连续介质力学

合集下载

连续介质力学

连续介质力学

一、引论连续介质力学研究物体的宏观力学微观粒子性质.在宏观现象中,物体变化的最小特征尺度远大于原子的尺度,虽然物理上物体是物质点的集合,质量连续性假设对物休的宏观力学过程的研究却是合理的,在连续介质力学中可以对物体进行无限的分割,也就是说,可以用场的观点来描述物体的内部变化和作用过程.质量连续性假设要求物体连续地充满它所占据的空间,即可以用三维欧氏空间的一个开集表示物体的客观存在、指示其位置.开集中的一点表征占据该位置点的一个微小介质团,这样的介质团我们称之为物体单元,开集中所有点表征的物体单元组成了物体.若要用严格的数学理性推演连续介质力学,必须知道物体单元在数学上的确切涵义,即要回答: 表征物体单元的点是开集还是闭集?若是闭集,则物体单元表现为数学上离散的点,物体是连续点的集合,可以用构形(物体在空间所占的区域)表示;若是开集,则物体单元表现为数学上点的无穷小邻域,物体是作为拓扑基的所有点邻域的并集,可以用微分流形(容许拓扑结构改变的物体表示空间)表示.从逻辑上看,目前的连续介质力学是从经典质点力学类推得出的,它一方面把物体看作连续的质点系,物体单元具有离散特征,一方面又以场的观点看待物体的内部变化和受力,物体单元变化特征要求是连续的.在质量连续性假设下,物体单元虽然宏观意义上可以看作无穷小但总还是有尺度内涵的,即具有连续性适用的典型尺度,而经典力学中的质点却没有尺度内涵德冈辰雄指出“, 连续介质无论怎样分割也不会成为质点,质点无论怎样连续也不是连续介质”我们知道,经典力学中的质点在数学上表现为三维欧氏家间中的一点(闭集),把表征物体单元的数学上的点看作闭集,无异于沿用质点力学的观点,抹杀连续介质与质点系的区别,这样导出的连续介质力学(简称为质点观点的连续介质力学)是质点观点和场观点的大杂烩,这样的一种结合虽然使连续介质力学在其发展过程中可以同时借鉴经典力学和场论的一些成果,却妨碍了连续介质力学的现代发展,比如运用场论的现代发展—规范理论于连续介质时就显得不伦不类.实际上,质点观点在赋予物体变化连续性的同! 讨,对物体的表示空间强加了过分的约束.限制了场的观点的发挥,使连续介质力学在描述物体复杂宏观力学过程时困难重重.为了使连续介质力学摆脱质点观点的限制,.采用与现代场论一致的基本观点,物体单元用数学上的开集表示是必须的,这时连续性可以用邻域而不是距离定义从而与拓扑学的概念一致,称之为拓扑观点.我们知道,拓扑学是现代微分几何的概念基础,现代微分几何是规范场论的数学基础,因此,拓扑观点的连续介质力学是连续介质的纯粹的场理论,它可以容许物体空间拓扑结构的改变,能够刻划物休的复杂变化过程.可见,物体单元的开集表示与场的现代观点是同气共枝的,由此导出的理论保证了数学概念上的连贯、逻辑上的统一,并且能接纳耗散结构作为物体复杂变化的物理基础.二、流动与变形物体的流动由物沐单元的运动组合而成,物体的变形由物件单元的变形组合而成.物体单元不同于质点: 物体单元的开集表达隐含着单元具有尺度内涵,作为开集的点不仅有平移特征还有方向特征和尺度特征,从而可以独立地体现介质的变形和转动.物体单元的这些特征预示着单元的变形和单元的运动是两个不同的变化过程,物体单元的变形表现为点(及其邻域)的特征的改变,包括尺度的改变和方向的改变,物体单元的运动则表现为点(及其邻域)的平移(空问位置的改变)和转动(方向的改变),可见,单元的变形与其空间位置无关,单元的运动与其尺度特征无关.与此不同,作为闭集的点不具备尺度特征和方向特征,不能独立地体现介质的变形和转动,介质的变形是通过介质点之间距离及相对方位的改变体现的,介质的转动也是通过不同介质点之间的方位关系体现的,这就客观上对物体表示空间提出了要求,难以刻划复杂的变形过程,而单元的运动由于缺乏方向性,对物休单元具有曲线运动的流运过程就无法准确把握.三、局部与整体物体的局部变化是指组成物休的各个单元的变化,物体的整体变化是指物体整体特征或性质的变化.物体单元的变化除了运动和变形外,还有该单元的相邻其它单元的物质交换,这种交换可能是微观的(分子级的),也可能是细观的(源于结构的变化并具有耗散结构尺度的),一般物体单元的转动不均匀性会严重影响这种交换过程;物体的整体变化不仅包括组成物体的各单元的变化,还包括物体表示空间的拓扑结构的变化,后者可以用单元问的变化联络关系表达.一般来说,物体的整体变化不能用其局部变化的直和表示.质收观点的连续介质力学限制了物体空间性质的改变,各个变化阶段的物体的表示空问要求是拓扑等价的,物体单元变化的直和等价于物体的整体变化,因此客观上要求:l)单元间的物质交换与方一向无关;2)单元的尺度变化与方向无关,也就是说,物体单元的变化是各向同性的,这相当于平直层流和均匀变形或者转动影响可忽略的微小变形的情况.在大多数宏观现象中,物体实际变化状态不满足上述要求,质点观点的连续介质力学不再适用,必须用拓扑观点考察物体单元间的变化联络关系的影响,全面研究物体的整体变化过程.四、内应力物体的变形使物体的各部分之间存在相互作用,物体这种反抗变形的内部作用称为内应力,包括应力和应力偶.具体而言,在各物件单元的表面作用有应力和应力偶,这种作用不仅与该单元的纯变形有关,还与该单元的相对转动(净转动)有关,这样,质点观点的连续介质力学中的应力原理必须修正,而非极性物体内应力偶的存在成为可能的了.拓扑观点的连续介质力学给出的非均匀有限变形理论更合理和先进,可统一壳体等转动(方向性)占优的变形理论,并且在这一新观点下,加深了对物体塑性的理解。

连续介质力学第四章

连续介质力学第四章

(4.27)
例如:当 为(2.78)式Euler型的应变e(1) 时, (1) 就为(2.73)式的Lagrange型
应变 E ( 1)
Network Optimization Expert Team
(c):
( 2) =F T F
(4.29)
例如:当 取变形率张量D时, (2)就为(2.130)式的Green应变的物质导数 E
0
0
(4.45)
如果取 Q(t ) I ,并且由于c( ) 和a的任意性,则(4.44)可以简化成
( X , t ) {{X ; F ( X , )}}
(4.46)
0
当a=0的时候,(4.45)式可以写成如下的形式
h {{ X ; Q( ) F ( X , )}} Q(t ) h {{ X ; F ( X , )}} QT (t )
(d):
(3) =F T F T
(1)
(4.30)
(e):
( 4) =F 1 F
(4.31)
例如:对于(d)、(e)式,取 为(2.75)式里的Euler型应变张量e,则对应的 就为
(2.66)式的Lagrange型应变张量E
Network Optimization Expert Team
足如下的变形梯度的关系式
F * Q(t ) F
(4.5)
*
*
*
*
*
F

