小的圆B的方程.(选做题)16.如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=2PN.试建立适当的坐标系,求动点P的轨迹方程.答案 1.B 2.D 3.B 4.D 5.B 6.D 7.C 8.C9.±110.3或711.412.913.解 将两圆方程写成标准方程,得(x -a )2+(y +2)2=9,(x +1)2+(y -a )2=4.设两圆的圆心距为d ,则d 2=(a +1)2+(-2-a )2=2a 2+6a +5.(1)当d =3+2=5,即2a 2+6a +5=25时,两圆外切,此时a =-5或2.(2)当d =3-2=1,即2a 2+6a +5=1时,两圆内切,此时a =-1或-2.14.解 把圆的方程都化成标准形式,得(x +3)2+(y -1)2=9,(x +1)2+(y +2)2=4.如图,C 1的坐标是(-3,1),半径长是3;C 2的坐标是(-1,-2),半径长是2.所以,|C 1C 2|=(-3+1)2+(1+2)2=13.因此,|MN |的最大值是13+5.15.解 设圆B 的半径为r ,因为圆B 的圆心在直线l :y =2x 上,所以圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2,即x 2+y 2-2tx -4ty +5t 2-r 2=0.①因为圆A 的方程为x 2+y 2+2x +2y -2=0,②所以②-①,得两圆的公共弦所在直线的方程为(2+2t )x +(2+4t )y -5t 2+r 2-2=0.③因为圆B 平分圆A 的周长,所以圆A 的圆心(-1,-1)必须在公共弦上,于是将x =-1,y =-1代入方程③并整理得r 2=5t 2+6t +6=5⎝⎛⎭⎫t +352+215≥215, 所以当t =-35时,r min =215. 此时,圆B 的方程是⎝⎛⎭⎫x +352+⎝⎛⎭⎫y +652=215. 16.以O 1O 2所在直线为x 轴,O 1O 2的垂直平分线为y 轴,建立平面直角坐标系,则O 1(-2,0),O 2(2,0).设动点P(x ,y).由题意得|PM|2=|O 1P|2-|O 1M|2=(x +2)2+y 2-1.同理,可得|PN|2=(x -2)2+y 2-1.∵|PM|=2|PN|,∴|PM|2=2|PN|2.∴(x +2)2+y 2-1=2[(x -2)2+y 2-1],即x 2+y 2-12x +3=0.∴动点P 的轨迹方程是x 2+y 2-12x +3=0.。
与圆有关的位置关系练习题(带答案)
与圆有关的位置关系-题集一、与圆有关的位置关系A.点在圆上B.点在圆内C.点在圆外D.不能确定1.已知⊙的半径是,,则点与⊙的位置关系是( ).【答案】B 【解析】,所以点在圆内.【标注】【知识点】点与圆的位置关系A. B.C.D.2.如图,在网格中(每个小正方形的边长均为个单位)选取个格点(格线的交点称为格点).若以为圆心,为半径画圆,选取的格点中除点外恰好有个在圆内,则的取值范围为( ).【答案】B 【解析】如图,∵,,,∴,∴时,以为圆心,为半径画圆,选取的格点中除点外恰好有个在圆内.【标注】【知识点】点与圆的位置关系A.相切B.相交C.相切或相离D.相切或相交3.已知半径为,为直线上一点,若,则直线与的位置关系为( ).【答案】D【解析】因为垂线段最短,所以圆心到直线的距离小于等于.此时和半径的大小不确定,则直线和圆相交、相切都有可能.【标注】【知识点】直线和圆的位置关系4.圆的半径为,点到直线的距离为,、是方程的两根,当直线与圆相切时,的值为 .【答案】【解析】当直线与圆相切时,,∴,∴.【标注】【知识点】直线和圆的位置关系5.已知,是上的一点,,以为半径作.(1)(2)若,试判断与位置关系.若与相离,试求出需满足的条件.【答案】(1)(2)与位置关系是相切..【解析】(1)(2)过点作,垂足为,则.,,.当时,,与相切,即与位置关系是相切.当与相离时,,需满足的条件是:.【标注】【知识点】切线的判定定理二、切线的判定及性质A. B.C.D.或6.已知:⊙的半径为,圆心到直线的距离为,将直线沿垂直于的方向平移,使与⊙相切,则平移的距离是( ).【答案】D【解析】可以沿着沿垂直于的方向的两端平移,平移或都会与圆相切.【标注】【知识点】直线和圆的位置关系A. B. C. D.7.如图,的边与⊙相交于,两点,且经过圆心,边与⊙相切,切点为.如果,那么等于().【答案】A 【解析】连接,∵边与⊙相切,∴,∵,∴,∴,∵,∴,∴.【标注】【知识点】切线的性质定理【知识点】圆周角定理以及应用【能力】推理论证能力【能力】运算能力8.如图,在中,,以为直径的⊙交于点,过点作于点,交的延长线于点.求证:是⊙的切线.【答案】(1)证明见解析.【解析】(1)连接,∴,∵,∴,∴.∴.∵,∴.∴是⊙的切线.【标注】【知识点】圆与勾股9.如图,是⊙的直径,弦于点,在⊙的切线上取一点,使得 .求证 : 是⊙的切线 .【答案】(1)证明见解析 .【解析】(1)∵与⊙相切于点,∴ ,∴ ,∵,,∴ ,在四边形中, ,∴半径 ,∴是⊙的切线 .【标注】【知识点】圆与三角函数10.如图,在中,,以为直径的⊙交于点,切线交于点.求证:.【答案】(1)证明见解析.【解析】(1)如图,连接,∵是切线,为⊙的半径,∴,∴,∵,∴,∵,∴,∴.【标注】【知识点】圆与勾股三、切线长定理A. B. C. D.11.如图,、是⊙的切线,、分别为切点,交圆于点,若,,则的长为( ).【答案】C 【解析】如图,设交⊙于点,连接、.设⊙的半径为.∵、是⊙的切线,,∴,.∴,,∴,则,易证是等边三角形,则,又∵是直径,∴,∴.【标注】【知识点】30°特殊角的性质应用【知识点】切线长定理【知识点】切线的性质定理12.如图,在等腰直角三角形中,,点为的中点,以为圆心作⊙交于点、,⊙与、相切,切点分别为、,则的度数为.【答案】【解析】∵是圆的切线,∴,即,又∵是等腰直角三角形,∴,∴,∴.【标注】【知识点】切线的性质定理【知识点】等腰直角三角形的性质13.如图,是⊙的直径,、分别与⊙相切于点、,若,,则的长为.【答案】【解析】∵、分别与⊙相切.∴.∵.∴为等边三角形.∴.∴.∵为直径.∴.在中,.∴.【标注】【知识点】切线的性质定理【知识点】圆周角定理以及应用【知识点】圆周角定理的推论14.已知:如图,、分别是的切线,、为切点,是⊙的直径,,求的度数.【答案】.【解析】∵,∴,,∵、分别是⊙的切线,∴.【标注】【知识点】切线长定理【知识点】切线的性质定理。
圆与圆的位置关系课时练习题(附答案)
