选修基本不等式

合集下载

选修4-5 基本不等式(三元均值不等式)

选修4-5 基本不等式(三元均值不等式)

a b c 3abc,
3 3 3
当且仅当a b c时,等号成立.
问题探讨
abc 3 怎么证明不等式 abc (a, b, c R )? 3
证: a b c
3 3
a3 b3 c3 3abc(a, b, c R )
3 3 3 3
( a) ( b) ( c) 3 abc ,
3
3
x
a
例3. 已知a, b, c R ,求证: abc 3 ab 3( abc ) 2( ab ). 3 2
1 1. 求函数 y x (1 5 x) (0 x ) 的最大值. 5 2 4 答案:当 x 时, ymax . 15 675
2
课堂练习:
a1 a2 , an R , 则 n
an
≥ n a1a2
an .
小 结
2.基本不等式的变形: ab 2 ①若a, b R , 则ab ( ). 2
③若a1 , a2 , , an R , 则a1a2
abc 3 ②若a, b, c R , 则abc ( ). 3a a a 1 2 n
an ( n
).
n
作业: P10 11-15
12 1.求函数y = 3x + 2 x > 0 的最小值. x 12 3 3 12 3 3 12 3 解 :∵ y = 3x + 2 = x + x + 2 3 x× x× 2 = 9 x 2 2 x 2 2 x 3 12 ∴当且仅当 x = 2 , 即x = 2 时,y min = 9. 2 x
三个正数的算术-几何 平均不等式
2017年4月22日星期六

高三选修基本不等式知识点总结

高三选修基本不等式知识点总结

高三选修基本不等式知识点总结高中数学中,基本不等式是一项重要的内容,也是学习不等式的基础。

掌握基本不等式的知识,对于解决解析几何和一元二次函数的相关问题以及应对高考数学题目都有着重要的作用。

本文将对高三选修基本不等式的知识点进行总结,以帮助同学们更好地理解和掌握这一内容。

一、不等式的基础概念在掌握基本不等式之前,我们首先要明确不等式的基础概念。

不等式是一种数学关系,通过不等于号(>、<、≥、≤)来表示数之间的大小关系。

在解不等式时,我们需要找到使不等式成立的数的范围,这个范围就是不等式的解集。

解不等式的方法包括图像法、试位法、代入法等,具体的解法要根据具体的不等式形式进行选择。

二、基本不等式的形式和证明1. 平均值不等式平均值不等式是基本不等式的核心内容之一。

设有n个正数a₁,a₂,...,aₙ,则它们的算术平均数不大于它们的几何平均数,即(a₁+a₂+...+aₙ)/n ≥ √(a₁a₂...aₙ)。

这一不等式的证明可通过构造不等式链进行完成,具体证明过程略。

2. 开平方不等式开平方不等式是基于二次函数的求解加以证明的不等式。

设函数f(x) = x²为所考察不等式的左侧,即 f(x) > 0。

我们通过研究函数f(x)的图像,得到不等式的解集。

3. 其他常用基本不等式除了平均值不等式和开平方不等式之外,以下这些基本不等式也是我们在高中数学中经常会遇到的,同学们需要注意这些不等式的性质并掌握其应用方法。

- Cauchy-Schwarz不等式- AM-GM不等式- Jensen不等式- Muirhead不等式- Schur不等式- Holder不等式三、基本不等式的应用了解基本不等式的形式和证明只是学习的一部分,我们还需要应用这些不等式解决实际问题。

以下是一些典型的基本不等式应用示例。

1. 解决最值问题通过利用基本不等式,我们可以解决一些求最值的问题。

例如,求证当a+b+c=3时,有(a²+3)(b²+3)(c²+3) ≥ 64。

高中数学-选修4-5不等式的基本性质

高中数学-选修4-5不等式的基本性质
即 加法法则:同向可相加
性质6 若a > b>0 ,且 c >d>0,那么 ac > bd . 也就是说,两边都是正数的同向不等式相乘,所得 的不等式和原不等式同向。
即 乘法法则:同向可相乘
性质7 如果 a > b>0, 那么an bn.(n N, n 1)
也就是说,当不等式的两边都是正数时,不等式两 边同时乘方所得的不等式与原不等式同向
第一讲 不等式和绝对值不等式 1、不等式的基本性质
一、实数比较大小的理论依据
ab0 a b ab0 a b ab0 a b
要比较两个实数的大小,只要考察他们的差与0 的大小就可以了.
二、不等式的基本性质
性质1: 如果 a > b ,那么 b < a ;
如果 b < a ,那么 a > b.
题型3:利用不等式的性质求取值范围
例4:已知12 a 60,15 b 36,求a b 及 a的取值范围。
b
例5:已知f (x) ax2 c,且 4 f (1) 1, 1 f (2) 5,求f (3)的取值范围。
a>b b<a
性质2:如果 a > b ,且 b > c ,那么 a > c .
a > b ,b > c
等价命题是: c<b, b<a
a>c c<a
性质3:如果 a > b,那么 a + c > b + c。
(1) 等价命题:如果 a < b,那么 a + c < b + c
(2) 移项法则:如果 a + b > c,那么 a > c-b