R

U

V

R
由极分解定理, F R U V R 和

U * U , R* Q R, V * Q V Q T

连续介质力学

连续介质力学

连续介质力学的应用领域包括:工 程力学、流体力学、固体力学、生 物力学等。
连续性假设:假设介质是连续的没 有空隙或裂缝
各向同性假设:假设介质在各个方 向上都是相同的
添加标题
添加标题
添加标题
添加标题
均匀性假设:假设介质在各个方向 上都是均匀的
小变形假设:假设介质的变形很小 不会影响其物理性质
流体:不可压缩、连续、无固定形状的 物质如空气、水等
多尺度连续介质力学:研究不同尺度下的连续介质力学问题如分子动力学、介观力学等
跨学科连续介质力学:与其他学科交叉如生物力学、环境力学等
计算连续介质力学:发展高效的计算方法和软件解决复杂问题如流体动力学、固体力学 等
PRT SIX
连续介质力学是研究流体和固体力学 的重要学科
连续介质力学的特点包括:连续性、 守恒性、对称性等
研究方法:数学模型、数值 模拟、实验验证等
研究对象:连续介质如液体、 气体、固体等
基本概念:应力、应变、位 移、速度、加速度等
应用领域:工程力学、流体 力学、固体力学等
PRT THREE
弹性力学的定义:研究弹性体在外力作用下的变形和应力分布的学科 弹性力学的基本假设:连续性假设、小变形假设、均匀性假设、各向同性假设 弹性力学的基本方程:平衡方程、几何方程、物理方程 弹性力学的应用:工程结构设计、地震工程、材料科学等
,
汇报人:
CONTENTS
PRT ONE
PRT TWO
连续介质力学是研究连续介质(如 液体、气体、固体等)在力作用下 的变形、流动和应力分布的学科。
连续介质力学的研究内容包括:应 力、应变、变形、流动、热传导等。
添加标题
添加标题
添加标题

力学讲义第六章连续介质力学

力学讲义第六章连续介质力学

第六章 连续介质力学连续介质模型:物质(气,液,固)连续地分布在它们所占有的区域内连续介质质元: 宏观小, 微观大物质讨论宏观力: 包括外力以及外力作用下形变or 运动引起内部的弹性恢复力 讨论内力的一般方法:假想将其切开,切下部分的作用由内力代表;由平衡条件求力.例: (不计重力)连续介质是比质点、刚体更普遍的经典力学模型,应用也最普遍。

物理状态量在连续介质模型下成为点函数. 不计微观内力 §6.1 应力和应变6.1.1 应力固体为例截面π , 方位 n ; P 处邻域 ∆S 上 张力∆TP 处应力σ = lim ∆∆ TS = d T /dS =σ(P, n ) =σt +σn正应力(法向应力, 张力) σn 单位:P a (压强)(>0为拉应力 ; <0为压应力) 剪应力 (or 切应力) σt应力状态:对同一点P 处,方位不同的截面上应力σ不同。

