存储层次结构的设计60页PPT

合集下载

存储器层次结构课件

存储器层次结构课件

优化成本:通过降低存储器的成 本来提高系统的性价比。例如, 使用更便宜的存储元件、优化设
计和批量生产等。
04 存储器层次结构性能评估 与优化方法
存储器层次结构性能评估指标
01
02
03
04
读取命中率
评估层次结构在读取操作中的 性能,衡量从存储器中获取所
需数据的速度和效率。
带宽
评估层次结构在数据传输方面 的性能,包括每秒传输的字节 数和每秒进行的操作次数。
存储器层次结构特点:存储器层次结构具有以下特点:1)访问速度逐层递减, 价格逐层递增;2)离CPU越近的存储器访问速度越快,价格也越高;3)离CPU 越远的存储器访问速度越慢,价格也越低。
存储器层次结构原理及应用
存储器层次结构应用场景- 嵌入式系统
服务器和数据中心:在服务器和数据中心中,由于需要处理大量的数据 和要求,通常采用较大的存储器层次结构,如主存储器、辅助存储器和
磁盘优化
采用更高效的磁盘技术 ,如SSD、HDD等,提 高磁盘I/O性能和存储容
量。
系统优化
通过优化操作系统、文 件系统和网络协议等,
提高整体系统性能。
存储器层次结构性能提升策略
负载均衡
通过公道分配负载,避免系统 过载或空载,提高整体性能。
缓存预热
在程序运行前,将热点数据提 前加载到缓存中,提高读取命 中率。
散布式文件系统等。
个人计算机:在个人计算机中,由于需要处理多种任务和应用程序,通 常采用适中的存储器层次结构,如高速缓存、主存储器和硬盘驱动器等 。
存储器层次结构原理及应用
存储器层次结构优化策略- 优化 访问速度
优化容量:通过增加存储容量来 满足不断增长的数据需求。例如 ,使用更大容量的硬盘驱动器、 内存模块和散布式文件系统等。

第3章存储器层次结构2PPT课件

第3章存储器层次结构2PPT课件

储 器
EEPROM
Flash Memory
高速缓冲存储器(Cache)
辅助存储器
磁盘、磁带、光盘、磁盘阵列、 网络存储系统等
二、存储器的层次结构
1. 对存储器的要求:容量大、速度快、成本低 2. 存储器三个主要特性的关系
速度 容量 价格/位
快小高
寄存器
CPU CPU
主 机
缓存
主存
磁盘 光盘 磁带
辅 存
二、存储器的层次结构
三级存储架构:高速缓存,主存储器,辅存存储器 目标:主存储器为核心,缓存(cache)速度,辅存容量
存储器
作用
性能 种类
cache 主存 辅存
存储当前经常使用的程 序和数据
高速存取指令和数据
速度快 容量小
半导体
存放当前使用的程序和 数据,能和cache交换
数据和指令
中间
半导体
存放大量的后备程序和 容量大
从CPU看,速度接近cache的速度,容量是主存的容量, 价格接近主存价格。
由于cache存储系统全部用硬件来调度,因此它对系统 程序员和应用程序员都是透明的。
10ns
20ns
200ns
二、存储器的层次结构
虚拟存储系统是为解决主存容量不足而提出来的。在 主存和辅存之间,增加辅助的软硬件,让它们构成一 个整体。
慢大低
二、存储器的层次结构
2. 目前存储器的特点:
速度快的存储器价格贵,容量小; 速度慢的存储器价格低,容量大;
3. 存储器的设计思路:
① 为了解决存储容量、存取速度和价格之间的矛盾,在计 算机存储器系统设计时,应当在三个方面作折中考虑。
② 把各种不同速度、容量、价格的存储器,按一定的体系 结构组织起来,形成一个统一整体的存储系统。