1.1.2.基本不等式 课件(人教A选修4-5)

1.1.2.基本不等式 课件(人教A选修4-5)

a+b 如果 a,b 都是正数,我们就称 2 为 a,b 的算术平均,
ab 为 a,b 的几何平均.
4.利用基本不等式求最值 对两个正实数 x,y, (1)如果它们的和 S 是定值,则当且仅当 x=y 时,它们的 积 P 取得最 大 值; (2)如果它们的积 P 是定值,则当且仅当 x=y 时,它们的 和 S 取得最 小 值.
行证明.
(2)本题证明过程中多次用到基本不等式,然后利用同 向不等式的可加性或可乘性得出所证的不等式,要注意不 等式性质的使用条件,对“当且仅当……时取等号”这句话 要搞清楚.
[通一类] 1.设a,b,c∈R+,
求证: a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c).
证明:∵a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2. 又 a,b,c∈R+, ∴ a2+b2≥

每吨面粉的价格为1 800元,面粉的保管等其他费用为平
均每吨每天3元,购买面粉每次需支付运费900元. (1)求该厂多少天购买一次面粉,才能使平均每天所支付 的总费用最少? (2)某提供面粉的公司规定:当一次购买面粉不少于210 吨时,其价格可享受9折优惠,问该厂是否考虑利用此 优惠条件?请说明理由.
2
2 2 |a+b|= (a+b). 2 2
2
2 2 2 2 同理: b +c ≥ (b+c), c +a ≥ (a+c). 2 2
三式相加, 得 a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c).
当且仅当 a=b=c 时取等号.
[研一题]
[例 2] 1 9 已知 x>0,y>0,且x+y=1,
[精讲详析]
本题考查基本不等式在证明不等式中的应
用,解答本题需要分析不等式的特点,先对a+b,b+c,c+ a分别使用基本不等式,再把它们相乘或相加即可.

高中数学人教A版选修4-5112基本不等式教案

高中数学人教A版选修4-5112基本不等式教案

课题名称1.1.2 基本不等式三维目标学习目标1. 理解重要不等式与基本不等式,知道不等式等号成立的条件;2. 初步掌握不等式证明的方法重点目标理解重要不等式与基本不等式,知道不等式等号成立的条件导入示标难点目标初步掌握不等式证明的方法目标三导学做思一:自学探究问题1.如果,a b R∈, 那么222a b ab+≥.(当且仅当a b=时, 等号成立).你能从几何的角度解释这个结论吗?学做思二问题2.如果,a b R+∈, 那么2a bab+≥(当且仅当a b=时, 等号成立).你能从几何的角度解释这个结论吗?★问题3.重要不等式和基本不等式在应用时要注意哪些方面?学做思三技能提炼★ 1.已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求1abab+的最小值.2.设,a R ∈b ,求证:(1) 22222a b a b ++⎛⎫≤⎪⎝⎭;(2) 222a b c ab bc ac ++≥++.3. (1) 设.11120,0的最小值,求且yx y x y x +=+>> ;(2) 设x 、y 是正实数,且x+y=5,则lgx+lgy 的最大值是____________________ ;(3) 若正数b a ,满足3++=b a ab ,则ab 的取值范围是 . 达标检测变式反馈1.一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有254cm 的面 积,问应如何设计十字型宽x 及长y ,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.2.(1)已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;。