圆与圆的位置关系课时练习题(附答案)课时提升作业(二十五) 圆与圆的位置关系一、选择题(每小题3分,共18分) 1.(2014•重庆高一检测)圆C1:x2+y2-4x=0和C2:x2+y2-4y=0的位置关系是( ) A.外切 B.相离 C.内切 D.相交【解析】选D.C1的圆心为(2,0),r1=2, C2的圆心为(0,2),r2=2,|C1C2|= =2 ,所以|r1-r2|<|C1C2|<r1+r2,所以两圆相交. 2.圆C1:x2+y2=9和圆C2:(x-2)2+y2=1的位置关系为( ) A.相离 B.相交 C.外切 D.内切【解析】选D.两圆的圆心和半径为C1(0,0),r1=3, C2(2,0),r2=1,d= =2=r1-r2,所以两圆内切. 【变式训练】圆C1:(x-1)2+y2=4与圆C2:x2+y2-4x+2y+4=0的位置关系是( ) A.相离 B.相交 C.外切 D.内切【解析】选B.圆C2化为标准方程:(x-2)2+(y+1)2=1. 两圆的圆心距为d= = ,因为r1=2,r2=1,所以r1-r2<d<r1+r2. 所以两圆相交. 3.(2014•湖南高考)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( ) A.21 B.19 C.9 D.-11 【解题指南】根据两个圆的位置关系:两圆外切的充要条件是它们的圆心距等于半径和. 【解析】选C.圆C1:x2+y2=1的圆心为C1 ,半径为r1=1,圆C2:x2+y2-6x-8y+m=0的圆心为C2 ,半径为r2= ,所以 =5,r1+r2=1+ ,因为圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,所以5=1+ ,m=9. 4.已知圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则公共弦AB的垂直平分线的方程为( ) A.x+y+3=0 B.2x-y-5=0 C.3x-y-9=0 D.4x-3y+7=0 【解析】选C.由题意知公共弦AB的垂直平分线即为两圆圆心连线所在直线. 两圆的圆心分别为(2,-3),(3,0). 所以所求直线的斜率为k= =3,直线方程为3x-y-9=0. 5.(2014•广州高一检测)圆C1:x2+y2+4x-4y+7=0和圆C2:x2+y2-4x-10y+13=0的公切线的条数为( ) A.2 B.3 C.4 D.0 【解析】选B.C1的圆心为(-2,2),半径为r1=1. C2的圆心为(2,5),半径为r2=4. 因为圆心距d=5,r1+r2=5,所以两圆外切,由平面几何的知识得两圆有3条公切线. 6.已知半径为1cm的两圆外切,半径为2cm且和这两圆都相切的圆共有( ) A.3个 B.4个 C.2个 D.5个【解析】选D.要全面分析所有的情况,包括都外切,都内切,一内切一外切.这样的圆共有5个,如图,它们是�A,�B,�C,�D,�E. 二、填空题(每小题4分,共12分) 7.两圆x2+y2-6x=0和x2+y2=4的公共弦所在直线的方程是__________. 【解析】由x2+y2-6x=0 ① x2+y2-4=0 ② ①-②得:-6x+4=0,x= . 答案:x= 8.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=________. 【解析】由题意知两圆的圆心在直线y=x上,设C1(a,a),C2(b,b),可得(a-4)2+(a-1)2=a2, (b-4)2+(b-1)2=b2,即a,b是方程x2-10x+17=0的两根,a+b=10,ab=17, |C1C2|= = =8. 答案:8 9.(2013•泰州高一检测)若圆O1:x2+y2=5与圆O2:(x-m)2+y2=20(m∈R)相交于A,B 两点,且两圆在点A处的切线互相垂直,则线段AB的长度是________. 【解题指南】利用圆的性质,过两圆交点的切线过另一个圆的圆心,且相互垂直. 【解析】由题意,O1(0,0),O2(m,0), <|m|<3 ,O1A⊥AO2,m2=( )2+(2 )2=25,m=±5,AB=2× =4. 答案:4 三、解答题(每小题10分,共20分) 10.(2014•深圳高一检测)当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相切、相交、相离?【解析】将两圆的一般方程化为标准方程, C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k. 圆C1的圆心为C1(-2,3),半径长r1=1;圆C2的圆心为C2(1,7),半径长r2= (k<50),从而|C1C2|= =5. 当1+ =5,即k=34时,两圆外切. 当| -1|=5,即 =6,即k=14时,两圆内切. 当| -1|<5<1+ ,即14<k<34时,两圆相交. 当1+ <5,即34<k<50时,两圆相离. 11.(2013•淮阴高一检测)已知圆C1:x2+y2-2x-4y-13=0与圆C2:x2+y2-2ax-6y+a2+1=0(其中a>0)外切,且直线l:mx+y-7=0与C2相切,求: (1)圆C2的标准方程. (2)m的值. 【解析】(1)由题知C1:(x-1)2+(y-2)2=18, C2:(x-a)2+(y-3)2=8. 因为C1与C2外切,所以圆心距d=r1+r2,即 =3 +2 ,所以a=8或-6.因为a>0,所以a=8. 所以圆C2的标准方程为(x-8)2+(y-3)2=8. (2)由(1)知圆心C2(8,3),因为l与C2相切,所以圆心C2到直线l的距离d=r,即 =2 .所m=1或 .一、选择题(每小题4分,共16分) 1.(2014•武汉高一检测)已知圆A,圆B相切,圆心距为10cm,其中圆A的半径为4cm,则圆B的半径为( ) A.6cm或14cm B.10cm C.14cm D.无解【解析】选A.当两圆外切时,d=rA+rB, 10=4+rB,所以rB=6cm,当两圆内切时,rB-rA=10, rB=10+4=14(cm). 【误区警示】解答本题易忽视对内切、外切两种情况的讨论,致使错选. 2.(2014•上海高一检测)正方形ABCD中,AB=1,分别以A,C为圆心作两个半径为R,r(R>r)的圆,若�A与�C有2个交点,则R,r需满足的条件是( ) A.R+r> B.R-r< <R+r C.R-r> D.0<R-r< 【解析】选B.