存储体系和结构ppt文档

存储体系和结构ppt文档
北京理工大学计算机学院
5.1 存储系统的组成
(3)磁表面存储器 在金属或塑料基体上,涂复一层磁性
材料,用磁层存储信息,常见的有磁盘、 磁带等。 (4)光存储器
采用激光技术控制访问的存储器,如 CD-ROM(只读光盘) 、WORM(CD-R, 写一次多次读光盘) 、CD-RW(可读可写 光盘)。
北京理工大学计算机学院
地址译码驱动电路实际上包含译码器 和驱动器两部分。译码器将地址总线输入的 地址码转换成与之对应的译码输出线上的有 效电平,以表示选中了某一单元,并由驱动 器提供驱动电流去驱动相应的读、写电路, 完成对被选中单元的读、写操作。
I/O和读写电路包括读出放大器、写入 电路和读/写控制电路,用以完成被选中存 储单元中各位的读出和写入操作。
(3)顺序存取存储器SAM SAM的内容只能按某种顺序存取,存
取时间与信息在存储体上的物理位置有关。
北京理工大学计算机学院
5.1 存储系统的组成
(4)直接存取存储器DAM 当要存取所需的信息时,第一步直接
指向整个存储器中的某个小区域(如磁盘 上的磁道),第二步在小区域内顺序检索 或等待,直至找到目的地后再进行读写操 作。
北京理工大学计算机学院
5.1 存储系统的组成
辅助软硬件
CPU
主存辅存北京理来自大学计算机学院第5章5.1 存储系统的组成 5.2 主存储器的组织 5.3 半导体随机存储器和只读存储器 5.4 主存储器的连接与控制 5.5 提高存储系统性能的技术
北京理工大学计算机学院
5.2 主存储器的组织
主存储器是整个存储系统的核心,它 用来存放计算机运行期间所需要的程序和 数据,CPU可直接随机地对它进行访问。
北京理工大学计算机学院

最新存储器的层次结构课件PPT课件

最新存储器的层次结构课件PPT课件

2
28KB 16KB
01
J1
3
44KB 32KB
0
4
76KB 64KB
01
J2
5
140KB 116KB
0
0000 20KB 28KB 44KB 76KB 140KB
256KB
OS
8KB 作业J116需KB14KB
32KB 作业J624需KB60KB
116KB
物理内存
存储管理:连续分配
3.多道可变分区管理(概念) 内存地址
76KB
140KB
OS
8KB 作业116需K1B4KB
32KB
作业624需K6B0KB
116KB
256KB 分区大小不等
存储管理:连续分配
2.多道固定分区管理(续)
•需建立固定分区说明 表•内零头(碎片)问题
作业J1 14KB 作业J2 60KB
分区号 起始地址 长度
状态 作业名
1
20KB
8KB
0
存储器的层次结构
CPU Cache
512KB~8MB 400GB/S
RAM DISK
1~8GB 12GB/S
500GB 200MB/S
存储器管理的功能
内存的分配和回收
– 记录内存使用情况 – 存储的按需分配 – 存储的回收
内存容量的“扩充” 地址转换
– 常采用动态重定位,需要硬件支持
方案一:设置两张存储管理表
0000 20KB
大 位 状态 小置
14K 20K 已分
空表 目
60K 64K 已分 60K 124 已分 20K 34K 已分
已分分区表U空B表T
大 位 状态 小置

计算机存储器的层次结构ppt课件

计算机存储器的层次结构ppt课件
2. 便于程序和数据的共享。由于程序段是按功能来划分的,如子程序段、 数据段、表格段等。每个程序段有比较完整的功能,因此,被共享的 可能性很大。
3. 程序的动态链接和调试比较容易。由于每个程序段都是一组有独立意 义的数据块或具有完整功能的程序段,因此,在程序运行过程中,可 以根据需要一次就把一个程序段或数据块都装入到主存储器中,并且 在装入时才实行动态链接。
8
页式虚拟存储器的优点是:
1. 主存储器的利用率比较高。每个用户程序只有不到一页(平均为半页) 的浪费,与段式虚拟存储器每两个程序段之间都有浪费相比要节省许多。
2. 页表相对比较简单。它需要保存的字段数比较少,一些关键字段的长度 要短许多,因此,节省了页表的存储器容量。
3. 地址映象和变换的速度比较快。在把用户程序装入到主存储器的过程中 ,只要建立用户程序的虚页号与主存储器的实页号之间的对应关系即可 不必使用整个主存的地址长度,也不必考虑页号的长度等。
每段使用独立的逻辑地址空间,即都从0开始计算地址。 段式管理方法的主要缺点是各段长短不一,调进调出之后容易形成 大量不规则的零碎空间。 段式管理方法的虚实变换算法是查段表(P150)。
4
0
主程序(0段)
1K
0
1段
500
0
2段
200
0
3段
200
程序空间
段号 0 1 2 3
段长 1K 500 200 200
起始地址 8K 16K 9K 30K
段表
段式虚拟存储器的地址映象
0 8K 9K 16K
30K 主存储器
5
段式虚拟存储器的优点如下:
1. 程序的模块性能好。对于大程序,可以划分成多个程 序段,每个程序 段赋予不同的名字,由多个程序员并行编写,分别编译和调试。由于 各个程序段在功能上是相互独立的,因此,一个程序段的修改和增删 等不会影响其他程序段,从而可以缩短程序的编制和调试时间。