函数关系σ=σP ( n)叫P 处的应力状态. 由平衡方程可以证明,互相垂直的三个截面上的6个应力(正,切应力)就可以完全决定一点处的应力状态 (由此6个应力可以计算出该处任意方位截面上的应力)应力主面: 该面上只有正应力, 称为主应力. 一点处必有三个互相垂直的应力主面6.1.2 应变固体有两种基本的应变形式:线(拉,压)应变 ;剪应变1. 线应变 ε均匀形变 : 长度l , 总形变∆l (截面法向x ) 则 εx = ∆l / l形变不均匀:一点处位移uAB 段形变=∆u x =u x (x+∆x) -u x (x)=∂∂u xx∆x A 处x 方向线应变εx = lim (∆u x /∆x) = ∂u x / ∂x类似: y 方向线应变 εz =∂u y / ∂y z 方向线应变 εz =∂u z / ∂z 一般情况下应变也是点函数, 不均匀形变时各处应变也不相同.应变是位移的空间变化率(位移的偏导数)2. 剪应变以xy 平面为例, 矩形 → 菱形定义:A 点剪应变(xy 平面上,小变形)为 εt = lim (δ1+δ2)= ∂u x /∂x + ∂u y /∂y δ1 ≈tan δ1=B’B’’/A’B’’=[u y (x+∆x) -u y (x)]/∆x → ∂u y /∂x 类似, 当 ∆x →0 , ∆y →0时 , δ2 → ∂u x /∂y3. 体应变均匀形变时, 体应变 εV = 体积增量/体积 =∆V / V不均匀形变时, 讨论一点处体应变一点附近小长方体(∆x,∆y,∆z) 小形变后为[(1+εx )∆x ,(1+εy )∆y, (1+εz )∆z] V=∆x ∆y ∆z ∆V ≈(εx +εy +εz )∆x ∆y ∆z 小变形 εV =εx +εy +εz 剪应变引起的体应变为高阶小量.自然状态无内力内力与外力平衡F F 内∆S →0 ∆x →0∆x →0∆y →0 y+∆侧平面)∆ll x∆x)6.1.3 胡克定律——应力和应变的关系 1678年胡克提出单向拉伸时 ε ∝ σ , 后来推广到三维 (实验定律) 1. 单一正应力引起的线应变 σx 引起 纵向线应变 εx = σx /Y 横向线应变εy =εz = -μεx = -μσx /Y Y —杨氏模量(压强量纲)μ ——泊松比(无量纲) 0≤ μ ≤ 0.5 σy , σz 的贡献类似 2. 总线应变与正应力的关系——广义胡克定律(在一定的形变范围内—比例极限) εx =1Y [σx -μ(σy +σz )] εy =1Y [σy -μ(σx +σz )] εz =1Y [σz -μ(σx +σy )] 3. 体应变与正应力εV =εx +εy +εz =(1-2μ)(εx +εy +εz )/Y ≡ σ0/K σ0≡(σx +σy +σz )/3 K=Y/[3(1-2μ)] K —体弹性模量 由4. 剪应变与剪应力εt =σt /G G —剪切弹性模量5. 各向同性固体只有两个独立的弹性模量, Y 、G 、K 、μ中只有两个独立K= Y / [3(1-2μ)] G=Y /2(1+μ) < Y一般 μ ≈ 0.35 G 、K 、Y 的量级为1010 —1011 P a , 差别不太大部分材料的弹性模量材料 铝 铜 金 电解铁 铅 铂 银 熔融石英 聚苯乙烯 K 7.8 16.1 16.9 16.7 3.6 14.2 10.4 3.7 0.41 G 2.5 4.6 2.85 8.2 0.54 6.4 2.7 3.12 0.133 Y 6.8 12.6 8.1 21 1.51 16.8 7.5 7.3 0.36 μ 0.355 0.37 0.42 0.29 0.43 0.30 0.38 0.17 0.353 说明: K 、G 、Y 的单位 为1010P a补充题4. 矩形截面杆在轴向拉应力σz =2.0⨯105 P a作用下变形,已知Y=19.6⨯1010 P a , μ=0.3 .求:εV 补充题5. 矩形悬臂梁的一端有作用力P.已知l =2 m, h=20cm,梁宽b=5 cm ,P=1000kg 力, 求梁内最大正应力§6.2 固体拉伸.弯曲.扭转讨论三种情况下的应力状态,计算应力与应变 6.2.1等截面直杆的拉压 圆形截面直杆;两端均匀压强p (拉>0;压<0)横截面 σz =p σt =0 应力状态: 与z 轴互垂两面上 σR =σφ=0 ——单向应力状态 ∴ σz =p= Y εz = Y ∆l / l 均匀形变 弹性形变势能: E P = ⎰ F 外du = ⎰0∆lSY u ldu=YS ∆l 2 / 2l u 为z 方向位移, S 为横截面积(近似不变) 弹性形变势能密度 e P =E P /V=12Y εz 2 =12σz εz (也适于不均匀形变) 说明:其他均匀截面直杆σR ≈0 σφ≈0 可以近似按圆杆处理6.2.2 矩形梁纯弯曲矩形梁(高h,宽b) 力偶矩M纵向画线弯曲:上短—压; 中不变—中性面; 下长—拉横截面上 σx , σt =0应力状态: σy =σz =0——单向应力状态M ⇒ 应力σx , 形变θ0P 处:εx= lim (PP’-oo’)/oo’= lim[(ρ+y)∆θ-ρ ∆θ]/ρ ∆θ=y/ρ σx =Y εx =Yy / ρ ∝ y 下面求ρ 横截面上:∑F =0 (∴中性面正在中点)∆θ→0 ∆θ→0 p z φM 内= ⎰y σx dS = Y ⎰ y 2 dS /ρ ≡YρI z =(应该)= M ——柏努力. 欧勒定律∴ Y/ρ = M/I z σx =M I z y σx max =M I z 2h ρ=YI z /M θ0 = l /ρ(θ0 为转角,代表形变;l 为中性面的长度) 定义对z 轴惯性矩 I z ≡ ⎰y 2 dS 对矩形截面 I z =2b ⎰02h /y 2dy =112bh 3 为节约材料:h ↑ , b ↓ ; 减少中性层还有鸟骨、麦杆…说明:(1)其他形状截面的梁在力偶矩作用下弯曲时,σy ≠ 0 σz ≠0, 非单向应力状态,但σy ≈0 σz ≈0 ,与单向应力状态偏差不大,可以近似按单向应力状态计算(2)非力偶矩作用时,一般可以忽略剪应力,近似按纯弯曲处理:(不计重力) 悬臂梁M 内=M(x)=P(l -x)简支梁 x ∈(0,l /2) M 内=M(x)= P x/2仍有: σx (x)=M(x) y/I z ρ(x) =YI z / M(x) 注意:σx (x),ρ(x),M(x)不再是常数 (3)仍有:e P =12Y εz 2 =12σz εz6.2.3 圆柱扭转表面画上圆周和母线圆周线不变, 横截面保持平面——横截面上 σtR =0应力状态: 横截面上 σt =σt φ σz =0 (只有M) σR =σφ=0 横截面上形变:圆周处εt (R)=R φ /h r 处εt (r)=r φ /h ∴ σt (r)=Gr φ /h ∝ r下面求φ M 内= ⎰ σt r dS = ⎰0R σt r 2πrdr=12h πGR 4φ ≡D φ =(应该)=M ∴G φ/h=2M/(πR 4) σt (r)= G φr/h M=D φ ∴ σt (r)=24M R πr σt max (r)=2M /πR 3 φ=M/D 扭转弹性系数 D=πGR 4/2h (悬丝扭矩 M=D φ D ∝ R 4/h ) 扭转弹性势能E P = ⎰0φM d φ=D φ2 /2 可证e P =12G εt 2 =12σt εt6.2.4 允许应力.强度计算1. 只有正应力or 剪应力材料极限应力(正or 剪)σj , 许可应力[σ]=σj /K 安全系数=1.4—3.0 — 14材料 屈服极限σs 强度极限σb 许可应力 [σ] (kg/cm 2)A 3 2200—2400 3800—4700 1700 16Mn 2900—3500 4800—5200 2300 300#水泥 拉21,压210 拉6,压105 红松(顺纹) 拉981,压328 拉65, 压100 注:A 3—普通低碳钢 16 Mn —低合金钢 常温、静态、一般工作条件材料中最大应力(正or 剪) 应满足 σmax ≤ [σ] 2. 复杂应力情况——按相应的强度理论计算§6.3 流体静力学——流体力平衡下内应力的分布 流体:液,气; 具流动性; 主要讨论液体; 设: 连续、均匀6.3.1 静止流体内应力δσt1. 