因为正方形ABCD中,AB=1,所以由勾股定理可得两圆的圆心距AC= ,因为�A与�C有2个交点,即两圆相交,所以圆心距大于两圆半径之差,并且小于两圆半径之和,因为R>r,所以R-r< <R+r. 3.(2014•天津高一检测)若圆C1:x2+y2+2ax+a2-4=0(a∈R)与圆C2:x2+y2-2by-1+b2=0(b∈R)外切,则a+b的最大值为( ) A.-3 B.-3 C.3 D.3 【解析】选D.圆C1:x2+y2+2ax+a2-4=0的标准方程为(x+a)2+y2=4,圆C2:x2+y2-2by-1+b2=0的标准方程为x2+(y-b)2=1. 因为两圆外切,所以 =3. 因为a2+b2≥2ab,所以2(a2+b2)≥(a+b)2,所以a+b≤3 ,所以a+b的最大值为3 . 4.(2014•西安高一检测)设集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2(r>0)},当M∩N=N时,r的取值范围是( ) A.[0, -1] B.[0,1] C.(0,2- ] D.(0,2) 【解析】选C.集合M表示以原点O(0,0)为圆心,半径等于2的圆面(圆及圆的内部),集合N表示以C(1,1)为圆心,半径等于r的圆面(圆及圆的内部). 当M∩N=N时,圆C内含或内切于圆O,故有|CO|≤2-r,即≤2-r,所以0<r≤2- . 二、填空题(每小题5分,共10分) 5.点M在圆心为C1的圆x2+y2+6x-2y+1=0上,点N在圆心为C2的圆x2+y2+2x+4y+1=0上,则|MN|的最大值为________. 【解题指南】首先确定两圆的位置关系并画出图形,由图形可知|MN|的最大值为圆心距与两圆半径的和. 【解析】把圆的方程都化成标准方程为(x+3)2+(y-1)2=9, (x+1)2+(y+2)2=4,如图,C1的坐标是(-3,1),半径是3; C2的坐标是(-1,-2),半径是2,所以|C1C2|= = . 因此,|MN|的最大值是 +5. 答案:+5 6.(2014•石家庄高一检测)已知圆C1:x2+y2+2x+ay-3=0和圆C2:x2+y2-4x-2y-9=0的公共弦长为2 ,则实数a的值为__________. 【解析】依题意,圆C1是以为圆心,以为半径的圆,圆C2是以(2,1)为圆心,以为半径的圆,因为圆C1与圆C2的公共弦长为2 ,两圆心之间的距离|C1C2| = = . 因为在圆C1中,由弦长之半,弦心距d1及圆的半径组成直角三角形,所以d1= = ,同理可求,圆C2中的弦心距d2=2 . 因为d1+d2=|C1C2|,所以 = +2 ,两边平方,得 +a+10= -2+8+4 • ,整理得:7a2-8a-80=0,即(a-4)(7a+20)=0. 所以a=4或a=- . 答案:4或- 三、解答题(每小题12分,共24分) 7.圆O1的方程为x2+(y+1)2=4,圆O2的圆心O2(2,1). (1)若圆O2与圆O1外切,求圆O2的方程,并求公切线方程. (2)若圆O2与圆O1交于A,B两点,且|AB|=2 ,求圆O2的方程. 【解析】(1)由两圆外切,所以|O1O2|=r1+r2,r2=|O1O2|-r1=2( -1),故圆O2的方程是:(x-2)2+(y-1)2=4( -1)2,两圆的方程相减,即得两圆公切线的方程x+y+1-2 =0. (2)设圆O2的方程为:(x-2)2+(y-1)2= (r2>0),因为圆O1的方程为:x2+(y+1)2=4,此两圆的方程相减,即得两圆公共弦AB所在直线的方程:4x+4y+ -8=0. ① 作O1H⊥AB,则|AH|= |AB|= ,所以O1H= ,由圆心O1(0,-1)到直线①的距离得 = ,得=4或 =20,故圆O2的方程为: (x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.8.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M, N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为r1=13;圆弧C2过点A(29,0). (1)求圆弧C2所在圆的方程. (2)曲线C上是否存在点P,满足|PA|= |PO|?若存在,指出有几个这样的点;若不存在,请说明理由. 【解析】(1)由题意得,圆弧C1所在圆的方程为x2+y2=169,令x=5,解得M(5,12),N(5,-12),又C2过点A(29,0),设圆弧C2所在圆方程为x2+y2+Dx+Ey+F=0,则解得所以圆弧C2所在圆的方程为x2+y2-28x-29=0. (2)假设存在这样的点P(x,y),则由|PA|= |PO|,得 (x-29)2+y2=30(x2+y2),即x2+y2+2x-29=0. 由解得x=-70(舍去);由解得x=0(舍去). 所以这样的点P不存在.。
2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)
2.5 直线与圆、圆与圆的位置关系(精练)【题组一 直线与圆的位置关系】1.(2021·江西南昌市)直线4320x y --=与圆+-+-=2224110x y x y 的位置关系是( )A .相交B .相切C .相离D .以上都不对2.(2021·全国)直线1x y +=和圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .不确定3.(2021·白银市第十中学)直线l :10mx y m -+-=与圆C :22(1)5x y +-=的位置关系是( ) A .相交B .相切C .相离D .不确定4.(2021·北京高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为( ) A .相交B .相切C .相离D .不能确定5.(2021·北京高二期末)直线34x y b +=与圆22(1)(1)1x y -+-=相切,则b 的值是( ) A .-2或12B .2或-12C .-2或-12D .2或126.(2021·全国高二课时练习)若直线0x y +=与圆()()2212x m y -+-=相切,则m =( ) A .1B .1-C .1-或3D .3-或17.(2021·浙江高二期末)已知直线y x b =+与曲线3y =b 的取值范围是( )A .[1,1-+B .(1-+C .(1-D .(11]--8.(2021·浙江高二期末)直线()20ax y a a R --=∈与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定9.(2021·全国)(多选)直线l 与圆C 有公共点,则直线l 与圆C 的位置关系可能是( ) A .相交 B .相切 C .相离 D .不能确定10.(2021·全国)(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( )A .圆心坐标为(1,-2)B .圆心到直线的距离为2C .直线与圆相交 D11.(2021·内蒙古包头市·高二月考(理))已知(),P a b 是圆221x y +=内一点,则直线1ax by +=与圆221x y +=公共点的个数为( )A .0B .1C .2D .以上都有可能【题组二 直线与圆的弦长】1.(2021·陕西安康市·高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于A ,B 两点,则||AB = 。