计算机存储器的层次结构ppt课件

计算机存储器的层次结构ppt课件

2020/4/16
计算机系统结构
14
3.3.2 直接相联(P176)
直接相联是一种最强的约束关系,规定每个虚页只对应唯一实页。为便 于虚实变换,用求模运算作为变换关系式:将虚页号对实页总数求模得到实 页号。实现简单,二进制中,任何数X对2的整次幂n求模等价于截取X的最低 log2n位。
• 例 已知虚页号 = 7,实页总数 = 4,用直接相联求实页号。 解:可用十进制形式求:7 mod 4 = 3; 也可用二进制形式求:由于n = 4,所以log2n = 2, 取7的二进制形式111B的最低2位,得11B,即3。
2020/4/16
计算机系统结构
6
段式虚拟存储器的缺点:
1. 地址变换所花费的时间比较长。从多用户虚地址变换到主存实地址需 要查两次,做两次加法运算。
2. 主存储器的利用率往往比较低。由于每个程序段的长度不同的,一个 程序段通常要装在一个连续的主存空间中,程序段在主存储器中不断 地调入调出,有些程序段在执行过程中还要动态增加长度,从而使得 主存储器中有很多的空隙存在。当然,也可以采用一些好的算法来减 少空隙的数量,或者通过定时运行回收程序来合并着这些空隙,但这 无疑增加了系统的开销。
2020/4/16
计算机系统结构
8
页式虚拟存储器的优点是:
1. 主存储器的利用率比较高。每个用户程序只有不到一页(平均为半页) 的浪费,与段式虚拟存储器每两个程序段之间都有浪费相比要节省许多。
2. 页表相对比较简单。它需要保存的字段数比较少,一些关键字段的长度 要短许多,因此,节省了页表的存储器容量。
计算机系统结构
12
4种常见的地址映象方式
3.3.1 全相联(P174)
全相联就是无约束对应,或者说是一个完全关系,意思就是一个虚页 可以调入任何一个实页。

第11章存储层次-PPT文档资料

第11章存储层次-PPT文档资料
不命中时CPU是否切换
几比一 几十个字节 可直接访问
不切换
几万比一 几百到几千个字节
均通过第一级 切换到其他进程

16/84
11.1 存储系统的层次结构
11.1.4 存储层次的四个问题
1. 当把一个块调入高一层(靠近CPU)存储器时, 可以放在哪些位置上?
(映象规则)
2. 当所要访问的块在高一层存储器中时,如何 找到该块?
目录表中存放标识,所以存放目录表的存储器又称 为标识存储器。
目录表中给每一项设置一个有效位,用于指出Cache 中的块是否包含有效信息。
➢ 只需查找候选位置所对应的目录表项
候选位置:根据映象规则不同,一个主存块可能映 象到Cache中的一个或多个Cache块的位置。
直接映象Cache的候选位置最少,只有一个; 全相联Cache的候选位置最多,为M个;
Cache 地 址 块 地 址 块 内 位 移
C ache 至 CPU
Cache 存储体
11.2 Cache基本知识
11.2.2 映象规则
1. 全相联映象 ➢ 全相联:主存中的任一块可以被放置到Cache中的任 意一个位置。 ➢ 对比:阅览室位置 ── 随便坐
2. 直接映象 ➢ 直接映象:主存中的每一块只能被放置到Cache中唯 一的一个位置。
息的概率。
H=
N1 N1+N
2
N1 ── 访问M1的次数 N2 ── 访问M2的次数
➢ 不命中率 :F=1-H

10/84
11.1 存储系统的层次结构
1. 平均访问时间TA
TA = HT1+(1-H)(T1+TM) = T1+(1-H)TM
或 TA = T1+FTM
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档