一点处应力状态σt≡0 只有正应力σ , 且正应力大小与截面无关σ( n)≡σ证: 因为可流动流体静摩擦力=0 ∴σt≡0如图四面体受力平衡设S面上正应力为σ ,x向Sσ⋅x -σx S x=0σ=σ n S=S n S x=S ⋅ x∴σx S x=Sσ⋅x =σS⋅x= σS xσx=σ类似σy=σ=σzx,y,z任选, ∴任意截面上的正应力的大小皆为σ由四面体受力平衡, 从三个坐标平面的应力⇒任意截面S上的应力. 注意:忽略了体积力2. 流体内压强定义:流体内压强为P= -σ(流体中一般没有拉应力,∴σ<0 P>0)说明:(1)压强为标量,严格定义P= -σ0 = (σx+σy+σz) /3(2) 由一点处应力状态, σ与方位无关∴P与方位无关(3) 从证明知,关键σt=0 . 所以对理想流体(无内摩擦)在流动(包括加速流动)时结论也对(4)对粘滞性流体流动时有剪应力,各截面σ不相同.但若σt较小可以忽略,各截面正应力近似相等为σ , P ≈-σ(5) 流体中负压强(拉应力).特定条件(稳定,缓慢过程)下,流体中可出现负压. 水的负压可以达到300atm6.3.2 静止流体平衡方程——临近点处压强关系取小段柱状流体f—单位质量..上的体积外力x向: [P(x) - P(x+∆x)] ∆S + ρ∆S ∆x f x =0∴∂P /∂x = ρf x类似: ∂P /∂y = ρf y ∂P /∂z = ρf z合起来:∇P = (∂P/∂x) x +(∂P/∂y) y +(∂P/∂z) z = ρf 6.3.3 重力场中静流体1. 流体中压强随高度分布小范围g为常矢量f = (∆m g) /∆m =g = g y ∂P/∂x =∂P/∂z = 0 ⇒P与x,z无关, 在同一高度上P相等∂P/∂y = ρg若ρ为常数(液体or高度差不大的气体)积分得:P(y)=P0+ρgy P0=P(0)不同密度液体(鸡尾酒)的稳定分界面为水平面2. 帕斯卡定律定律:加在密闭液体中的压强等值地传到液体中各处以及壁上.解释: 设压强加在o处,使P0等值地改变,但ρgy 保持不变,所以P(y)随P0同样增加.3. 阿基米德定律定律:浸在流体中物体所受浮力等于物体排开的流体的重量证明:设物体外表面为S .流体对物体作用通过压强体现.∴浮力=⎰-Pd S保持S不变,则浮力不变. 将物体换成流体,该流体应处于平衡,即外界对S的压力之和等于流体重量:⎰-Pd S +m g =0∴浮力= -m g 浮力作用点即该流体重心(一般情况下不是物体的重心)附: 等温理想气体压强随高度的分布已知其密度ρ=cP (c为常数)解: dP/dy = -ρg = -cgP ⎰PPdPP= ⎰y-cg dy 得:P(y)=P0e-cgy又例: 以ω匀速转动的水平试管,内部充满流体. 以试管为参考系, 则惯性离心力为体积力,产生径向压强差.§6.4 流体的定常流动6.4.1 描述流体运动的两种方法1. 两种方法拉格郎日法: 认准各个质元,分别描述其运动状态(r i,v i,a i)及其变化规律r i,v i,a i只是t的函数, v=d r/dt , a=d v/dt ; 应用牛顿定律必须用拉格郎日法. 困难:如何认准?如何跟踪?描述不便欧拉法: 讨论流体场(流体性质场)的场分布∆x)主要是流速场v=v(r,t) . 还有a=a(r,t)P=P(r,t) 压强场……2. 欧拉法中质元的加速度质元加速度a = d v/dt (速度全导数or实质导数)是对一个确定质元速度v(即拉格郎日法中的速度v)的导数.流速场v(r,t)在地点不变下对t的偏导数∂v/∂t ≠a (流速场中同一地点不同时刻的v是不同质点的速度)认准m i :a=d v(x,y,z,t)/dt=∂v/∂t+[∂∂vxdx +∂∂vydy+∂∂vzdz]/dt=∂∂vt+v x∂∂vx+v y∂∂vy+v z∂∂vz=∂∂vt+ v ⋅∇v3. 流体流动的图象表示拉格郎日法: 流体质元的实际运动轨迹——迹线流管——流线围成的细管;流束——流管中流体6.4.2定常流动: v与t无关,v=v(r) ;不定常流动: v与t有关定常流动特点:∂v/∂t =0 a = v⋅∇v≠ 0流线不变,与迹线重和∴迹线也不变P,ρ与t无关是否为定常流与参考系有关设迹线如图. V1,2,3为t1,2,3时刻同一质点的速度.若v与t无关,则v也是速度场中1,2,3点的速度,迹线也是流线. 迹线不变则场中质元数不变,∴ρ不变圆柱在理想流体在匀速直线运动. 在静系中流体为非定常流动,在圆柱参考系中为定常流动§6.6 粘滞流体的流体长时间、长距离、相对速度很大时,粘滞性不可忽略主要讨论层流. 层流:流体分层流动,彼此不混淆流体粘滞性的体现:固、液相对运动时出现摩擦力;液体内部流速不同,各层之间出现摩擦力6.6.1流体的粘滞性板A匀速直线运动引起层流,各层之间粘滞力fz层假想剖面∆S, 两侧粘滞力∆f牛顿摩擦定律:(实验定律) ∆f ∝ (dv/dz) ∆S 即∆f = ηdvdz∆Sdv/dz : z方向速度(空间)变化率(速度梯度)η: 粘滞系数(黏度)温度T↑⇒η↓ (液体) η↑(气体)(f本质: 液体主要来自层之间分子力;气体是通过该层交换宏观定向动量)[η]=ML-1T -1SI(MKS)制为Pa ⋅s CGS制为“泊”1泊=0.1 Pa⋅s η/ρ——运动黏度(比黏度)满足牛顿摩擦定律的流体——牛顿流体(否则叫非牛顿流体—少数如血液)6.6.2 粘滞流体的运动规律1. 动力学方程(介绍) 纳维—斯托克斯方程(Nevier,M. , Stokes,G.G.)-∇P+ρf+η∇2 v = ρ (d v/dt)2. 修改后的伯努力方程定常流动,不可压缩,沿流管(有粘滞性) 由功能原理dW粘1→2 +(P1-P2)dV = dE= (dm v22/2+dm gz2)-(dm v12/2+dm gz1)dm=ρdV∴ P1+ρv12/2+ρgz1=P2+ρv22/2+ρgz2 +w12——修正后的伯努力方程∆t)∆t)m i运动轨迹m质点t2t时刻:3流线w 12 = -w 粘1→2 = dW 粘1→2 /dV >0 为单位体积..流体克服..粘滞阻力做的功水平均匀细管中: v,z 相同, P 1 -P 2=w 12=P 2 -P 3=…=P 0’-P 1=ρg(H 1-H 2)=…=ρg ∆H=ρg(H 0’-H 1) ∴P 0’-P B =P 0’-P 0=ρgH 0’=w 细管 将液面A 与出口B 联系:P 0+ρgH 0+0=P 0+0+ρv 2/2+w 细管+w 粗管∴ρv 2/2=ρg(H 0-H 0’) -w 粗管=ρgh 0-w 粗管≈ρgh 0 v ≈(2gh 0)1/2w 细管, w 粗管分别是单位体积流体在细管和粗管中流动克服阻力做的功∴粘滞流体水平均匀流动必有压强差——流水水面不水平 , 熔岩流动高度差很大3. 哈根—泊肃叶(Hagen,G. , Poiseuille, J.L.M.)方程——水平圆管层流哈—泊定律由哈根1839年实验证实, 后为泊肃叶1842年独立发现水平圆管, 定常流动柱坐标(r,φ,z)v z 与r,φ无关v =v z (r)z d v /dt=0忽略体积力f =0 , 流线平行直线, ∴同一横截面上P 相同对小圆柱, 1、2两横截面上对应处速度相同 ∴合外力为零 即 (P 1-P 2)πr 2 + ηdv drz⋅2πr l =0 (f 粘为-z 方向, dv z /dr<0 ∴取 “+”)⎰0v r z ()dv z = ⎰R r -12ηl(P 1-P 2)r drv z (r)= (P 1-P 2)(R 2 -r 2) / (4ηl ) Q V = ⎰ v ⋅ d S = ⎰0Rv z 2πr dr = π(P 1 -P 2)R 4 / (8ηl ) ——哈—泊公式由此可以讨论石油、天然气、水输送问题(管径、压差与流量);隧道、河流的流量…平均流速 v =Q V /S= (P 1 -P 2)R 2 / (8ηl ) P 1 -P 2=8ηv l R -2 ∝ l R -2,l光滑金属管光滑同心环缝滑阀口Re C2000—2300 1100 260例. 日常生活. 水管d=0.025m Re C =2000 1atm 20︒C时η=1.0⨯10 -3Pa⋅ s 则临界水流速v C = ηRe C /ρd = 0.079 m/s∴一般管流为湍流。