高中数学 2.3.4圆与圆的位置关系课时作业(含解析)新人教B版必修2-新人教B版高一必修2数学试题
【成才之路】2015-2016学年高中数学圆与圆的位置关系课时作业新人教B版必修2一、选择题1.(2015·某某某某市高一期末测试)圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是( )A.外切B.内切C.外离D.内含[答案] A[解析]圆x2+y2=1的圆心C1(0,0),半径r1=1,圆x2+y2-6y+5=0的圆心C2(0,3),半径r2=2,∴两圆心的距离|C1C2|=0-02+3-02=3,∴|C1C2|=r1+r2=3,故两圆外切.故选A.2.两圆x2+y2=r2,(x-3)2+(y+4)2=4外切,则正实数r的值为( )A.1 B.2C.3 D.4[答案] C[解析]两圆心的距离d=5,由题意,得r+2=5,∴r=3.3.(2015·某某某某一中高一期末测试)圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程是( )A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0[答案] C[解析]圆x2+y2-4x+6y=0和圆x2+y2-6x=0的圆心坐标分别为(2,-3)和(3,0),AB的垂直平分线必过两圆圆心,只有选项C正确.4.两圆C1:x2+y2+2x+2y-2=0和C2:x2+y2-4x-2y+1=0的公切线有且仅有( ) A.1条B.2条C.3条D.4条[答案] B[解析]⊙C1圆心C1(-1,-1),半径r1=2,⊙C2圆心C2(2,1),半径r2=2,|C1C2|=13,0<13<4,∴两圆相交.5.圆(x -2)2+(y +3)2=2上与点(0,-5)距离最大的点的坐标是( ) A .(1,-2) B .(3,-2) C .(2,-1) D .(2+2,2-3)[答案] B[解析] 验证法:所求的点应在圆心(2,-3)与点(0,-5)确定的直线x -y -5=0上,故选B.6.动点P 与定点A (-1,0),B (1,0)连线的斜率之积为-1,则P 点的轨迹方程为( ) A .x 2+y 2=1 B .x 2+y 2=1(x ≠±1) C .x 2+y 2=1(x ≠0) D .y =1-x 2[答案] B[解析] 直接法,设P (x ,y ),由k PA =y x +1,k PB =y x -1及题设条件yx +1·yx -1=-1(x ≠±1)知选B.二、填空题7.(2015·某某某某市一中高一期末测试)圆x 2+y 2+6x -7=0和圆x 2+y 2+6y -27=0的位置关系是________.[答案] 相交[解析] 圆x 2+y 2+6x -7=0的圆心为O 1(-3,0),半径r 1=4,圆x 2+y 2+6y -27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=-3-02+0+32=32,∴r 2-r 1<|O 1O 2|<r 1+r 2. 故两圆相交.8.两圆x 2+y 2-6x =0和x 2+y 2=4的公共弦所在直线的方程是____________. [答案]x =23[解析] 两圆的方程x 2+y 2-6x =0和x 2+y 2=4相减,得公共弦所在直线的方程为x =23. 三、解答题9.判断下列两圆的位置关系.(1)C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0; (2)C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0;(3)C 1:x 2+y 2-4x -6y +9=0,C 2:x 2+y 2+12x +6y -19=0; (4)C 1:x 2+y 2+2x -2y -2=0,C 2:x 2+y 2-4x -6y -3=0.[解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=2-12+-12= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),r1=2,圆C2的圆心坐标为(-6,-3),r2=8,d=|C1C2|=2+62+3+32=10.∵r1+r2=10,∴d=r1+r2,两圆外切.(4)∵C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),r1=2,圆C2的圆心坐标为(2,3),r2=4,d=|C1C2|=2+12+3-12=13.∵r1+r2=6,r2-r1=2,∴r2-r1<d<r1+r2,两圆相交.10.已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l:mx+y-7=0与C2相切.求:(1)圆C2的标准方程;(2)m的值.[解析](1)由题知C1:(x-1)2+(y-2)2=18,C2:(x-a)2+(y-3)2=8.因为C1与C2相外切,所以圆心距d=r1+r2,即a-12+3-22=32+22,所以a=8或-6(舍去).所以圆C2的标准方程为(x-8)2+(y-3)2=8.(2)由(1)知圆心C 2(8,3),因为l 与C 2相切, 所以圆心C 2到直线l 的距离d =r , 即|8m +3-7|m 2+1=22,所以m =1或17.一、选择题1.半径为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程是( ) A .(x -4)2+(y -6)2=6B .