连续介质力学

连续介质力学

b1
=
1 H1
g1
bi
=
1 Hi
gi
b2
=
1 H2
g2
b3
=
1 H3
g3
则 bi 为正交曲线坐标系的标准化正交基。
因此,显然有
ei
⋅ej
=
bi
⋅bj
= δij
=
⎧1 ⎨⎩0
i= j i≠ j
(2.1.4) (2.1.5)
质量守恒定律(非相对论,牛顿力学观点); 能量守恒(热力学定律); 有限变形及连续性条件(几何方程)。 2)材料本构方程 不同材料具有不同特性是材料属性,这属性称为本构属性。本构属性的描述为本构方 程。在本课程中,只讨论本构方程的框架(形式)。 具体本构方程只有通过实验得出,本构方程包含:①应力、应变关系;②材料常数。 本课程中,研究本构方程框架所应用的基本理论为: ① 基本连续介质热力学的内变量理论; ② 基于理性化公理的本构方程原理。 所得到的本构方程框架具有本构方程的指导原则。 非线性方面在下面两个方面反映: ① 有限变形—称为几何非线性。 ② 本构方程非线性—称为物理(材料)非线性。 若同时考虑以上两个方面的非线性因素,则称为双非线性问题。
2.空间的维数
设α i 为 m 个标量,若能选取α i ,使得
m
∑αiai = 0
i =1
(2.1.1)
且α i 不全为零,则称此 m 个矢量线性相关,否则,称为线性无关。
例 1 位于同一平面内的两个矢量 a1 和 a2 (如图
2.1.1)是线性无关的,即
a1
α1a1 + α2a2 ≠ 0 (α1 和α 2 可为任意值,
3.本课程的特点
① 普遍性; ② 严密性(只有一个基本假设,物理定律和公理作为依据); ③ 溶入于连续介质热力学; ④ 对连续介质的本构方程作框架的理论研究。

非牛顿流体力学第二章

非牛顿流体力学第二章

pn = pn ( M , t , n)
1 应力pn表示的是作用在以n为外法线方向的作用面上应力,其下标 需要特别指出,○ 2 一般来说,应力 n并不表示应力的方向,而是受力面的外法线方向,见图 2-1;○ pn的方向并不与作用面的外法线n一致,pn除了有n方向的分量pnn外,还有n方向的分 3 图中ΔA右侧的流体通过ΔA作用在左侧 量pnτ。只有当pnτ=0 时pn才与n的方向一致;○ 流体上的力为ΔP=pnΔA,而ΔA左侧的流体通过ΔA作用在右侧流体上的力为ΔP=p- nΔA,这两个力互为作用力和反作用力,所以有
(2-14)
这三个分量恰好就是流体微团旋转角速度矢量的三个分量, 同时ω=ω1i+ω2j+ω3k也就 是速度矢量的旋度的一半,即
ω = ∇×u
对称矩阵 D 中的九个分量中只有六个独立分量,
1 2
(2-15)
Dxx =
∂u ∂u ∂u 1 ⎛ ∂u ∂v ⎞ , Dxx = , Dxx = , Dxy = Dyx = ⎜ + ⎟ ∂x ∂x ∂x 2 ⎝ ∂y ∂x ⎠
§2-2
应力张量
作用在流体上的力可以分为两类,即质量力和表面力两大类。作用在连续介质 表面上的表面力通常用作用在单位面积上的表面力——应力来表示,参见图 2-1, 即
pn = lim
ΔA→ 0
ΔP ΔA
(2-1)
式中 n为表面积ΔA的外法线方向;ΔP为作用在表面积ΔA上的表面力。pn除了与空 间位置和时间有关外,还与作用面的取向有关。因此,有
上式也可以用矩阵形式表示为
⎡ ⎣ pnx pny pnz ⎤ ⎦= ⎡ ⎣ nx ny ⎡ pxx ⎢ nz ⎤ ⎦ ⎢ p yx ⎢ pzx ⎣ pxy p yy pzy pxz ⎤ ⎥ p yz ⎥ pzz ⎥ ⎦

《连续介质力学》课件

《连续介质力学》课件

动量矩守恒定律
描述物质系统动量矩变化规律的定律。
动量矩守恒定律也是连续介质力学中的基本定律之一。它指出在一个没有外力矩作用的封闭系统中,系统的总动量矩保持不 变。动量矩是系统动量和位置矢量的乘积,因此这个定律说明系统的旋转运动状态只与系统的初始状态有关,而与时间无关 。
能量守恒定律
描述物质系统能量变化规律的定律。
金属材料的疲劳和断裂 研究
01
02
03
复合材料的细观结构和 力学行为分析
04
无损检测和结构健康监 测技术
环境科学
01
土壤和岩石的力学性质研究
02
地质工程和地震工程中的稳定性分析
03
生态系统和自然资源的可持续性发展研究
04
环境流体力学的模拟和分析
06
连续介质力学的未来发展
新材料与新结构的挑战
新材料特性
能量守恒定律是物理学中的基本定律之一,它在连续介质力学中也有重要应用。这个定律指出在一个 封闭系统中,系统的总能量保持不变。能量的形式可以包括动能、势能、内能等,但不论能量的形式 如何转化,总量始终保持不变。
熵增原理
描述系统无序程度变化规律的定律。
熵增原理是热力学中的基本定律之一,它指出在一个 封闭的热力学系统中,系统的熵(表示系统无序程度 的物理量)总是趋向于增加。也就是说,系统总是倾 向于向更加混乱和无序的状态发展,而不是向更加有 序和有组织的状态发展。这个原理在连续介质力学中 也有重要的应用,例如在研究流体和热传导等问题时 需要考虑熵增原理的影响。
THANKS
感谢观看
《连续介质力学》ppt课 件
• 连续介质力学概述 • 连续介质力学的基本概念 • 连续介质力学的物理定律 • 连续介质力学的数学模型 • 连续介质力学的应用领域 • 连续介质力学的未来发展