(x +4)2+(y -6)2=6或(x -4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x +4)2+(y -6)2=36或(x -4)2+(y -6)2=36 [答案] D[解析] 由题意可设圆的方程为(x -a )2+(y -6)2=36, 由题意,得a 2+9=5,∴a 2=16,∴a =±4.2.过圆x 2+y 2-2x +4y -4=0内的点M (3,0)作一条直线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=0[答案] A[解析] 圆x 2+y 2-2x +4y -4=0的圆心C (1,-2),当CM ⊥l 时,l 截圆所得的弦最短,k CM =-2-01-3=1,∴k l =-1,故所求直线l 的方程为y -0=-(x -3),即x +y -3=0.二、填空题3.⊙O :x 2+y 2=1,⊙C :(x -4)2+y 2=4,动圆P 与⊙O 和⊙C 都外切,动圆圆心P 的轨迹方程为______________________.[答案] 60x 2-4y 2-240x +225=0[解析]⊙P 与⊙O 和⊙C 都外切,设⊙P 的圆心P (x ,y ),半径为R , 则|PO |=x 2+y 2=R +1, |PC |=x -42+y 2=R +2,∴x -42+y 2-x 2+y 2=1,移项、平方化简得:60x 2-4y 2-240x +225=0.4.已知集合A ={(x ,y )|y =49-x 2},B ={(x ,y )|y =x +m },且A ∩B ≠∅,则m 的取值X 围是________________.[答案] -7≤m ≤7 2[解析] 由A ∩B ≠∅,即直线y =x +m 与半圆y =49-x 2有交点,如图所示.如图可知,-7≤m ≤7 2. 三、解答题5.求经过两圆x 2+y 2-2x -3=0与x 2+y 2-4x +2y +3=0的交点,且圆心在直线2x -y =0上的圆的方程.[解析] 解法一:由两圆方程联立求得交点A (1,-2),B (3,0),设圆心C (a ,b ),则由|CA |=|CB |及C 在直线2x -y =0上,求出a =13,b =23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.解法二:同上求得A (1,-2)、B (3,0),则圆心在线段AB 的中垂线y =-x +1上,又在y =2x 上,得圆心坐标⎝ ⎛⎭⎪⎫13,23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.6.求⊙C 1:x 2+y 2-2y =0与⊙C 2:x 2+y 2-23x -6=0的公切线方程. [解析]⊙C 1:x 2+(y -1)2=12,圆心C 1(0,1),半径r =1, ⊙C 2:(x -3)2+y 2=32,圆心C 2(3,0),半径R =3,圆心距|C 1C 2|=2,∴|C 1C 2|=R -r ,故两圆内切,其公切线有且仅有一条过该两圆的公共点(切点),又由内切两圆的连心线过切点且垂直于两圆的公切线知,切点在直线C 1C 2上, ∵C 1C 2:x +3y -3=0,∴切线斜率k = 3.设切线方程为y =3x +b ,由圆心C 1(0,1)到切线距离d =1,得|-1+b |2=1,∴b =3或-1.由C 2(3,0)到切线距离d ′=3,得|3+b |2=3,∴b =3或-9,∴b =3,∴公切线方程为y =3x +3,即3x -y +3=0.7.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程.[解析] 解法一:设圆B 的半径为r ,∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2,即x 2+y 2-2tx -4ty +5t 2-r 2=0. ①∵圆A 的方程x 2+y 2+2x +2y -2=0. ②∴②-①,得两圆的公共弦方程(2+2t )x +(2+4t )y -5t 2+r 2-2=0. ③又∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③,并整理得:r 2=5t 2+6t +6=5⎝ ⎛⎭⎪⎫t +352+215≥215,所以t =-35时,r min=215. 此时,圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.解法二:如图,设圆A 、圆B 的圆心分别为A 、B .则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M 、N 两点.∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M 、N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4. 欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得B ⎝ ⎛⎭⎪⎫-35,-65,r min =215, 故圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.。
高中数学必修二 圆与圆的位置关系 附答案解析版
4.2.2圆与圆的位置关系基础巩固1.圆C 1:(x+2)2+(y-2)2=1与圆C 2:(x-2)2+(y-5)2=16的位置关系是()A.外离B.相交C.内切D.外切2.圆C 1:x 2+y 2+4x+8y-5=0与圆C 2:x 2+y 2+4x+4y-1=0的位置关系为()A.相交B.外切C.内切D.外离3.已知圆A 与圆B 相切,圆心距为10cm,其中圆A 的半径为4cm,则圆B 的半径为()A .6cm 或14cmB .10cmC .14cmD .无解4.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x-a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是()A.{1,-1}B.{3,-3}C.{1,-1,3,-3}D.{5,-5,3,-3}5.圆x 2+y 2+4x-4y+7=0与圆x 2+y 2-4x+10y+13=0的公切线的条数是()A.1B.2C.3D.46.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程为()A .