连续介质力学概要

连续介质力学概要

46 连续介质力学概要华东理工大学化学系 胡 英46.1 引 言连续介质力学(continuum mechanics)覆盖的领域主要是热的流动、流体的流动或流体力学,以及可变形物体的力学等。

它的主要思想,是为介质的微元体积定义局部的密度、速度和能量,这些局部的性质是空间和时间的连续函数。

作为微元体积,它在概念上必须足够地大,其中包含了许多分子,因而可忽略分子间的不连续性而使用平均值;当然它又必须足够地小,使这些平均值可以随空间坐标连续变化。

连续介质力学的核心是将质量守恒、动量守恒和能量守恒原理应用于微元体积后所得到的一系列基本方程。

这些方程都是偏微分方程,通过对边值问题求解,原则上应该得出流场,即密度、流速和能量随空间的分布,以及流场随时间的演变。

然而这些连续介质力学的基本方程都是非封闭的,需要引入传递现象的基本定律,如费克定律、牛顿定律和傅里叶定律,参见《物理化学》6.2,或更广泛的本构方程,才能使方程封闭然后求解。

这些基本定律或本构方程涉及传递性质或物质函数,它们都是物质的特性,属于物理化学研究的范畴。

知道一些连续力学的知识,将有助于应用物理化学来解决实际问题。

本章将概要介绍连续介质力学的基本方程及其应用,除牛顿流体外,也将涉及非牛顿流体,后者是流变学的研究对象。

在进入主要内容前,先介绍一些基本概念。

1.流体运动的两种表示方法拉格朗日方法 它跟踪流体中质点或微团的运动。

开始时,某质点或微团的空间坐标为0r ,或笛卡儿直角坐标0x 、0y 、0z ,时间为t 时,其坐标r 应为0r 与t 的函数,),(0t r r r =,或 ),,,(000t z y x x x =,… (46-1) 相应的速度υ和加速度a 及其分量υx 、υy 、υz 和a x 、a y 、a z ,t d /d r υ=,t x x d /d =υ,… (46-2)46-2 46 连续介质力学概要 22d /d d d t t r υa ==,22d /d d /d t x t a x x ==υ,… (46-3)包括其它物性如压力p 、能量E 等,它们也应是0r 与t 的函数。

连续介质力学习题二答案

连续介质力学习题二答案

连续介质力学习题二答案连续介质力学是力学中的一个重要分支,研究的是连续介质的宏观性质和行为。

在学习连续介质力学的过程中,习题是不可或缺的一部分。

下面将为大家提供一些连续介质力学习题的答案,希望能对大家的学习有所帮助。

1. 一个均匀的弹性杆,长度为L,横截面积为A,杨氏模量为E。

如果在杆的一端施加一个拉力F,另一端固定,求杆的伸长量。

解答:根据胡克定律,弹性杆的伸长量与施加的拉力成正比。

所以,伸长量可以用下面的公式表示:ΔL = (F * L) / (A * E)其中,ΔL表示伸长量,F表示施加的拉力,L表示杆的长度,A表示横截面积,E表示杨氏模量。

2. 一个圆柱形的液体容器,底面半径为R,高度为H。

如果在容器的底部施加一个压力P,求液体容器内部的压强分布。

解答:液体容器内部的压强分布可以用下面的公式表示:P(z) = P + ρ * g * z其中,P(z)表示液体容器内部距离底部高度为z处的压强,P表示底部施加的压力,ρ表示液体的密度,g表示重力加速度。

3. 一个均匀的弹性球体,半径为R,杨氏模量为E。

如果在球体的表面施加一个压力P,求球体的压缩量。

解答:根据胡克定律,弹性球体的压缩量与施加的压力成正比。

所以,压缩量可以用下面的公式表示:ΔR = (P * R^3) / (3 * E)其中,ΔR表示压缩量,P表示施加的压力,R表示球体的半径,E表示杨氏模量。

4. 一个均匀的弹性体,体积为V,体积弹性模量为K。

如果在弹性体的体积上施加一个压力P,求弹性体的体积变化量。

解答:弹性体的体积变化量可以用下面的公式表示:ΔV = -(P * V) / K其中,ΔV表示体积变化量,P表示施加的压力,V表示弹性体的体积,K表示体积弹性模量。

以上是一些连续介质力学习题的答案,希望对大家的学习有所帮助。

在学习连续介质力学的过程中,多做习题是非常重要的,通过解答习题可以加深对理论知识的理解和运用。

同时,也希望大家能够在学习中保持耐心和积极性,相信通过不断的努力,一定能够掌握连续介质力学的知识。

连续介质力学中的数值计算方法研究

连续介质力学中的数值计算方法研究

连续介质力学中的数值计算方法研究连续介质力学旨在研究物质的力学行为,通过数学模型和计算方法来描述和解析实际工程和科学问题。

在计算力学的研究中,连续介质力学的数值计算方法起着关键作用。

本文将探讨连续介质力学中的数值计算方法的研究和应用。

数值计算方法是通过近似的数学算法来解决实际问题的方法。

在连续介质力学中,数值计算方法用于求解物质的力学行为方程,例如弹性、塑性、流体力学等。

这些方程通常是非线性和偏微分方程,很难通过解析方法得到解析解。

因此,数值计算方法成为解决这些方程的有效工具。

在连续介质力学的数值计算方法中,最常用的方法之一是有限元法。

有限元法通过将连续介质分割成小的离散单元来近似求解力学问题。

这些小单元的行为通过局部数学模型进行描述和分析,从而获得整个物质的力学行为。

有限元法具有广泛的适用性。

它可以用于求解静态和动态问题,以及线性和非线性问题。

此外,有限元法还可以模拟复杂的几何形状并考虑各向异性和多物理场的耦合问题。

有限元法的基本思想是利用虚功原理建立力学方程,并将物质分割成更小的离散单元。

在每个离散单元内,采用近似函数来描述位移、应力和应变等场量,并通过求解代数方程组得到离散单元的解。

通过组合所有离散单元的解,可以得到整个物质的力学行为。

目前,有限元法已广泛应用于结构力学、固体力学、流体力学等领域。

另一种常用的数值计算方法是边界元法。

边界元法将物质分为内部域和边界域,通过边界域的力学行为来计算内部域的力学响应。

边界元法的优点是无需离散内部域,只需离散边界域。

这使得边界元法在求解包含无限域的问题时具有独特的优势,例如弹性波传播、电磁波散射等。

边界元法在计算上更为高效,但在处理非线性问题上相对复杂。

在数值计算方法中,还有其他一些方法被广泛研究和应用,如边界单元法、有限体积法、有限差分法等。

这些方法各有特点,在不同的物理问题中表现出不同的优劣。

研究者通过对这些方法的深入研究和改进,以提高数值计算方法的精度、稳定性和效率。

连续介质力学课件

连续介质力学课件

第五章 内容提要
7.位移变分法
⑴瑞利-里茨法:设定位移试函数,
u u (x, y) A u (x, y),
0
mm
m
v v (x, y) B v (x, y),
0
mm
预先满足 su上的约束m边界条件,再满足
瑞利-里茨变分方程,
U
Am
U
B m
A fxum d x d y

f
u
xm
d
s,
(m 1,2)
f v d x d y f v d s.
A ym
sσ y m
第五章 内容提要
⑵伽辽金法:设定位移势函数预先满足su 上的约束边界条件和sσ 上的应力边界

件,再满足伽辽金变分方程,
E 2u 1 μ 2u 1 μ 2v
A
[ 1
μ2
E
A
[ 1
μ2
( x2 2v ( y 2
xy
x
f
y
0.
第二章 内容提要
(2)几何方程
x
u x
,
y
v y
,
(3)物理方程
xy
u y
xv.
x
1 E
(σ x
σ y ), y
1 E
(σ y
σx ),
xy
2(1 E
) xy .
第二章 内容提要
和边界条件: (1)应力边界条件
(lσ x m yx )s f x ,
(mσ y l xy )s f y .
(3)若为多连体,还须满足位移单值条件。 当不记体力时,应力分量的表达式为
σ
ρ
1 ρ
Φ ρ

连续介质力学

连续介质力学

目录1简介2基本假设3研究对象4古典连续介质力学5近代连续介质力学6主要分支学科简介研究连续介质宏观力学性状的分支学科。

宏观力学性状是指在三维欧氏空间和均匀流逝时间下受牛顿力学支配的物质性状。

连续介质力学对物质的结构不作任何假设。

它与物质结构理论并不矛盾,而是相辅相成的。

物质结构理论研究特殊结构的物质性状,而连续介质力学则研究具有不同结构的许多物质的共同性状。

连续介质力学的主要目的在于建立各种物质的力学模型和把各种物质的本构关系用数学形式确定下来,并在给定的初始条件和边界条件下求出问题的解答。

它通常包括下述基本内容:①变形几何学,研究连续介质变形的几何性质,确定变形所引起物体各部分空间位置和方向的变化以及各邻近点相互距离的变化,这里包括诸如运动,构形、变形梯度、应变张量、变形的基本定理、极分解定理等重要概念。

②运动学,主要研究连续介质力学中各种量的时间率,这里包括诸如速度梯度,变形速率和旋转速率,里夫林-埃里克森张量等重要概念。

③基本方程,根据适用于所有物质的守恒定律建立的方程,例如,热力连续介质力学中包括连续性方程、运动方程、能量方程、熵不等式等。

④本构关系。

⑤特殊理论,例如弹性理论、粘性流体理论、塑性理论、粘弹性理论、热弹性固体理论、热粘性流体理论等。

⑥问题的求解。

根据发展过程和研究内容,客观上连续介质力学已分为古典连续介质力学和近代连续介质力学。

基本假设连续介质力学的最基本假设是“连续介质假设”:即认为真实的流体和固体可以近似看作连续的,充满全空间的介质组成,物质的宏观性质依然受牛顿力学的支配。

这一假设忽略物质的具体微观结构(对固体和液体微观结构研究属于凝聚态物理学的范畴),而用一组偏微分方程来表达宏观物理量(如质量,数度,压力等)。

这些方程包括描述介质性质的方程(constitutive equations)和基本的物理定律,如质量守恒定律,动量守恒定律等。

研究对象固体:固体不受外力时,具有确定的形状。

连续介质力学初级教程第三版答案

连续介质力学初级教程第三版答案

连续介质力学初级教程第三版答案连续介质力学()是用来研究连续介质的力学特性。

按照物理意义,可分为三种介质(水(包括淡水和咸水层)):液膜(包括液态水和液态水),固相介质及其相变反应;不稳定介质及其相变反应。

其中,液膜、固相介质及固相反应分别属于()。

液液分离是连续介质力学中一个基本问题,它由两部分组成:()。

流动时,处于不同结构面之间的流速或压力相互抵消,因此,液体在流动过程中,可以根据其流动方向、速度和方向分布将液流体分离出来:()。

在此,我们分别讨论液膜层与固膜层之间以及两种液体间各层流体之间的相互作用问题。

在液膜及固膜层中流动的介质称为流体(或液体/固液结合或混合体);液体为固体材料时称固体态;由固相加湿产生化学反应时称为化学反应液;固相过程都有相应的过程转换(或循环):由液态变为固态并继续进行化学反应;存在于固态和液态之间的一种或多种物理现象称为物理作用现象。

1、对于在不同工作温度和压力下,存在多种相变反应液的系统,应选择具有不同相变反应液参数指标控制其相变速度和方向。

如流体的温度、压力条件,流体的流动方向、速度,介质中的相变量等,均属于与压力无关,与流体的温度、压力无关,属于不稳定介质。

流体由其相变量所决定的相变过程可分为两种类型:一种是由相变反应液改变所引起的相变过程,另一种是由相变反应温度所引起的相变过程。

下面对这两类过程分别介绍:(1)以介质的相变量为控制变量,控制不同相变反应液流动方向的两种方法分别是流体热力学计算法和固液结合原理法。

后者使用数值分析方法,即建立一个在相同工作温度、压力下下所具有不同相变量的流体热力学参数曲线图,并利用这一数值分析结果绘制出流体热力学参数曲线。

而前者只是通过选择合适的控制变量来实现流场的稳定。

从上面所示两个不同流体力学计算方法得出一个连续溶液力学参数计算方法。

在固相反应中,以反应物沸点为控制变量,由液膜的溶解度所引起相变速度和方向随时间变化可以用公式B和公式 C来表示。

连续介质力学中的要素方法

连续介质力学中的要素方法

连续介质力学中的要素方法连续介质力学是一种描述物质运动与变形的物理学理论,广泛应用于工业、生物领域等方面。

在该领域中,要素方法是一种非常有用的工具,可以帮助研究者更好地理解连续介质的力学行为。

本文将介绍连续介质力学中的要素方法及其应用。

一、什么是要素方法?要素方法是一种将复杂的物理现象分解为一系列基本要素的数学建模方法。

在连续介质力学中,要素可以是物质的质点、单元体或小区域。

通过构建基于要素的数学表达式,可以实现对复杂力学问题的分析和求解。

要素方法在连续介质力学中的应用十分广泛,例如,可以利用要素方法对材料的弹性、塑性、破裂等方面进行分析。

此外,在地震学、生物力学、建筑工程等领域中也有着重要的应用。

二、应力分析中的要素方法在应力分析中,用于分析应力分布的要素方法主要包括网格法、不连续有限元法和粒子法等,下面分别进行介绍:1.网格法网格法是连续介质力学中最基本的要素方法。