(x-4)2+(y+3)2=16B .(x+4)2+(y-3)2=36C .(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36D .(x+4)2+(y-3)2=16或(x+4)2+(y-3)2=367.圆C 1:x 2+y 2-12x-2y-13=0和圆C 2:x 2+y 2+12x+16y-25=0的公共弦所在的直线方程是.8.若圆C 1:(x-3)2+(y-4)2=16与圆C 2:x 2+y 2=m (m>0)内切,则实数m=.9.已知圆O :x 2+y 2=25和圆C :x 2+y 2-4x-2y-20=0相交于A ,B 两点,则公共弦AB 的长为.10.求与圆O :x 2+y 2=1外切,切点为1,22P ⎛-- ⎝⎭,半径为2的圆的方程.能力提升1.圆C 1:(x+1)2+(y+2)2=4与圆C 2:(x+2)2+(y+3)2=1的位置关系是()A.外离B.外切C.相交D.内切2.若圆x 2+y 2=4与圆x 2+y 2+ay-2=0的公共弦的长度为,则常数a 的值为()A .2±B .2C .-2D .4±3.已知圆C :(x-3)2+(y-4)2=1和两点A (-m ,0),B (m ,0)(m>0).若圆C 上存在点P ,使得90APB ∠=︒,则m的最大值为()A .7B .6C .5D .4★4.若圆(x-a )2+(y-a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值范围是()A.22⎛ ⎝⎭B.22⎛-- ⎝⎭C.,2222⎛⎛-- ⎝⎭⎝⎭D.22⎛⎫⎪ ⎪⎝⎭5.若点A (a ,b )在圆x 2+y 2=4上,则圆(x-a )2+y 2=1与圆x 2+(y-b )2=1的位置关系是.6.求和圆(x-2)2+(y+1)2=4相切于点(4,-1)且半径为1的圆的方程.7.一动圆与圆C 1:x 2+y 2+6x+8=0外切,与圆C 2:x 2+y 2-6x+8=0内切,求动圆圆心的轨迹方程.★8.圆O 1的方程为x 2+(y+1)2=4,圆O 2的圆心O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且AB =求圆O 2的方程.参考答案基础巩固1.【解析】圆C 1的圆心是C 1(-2,2),半径r 1=1,圆C 2的圆心是C 2(2,5),半径r 2=4,则圆心距|C 1C 2|=5.因为|C 1C 2|=r 1+r 2,所以两圆外切.【答案】D2.【解析】由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d=|C 1C 2|=2,所以d=|r 1-r 2|.故两圆内切.【答案】C3.【解析】令圆A 、圆B 的半径分别为r 1,r 2,当两圆外切时,r 1+r 2=10,所以r 2=10-r 1=10-4=6;当两圆内切时,|r 1-r 2|=10,即|4-r 2|=10,r 2=14或r 2=-6(舍),即圆B 的半径为6cm 或14cm .【答案】A4.【解析】因为两个圆有且只有一个公共点,所以两个圆内切或外切.当两圆内切时,|a|=1;当两圆外切时,|a|=3,即实数a 的取值集合是{1,-1,3,-3}.故选C .【答案】C5.【解析】两圆的圆心分别为C 1(-2,2),C 2(2,-5),则两圆的圆心距d =又半径分别为r 1=1,r 2=4,则d>r 1+r 2,即两圆外离,因此它们有4条公切线.【答案】D6.【解析】设所求圆的方程为(x-4)2+(y+3)2=r 2(r>0).因为圆C 与圆O 相切,所以|r-1|=5或r+1=5,解得r=6或r=4(负值舍去).故所求圆的方程为(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36.【答案】C7.【解析】两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.【答案】4x+3y-2=08.【解析】圆心距5d =,由题意得两圆半径差的绝对值45-=,解得m=81.【答案】819.【解析】两圆方程相减得弦AB 所在的直线方程为4x+2y-5=0.圆x 2+y 2=25的圆心到直线AB 的距离d ==故公共弦AB 的长为AB =10.【解析】设所求圆的圆心为C (a ,b ),则所求圆的方程为(x-a )2+(y-b )2=4.因为两圆外切,切点为1,22P ⎛-- ⎝⎭,所以|OC|=r 1+r 2=1+2=3,|CP|=2.所以2222913422a b a b ⎧+=⎪⎪⎛⎨⎛⎫+++= ⎪ ⎪ ⎝⎭⎪⎝⎭⎩,解得322a b ⎧=-⎪⎪⎨⎪=-⎪⎩.所以圆心C 的坐标为333,22⎛-- ⎝⎭,所求圆的方程为223422x y ⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭.能力提升1.【解析】圆心距d =,两圆半径的和为2+1=3,两圆半径之差的绝对值为1,1212r r d r r -<<+,所以两圆的位置关系是相交.【答案】C2.【解析】两圆方程左右两边分别相减得公共弦所在直线的方程为ay+2=0.由题意知0a ≠.圆x 2+y 2=4的圆心到直线ay+2=0的距离为2a,又公共弦长为,所以=解得2a =±.【答案】A3.【解析】因为A (-m ,0),B (m ,0)(m>0),所以使90APB ∠=︒的点P 在以线段AB 为直径的圆上,该圆的圆心为O (0,0),半径为m.而圆C 的圆心为C (3,4),半径为1.由题意知点P 在圆C 上,故两圆有公共点.所以两圆的位置关系为外切、相交或内切,故11m CO m -≤≤+,即151m m -≤≤+,解得46m ≤≤.所以m 的最大值为6.故选B .【答案】B4.【解析】圆(x-a )2+(y-a )2=4的圆心C (a ,a ),半径r=2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R=1,则这两个圆相交,圆心距d =,则|r-R|<d<r+R ,则13<<,所以22a<<,所以22a-<<或22a <<.【答案】C5.【解析】因为点A (a ,b )在圆x 2+y 2=4上,所以a 2+b 2=4.又圆x 2+(y-b )2=1的圆心C 1(0,b ),半径r 1=1,圆(x-a )2+y 2=1的圆心C 2(a ,0),半径r 2=1,则122d C C ===,所以d=r 1+r 2.所以两圆外切.【答案】外切6.【解析】设所求圆的圆心为(a ,b ),1=.①若两圆外切,则有123+=.②由①②,解得5,1a b ==-,所以所求圆的方程为(x-5)2+(y+1)2=1.若两圆内切,则有211-=.③由①③,解得3,1a b ==-,所以所求圆的方程为(x-3)2+(y+1)2=1.综上,可知所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.7.【解析】圆C 1:(x+3)2+y 2=1,所以圆心为(-3,0),半径r 1=1;圆C 2:(x-3)2+y 2=1,所以圆心为(3,0),半径r 2=1.设动圆圆心为(x ,y ),半径为r ,由题意得1r =+1r =-,2,化简并整理,得8x 2-y 2=8(1x ≥).所以动圆圆心的轨迹方程是8x 2-y 2=8(1x ≥).8.【解析】(1)设圆O 1的半径为r 1,圆O 2的半径为r 2.因为两圆外切,所以|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=1-),故圆O 2的方程是(x-2)2+(y-1)2=1-)2.(2)设圆O 2的方程为(x-2)2+(y-1)2=22r .因为圆O 1的方程为x 2+(y+1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在直线的方程224480x y r ++-=,①作O 1H ⊥AB ,则|AH|=12,O 1,由圆心O 1(0,-1)到直线①的距离得=,得224r =或2220r =,故圆O 2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与圆的位置关系课时练习题(附答案)课时提升作业(二十五) 圆与圆的位置关系一、选择题(每小题3分,共18分) 1.(2014•重庆高一检测)圆C1:x2+y2-4x=0和C2:x2+y2-4y=0的位置关系是( ) A.外切 B.相离 C.内切 D.相交【解析】选D.C1的圆心为(2,0),r1=2, C2的圆心为(0,2),r2=2,|C1C2|= =2 ,所以|r1-r2|<|C1C2|<r1+r2,所以两圆相交. 2.圆C1:x2+y2=9和圆C2:(x-2)2+y2=1的位置关系为( ) A.相离 B.相交 C.外切 D.内切【解析】选D.两圆的圆心和半径为C1(0,0),r1=3, C2(2,0),r2=1,d= =2=r1-r2,所以两圆内切. 【变式训练】圆C1:(x-1)2+y2=4与圆C2:x2+y2-4x+2y+4=0的位置关系是( ) A.相离 B.相交 C.外切 D.内切【解析】选B.圆C2化为标准方程:(x-2)2+(y+1)2=1. 两圆的圆心距为d= = ,因为r1=2,r2=1,所以r1-r2<d<r1+r2. 所以两圆相交. 3.(2014•湖南高考)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( ) A.21 B.19 C.9 D.-11 【解题指南】根据两个圆的位置关系:两圆外切的充要条件是它们的圆心距等于半径和. 【解析】选C.圆C1:x2+y2=1的圆心为C1 ,半径为r1=1,圆C2:x2+y2-6x-8y+m=0的圆心为C2 ,半径为r2= ,所以 =5,r1+r2=1+ ,因为圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,所以5=1+ ,m=9. 4.已知圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则公共弦AB的垂直平分线的方程为( ) A.x+y+3=0 B.2x-y-5=0 C.3x-y-9=0 D.4x-3y+7=0 【解析】选C.由题意知公共弦AB的垂直平分线即为两圆圆心连线所在直线. 两圆的圆心分别为(2,-3),(3,0). 所以所求直线的斜率为k= =3,直线方程为3x-y-9=0. 5.(2014•广州高一检测)圆C1:x2+y2+4x-4y+7=0和圆C2:x2+y2-4x-10y+13=0的公切线的条数为( ) A.2 B.3 C.4 D.0 【解析】选B.C1的圆心为(-2,2),半径为r1=1. C2的圆心为(2,5),半径为r2=4. 因为圆心距d=5,r1+r2=5,所以两圆外切,由平面几何的知识得两圆有3条公切线. 6.已知半径为1cm的两圆外切,半径为2cm且和这两圆都相切的圆共有( ) A.3个 B.4个 C.2个 D.5个【解析】选D.要全面分析所有的情况,包括都外切,都内切,一内切一外切.这样的圆共有5个,如图,它们是�A,�B,�C,�D,�E. 二、填空题(每小题4分,共12分) 7.两圆x2+y2-6x=0和x2+y2=4的公共弦所在直线的方程是__________. 【解析】由x2+y2-6x=0 ① x2+y2-4=0 ② ①-②得:-6x+4=0,x= . 答案:x= 8.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=________. 【解析】由题意知两圆的圆心在直线y=x上,设C1(a,a),C2(b,b),可得(a-4)2+(a-1)2=a2, (b-4)2+(b-1)2=b2,即a,b是方程x2-10x+17=0的两根,a+b=10,ab=17, |C1C2|= = =8. 答案:8 9.(2013•泰州高一检测)若圆O1:x2+y2=5与圆O2:(x-m)2+y2=20(m∈R)相交于A,B 两点,且两圆在点A处的切线互相垂直,则线段AB的长度是________. 【解题指南】利用圆的性质,过两圆交点的切线过另一个圆的圆心,且相互垂直. 【解析】由题意,O1(0,0),O2(m,0), <|m|<3 ,O1A⊥AO2,m2=( )2+(2 )2=25,m=±5,AB=2× =4. 答案:4 三、解答题(每小题10分,共20分) 10.(2014•深圳高一检测)当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相切、相交、相离?【解析】将两圆的一般方程化为标准方程, C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k. 圆C1的圆心为C1(-2,3),半径长r1=1;圆C2的圆心为C2(1,7),半径长r2= (k<50),从而|C1C2|= =5. 当1+ =5,即k=34时,两圆外切. 