网格被分为许多小单元,每个单元内假定物理量处于局部平衡状态并用数学方法精确求解。

网格法的优点在于可以进行较精确的应力分析,但是对于材料非线性分析和大变形问题无法直接解决。

2.不连续有限元法不连续有限元法是一种适用于非法向应力分析的方法。

该方法采用不连续网格,将其分为多个物理单元,每个物理单元内考虑位移场、应力场及其梯度,求解出相邻物理单元间的力和扭矩等物理量。

不连续有限元法的优点在于对于非平面应力分析有着很好的适用性。

3.粒子法粒子法是一种基于离散介质点方法的要素方法,该方法将连续介质分为许多小粒子,通过计算粒子间的相互作用来分析弹性、塑性、破裂等问题。

粒子法优点在于可以很好地处理大变形问题,但其计算成本较高。

三、应变分析中的要素方法在应变分析中,要素方法的主要应用包括有限元法、边界元法等。

1.有限元法有限元法是一种通过将连续介质划分为大量小单元,每个小单元内假定存在一个应变场的方法。

该方法将物理问题转化为代数问题并求解。

有限元法具有广泛的应用,可以解决弹性、塑性、破裂等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、教学方式方面:
该课程主要通过课堂讲授来进行教学,采用电子课件和板书相结合的方式。值得一提的是,本研究生课程完全独立地完成了大部分电子课件的建设,为进一步提高教学质量打下了基础。
4、教材方面:
本课程教材的选用经过了多次权衡和对比。一本为本系编著的油印教材《张量分析》,该书具有便于学生接受的特点;另外一本是国际著名学者J.N.Reddy主编的连续介质力学,是本领域的经典教材之一。
37
断裂力学、细观力学等
李振环
教授
固体力学
44
微纳米力学
黄敏生
副教授
固体力学
31
微纳米力学
课程负责教师教育经历及学术成就简介:
罗俊:博士、教授、湖北省力学学会理事、工程力学教研室主任。1997年和2000年于上海交通大学获工学学士和固体力学专业硕士学位,2004年获新加坡南洋理工大学博士学位。2003年到2005年在新加坡南洋理工大学从事博士后研究。目前主要从事断裂力学、细观力学、生物固体力学、电子产品冲击动力学等领域的研究工作。先后主持国家自然科学基金、教育部博士点新教师基金、留学回国人员基金、华中科技大学自主创新基金和人才引进基金等项目的研究工作,同时参与国家自然科学基金、教育部博士点基金、新加坡ASTAR基金等多项项目的研究。在国内外重要学术刊物上发表学术论文近30篇,其中SCI收录的有20余篇,发表的论文两次获湖北省自然科学优秀学术论文二等奖。目前是IJSS等9个国际主流期刊和1个国内权威期刊的审稿人。主讲张量分析与连续介质力学、材料力学、工程力学等本科和研究生课程。
5、其它:
在国际化课程建设项目的资助下,课程负责人邀请到了张量分析和连续介质力学领域的著名专家吴茂熙和匡震邦教授来校讲学。该项目的建设对本课程教学内容的编排和教学质量的提高起到了极大的推动作用。
附件
(
课程名称:连续介质力学
课程代码:151.103
课程类型:√□一级学科基础课□二级学科基础课□其它:
考核方式:考试
教学方式:讲授
适用专业:力学、机械、船舶等专业
适用层次:√□硕士□博士
开课学期:秋
总学时:32
学分:2
先修课程要求:高等数学、线性代数。
课程组教师姓名
职称
专业
年龄
学术方向
罗俊
教授
固体力学
课程教学目标:
连续介质力学是力学、物理类相关专业研究生的一门专业基础课。通过该课程的教学,拟加深学生对力学基本概念、基本原理以及基本分析方法的理解,使学生掌握张量分析这个数学工具,并具体应用到力学公式和力学原理的推导中。本课程还给学生介绍常见的材料本构模型,为学生以后从事高端力学理论研究和高端工程应用打下坚实的数学和力学理论基础。
§8.3粘弹性问题求解方法
教材:
1)张量分析,华中科技大学,莫乃榕;
2)Anintroduction to continuummechanicswithapplications,Cambridge University press, J. N. Reddy.
主要参考书:
1)张量分析,清华大学出版社,黄克智等;
§3.3应变度量
§3.4速度梯度、变形率、旋率
§3.5应变度量的率
第四章应力度量
§4.1Cauchy应力张量及Cauchy公式
§4.2应力张量的变换及主应力
§4.3其它应力度量
§4.3平衡方程
第五章连学介质基本定律
§5.1质量守恒、连续方程
§5.2动量守恒
§5.3能量守恒及热力学第一定律
§5.4熵及热力学第二定律
课程大纲:(章节目录)
第一章张量代数
§1.1坐标系及其基矢
§1.2坐标变换
§1.3张量
§1.4张量代数
§1.5二阶张量
第二章张量微积分
§2.1张量场函数
§2.2张量的协变导数
§2.3张量的梯度、散度和旋度
§2.4张量的积分公式
§2.5张量对时间的导数
第三章连续介质变形几何学
§3.1运动的描述
§3.2变形梯度张量及变形分析
2、教学内容方面:
华中科技大学力学系多年前就针对本系研究生开设了《张量分析》这门课程,在该课程的教学内容上形成了自己独立的体系。之后,课程负责人罗俊将该课程拓展为《张量分析与连续介质力学》。在多年的教学实践中,多次对教学内容进行了多次扩展和调整,参考了国内外多本经典教材。并进行了该课程的国际化建设,在内容编排上形成了一定特色。
第六章本构方程
§6.1本构原理
§6.2弹性固体的本构方程
§6.3流体的本构方程
§6.4热传导
§6.4电磁固体的本构方程
第七章线性弹性问题的求解
§7.1控制方程
§7.2边值问题类型和叠加原理
§7.3弹性问题求解方法
§7.4能量原理
第八章粘弹性问题
§8.1弹簧、粘壶模型
§8.2粘弹性问题的微分和积分型本构
2)固体本构关系,清tion to continuummechanics,M.E. Gurtin.
本课程达到国际一流水平研究生课程水平的标志:
1、师资方面:
本课程教学团队由两名教授和一名副教授组成。课程负责人罗俊已连续六年在力学系开设并主讲《张量分析与连续介质力学》这门研究生课程,主持了该课程的国际化建设项目,在该课程的教学上积累了较为丰富的教学经验。李振环教授和黄敏生副教授多年来一直从事微观塑性理论的研究,在连续介质力学理论的运用上具备深厚的学术积累,能对本课程的教学和建设起到支撑作用。教学团队结构层次合理,在教学经验和学术积累上具备一定的国内和国际竞争力。
相关文档
最新文档