当| -1|=5,即 =6,即k=14时,两圆内切. 当| -1|<5<1+ ,即14<k<34时,两圆相交. 当1+ <5,即34<k<50时,两圆相离. 11.(2013•淮阴高一检测)已知圆C1:x2+y2-2x-4y-13=0与圆C2:x2+y2-2ax-6y+a2+1=0(其中a>0)外切,且直线l:mx+y-7=0与C2相切,求: (1)圆C2的标准方程. (2)m的值. 【解析】(1)由题知C1:(x-1)2+(y-2)2=18, C2:(x-a)2+(y-3)2=8. 因为C1与C2外切,所以圆心距d=r1+r2,即 =3 +2 ,所以a=8或-6.因为a>0,所以a=8. 所以圆C2的标准方程为(x-8)2+(y-3)2=8. (2)由(1)知圆心C2(8,3),因为l与C2相切,所以圆心C2到直线l的距离d=r,即 =2 .所m=1或 .一、选择题(每小题4分,共16分) 1.(2014•武汉高一检测)已知圆A,圆B相切,圆心距为10cm,其中圆A的半径为4cm,则圆B的半径为( ) A.6cm或14cm B.10cm C.14cm D.无解【解析】选A.当两圆外切时,d=rA+rB, 10=4+rB,所以rB=6cm,当两圆内切时,rB-rA=10, rB=10+4=14(cm). 【误区警示】解答本题易忽视对内切、外切两种情况的讨论,致使错选. 2.(2014•上海高一检测)正方形ABCD中,AB=1,分别以A,C为圆心作两个半径为R,r(R>r)的圆,若�A与�C有2个交点,则R,r需满足的条件是( ) A.R+r> B.R-r< <R+r C.R-r> D.0<R-r< 【解析】选B.因为正方形ABCD中,AB=1,所以由勾股定理可得两圆的圆心距AC= ,因为�A与�C有2个交点,即两圆相交,所以圆心距大于两圆半径之差,并且小于两圆半径之和,因为R>r,所以R-r< <R+r. 3.(2014•天津高一检测)若圆C1:x2+y2+2ax+a2-4=0(a∈R)与圆C2:x2+y2-2by-1+b2=0(b∈R)外切,则a+b的最大值为( ) A.-3 B.-3 C.3 D.3 【解析】选D.圆C1:x2+y2+2ax+a2-4=0的标准方程为(x+a)2+y2=4,圆C2:x2+y2-2by-1+b2=0的标准方程为x2+(y-b)2=1. 因为两圆外切,所以 =3. 因为a2+b2≥2ab,所以2(a2+b2)≥(a+b)2,所以a+b≤3 ,所以a+b的最大值为3 . 4.(2014•西安高一检测)设集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2(r>0)},当M∩N=N时,r的取值范围是( ) A.[0, -1] B.[0,1] C.(0,2- ] D.(0,2) 【解析】选C.集合M表示以原点O(0,0)为圆心,半径等于2的圆面(圆及圆的内部),集合N表示以C(1,1)为圆心,半径等于r的圆面(圆及圆的内部). 当M∩N=N时,圆C内含或内切于圆O,故有|CO|≤2-r,即≤2-r,所以0<r≤2- . 二、填空题(每小题5分,共10分) 5.点M在圆心为C1的圆x2+y2+6x-2y+1=0上,点N在圆心为C2的圆x2+y2+2x+4y+1=0上,则|MN|的最大值为________. 【解题指南】首先确定两圆的位置关系并画出图形,由图形可知|MN|的最大值为圆心距与两圆半径的和. 【解析】把圆的方程都化成标准方程为(x+3)2+(y-1)2=9, (x+1)2+(y+2)2=4,如图,C1的坐标是(-3,1),半径是3; C2的坐标是(-1,-2),半径是2,所以|C1C2|= = . 因此,|MN|的最大值是 +5. 答案:+5 6.(2014•石家庄高一检测)已知圆C1:x2+y2+2x+ay-3=0和圆C2:x2+y2-4x-2y-9=0的公共弦长为2 ,则实数a的值为__________. 【解析】依题意,圆C1是以为圆心,以为半径的圆,圆C2是以(2,1)为圆心,以为半径的圆,因为圆C1与圆C2的公共弦长为2 ,两圆心之间的距离|C1C2| = = . 因为在圆C1中,由弦长之半,弦心距d1及圆的半径组成直角三角形,所以d1= = ,同理可求,圆C2中的弦心距d2=2 . 因为d1+d2=|C1C2|,所以 = +2 ,两边平方,得 +a+10= -2+8+4 • ,整理得:7a2-8a-80=0,即(a-4)(7a+20)=0. 所以a=4或a=- . 答案:4或- 三、解答题(每小题12分,共24分) 7.圆O1的方程为x2+(y+1)2=4,圆O2的圆心O2(2,1). (1)若圆O2与圆O1外切,求圆O2的方程,并求公切线方程. (2)若圆O2与圆O1交于A,B两点,且|AB|=2 ,求圆O2的方程. 【解析】(1)由两圆外切,所以|O1O2|=r1+r2,r2=|O1O2|-r1=2( -1),故圆O2的方程是:(x-2)2+(y-1)2=4( -1)2,两圆的方程相减,即得两圆公切线的方程x+y+1-2 =0. (2)设圆O2的方程为:(x-2)2+(y-1)2= (r2>0),因为圆O1的方程为:x2+(y+1)2=4,此两圆的方程相减,即得两圆公共弦AB所在直线的方程:4x+4y+ -8=0. ① 作O1H⊥AB,则|AH|= |AB|= ,所以O1H= ,由圆心O1(0,-1)到直线①的距离得 = ,得=4或 =20,故圆O2的方程为: (x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.8.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M, N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为r1=13;圆弧C2过点A(29,0). (1)求圆弧C2所在圆的方程. (2)曲线C上是否存在点P,满足|PA|= |PO|?若存在,指出有几个这样的点;若不存在,请说明理由. 【解析】(1)由题意得,圆弧C1所在圆的方程为x2+y2=169,令x=5,解得M(5,12),N(5,-12),又C2过点A(29,0),设圆弧C2所在圆方程为x2+y2+Dx+Ey+F=0,则解得所以圆弧C2所在圆的方程为x2+y2-28x-29=0. (2)假设存在这样的点P(x,y),则由|PA|= |PO|,得 (x-29)2+y2=30(x2+y2),即x2+y2+2x-29=0. 由解得x=-70(舍去);由解得x=0(舍去). 所以这样的点P不存在.。