选修4-5基本不等式

选修4-5基本不等式

以上有不当之处,请大家给与批评指正, 谢谢大家!
12
Q 1 (lg a lg b), R lg( a b) ,则( B )
2
2
A、R P Q B、P Q R C、R P Q D、P Q R
题型二:解决最大(小)值问题
结论:利用 a b 2 ab (a 0,b 0) 求最值时要注意下面三条:
(1)一正:各项均为正数
(2)二定:两个正数积为定值,和有最小值。 积定,和最小 两个正数和为定值,积有最大值。 和定,积最大
1.若a1, a2 , a3,an R ,
则a1 a2 a3 an nn a1 a2 an
当且仅当a1 a2 a3 an时取 号
4.若பைடு நூலகம், b R , 则
1
2
1
ab a b 2
ab
a2 b2 2
几何平均数 算术平均数 平方平均数 调和平均数
(当且仅当a=b时,取“=”号)
ab叫做a,b的 几何平均数
这样,基本不等式可以表述为:
算术平均数
两个正数的算术平均数不小于它们的几何平均数。
注意:
1、重要不等式与基本不等式有什么区别与联系? 基本不等式可以看作是重要不等式的变形,但它们
的前提条件不同。重要不等式中a,b属于全体实数,
而基本不等式中a,b均为大于0的实数。 2、重要不等式与基本不等式的几个推广公式:
B、6 3 C、4 6 D、18 3
题型三:构造积为定值,利用基本不等式求最值
例4、 求函数 y 1 x(x 3)的最小值
x3
例5、求函数 y x2 5 的最小值
x2 4
例6、已知正数x、y满足2x+y=1,求

选修4-5基本不等式

选修4-5基本不等式
应用
幂平均不等式在经济学、统计学和信息理论中有广泛应用, 特别是在估计期望值和方差时。
贝努利不等式
定义
对于任意实数$x_1, x_2, ..., x_n$,
有$(x_1 + x_2 + ... +
x_n)(frac{1}{n} + frac{1}{n} + ...
&eq
(sqrt[n]{x_1x_2...x_n})^2$。
证明
利用数学归纳法和平方差公式。
切比雪夫不等式
定义
对于任意的非负随机变量 $X$ 和正实数 $t$,有 $P(|X| geq t) leq frac{mathbb{E}(X^2)}{t^2}$。
证明
利用数学归纳法和期望的性质。
赫尔德不等式
定义
对于任意的正实数 $a_1, a_2, ..., a_n$,有 $left(frac{a_1 + a_2 + ... + a_n}{n}right)^n geq left(frac{a_1^n + a_2^n + ... + a_n^n}{n}right)$。
证明
利用数学归纳法和二项式定理。
柯西不等式
定义
对于任意的正实数 $a_1, a_2, ..., a_n$ 和 $b_1, b_2, ..., b_n$,有 $(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2) geq (a_1b_1 + a_2b_2 + ... + a_nb_n)^2$。
应用
贝努利不等式在概率论、统计学 和决策理论中有广泛应用,特别 是在处理期望值和方差时。

高中数学选修4《基本不等式》导学案

高中数学选修4《基本不等式》导学案

1 §1.1.2基本不等式一、学习目标1.理解并掌握定理1、定理2,会用两个定理解决函数的最值或值域问题.2.能运用平均值不等式(两个正数的)解决某些实际问题.【重点、难点】教学重点:均值不等式定理的证明及应用。

教学难点:等号成立的条件及解题中的转化技巧。

二、学习过程【情景创设】1.我们已经学过重要不等式()R b a ab b a ∈≥+,222,该不等式是怎么推导的? 2.根据1中重要不等式推导b a ab b a ++,,22),(+∈R b a 的不等关系.并思考它们如何应用.【导入新课】自学探究:(阅读课本第5-7页,完成下面知识点的梳理)1.定理1:如果R b a ∈,,那么 ,当且仅当 时,等号成立.2.定理2(基本不等式)如果0,>b a ,那么ab b a ≥+2,当且仅当 时,等号成立. 说明:1. 基本不等式ab ≤a +b 2(1) 基本不等式成立的条件:a>0,b>0;(2) 等号成立的条件:当且仅当a =b 时取等号;(3) 结论:两个非负数a ,b 的算术平均数不小于其几何平均数.2. 应用基本不等式的条件:(1)、一正:各项为正数;(2)、二正:“和”或“积”为定值;(3)、三等:等号一定能取到,这三个条件缺一不可。

“积定和最小;和定积最大”。

三 、典例分析例1.(1) 若x>0,求9()4f x x x =+的最小值; (2)若x<0,求9()4f x x x =+的最大值.例2.(1)求函数y =1x -3+x (x >3)的最小值;2例3.已知x >0,y >0,且1x +9y=1,求x +y 的最小值.【变式拓展】变式1:若102x <<,求(12)y x x =-的最大值。

变式2:若26x y +=,求24x y +的最小值四、总结反思1.用基本不等式求最值必须具备的三个条件:一“正”、二“定”、三“相等”,这三个条件缺一不可。

高考数学选修4-5复习《不等关系与基本不等式》

高考数学选修4-5复习《不等关系与基本不等式》

D.(12)a<(12)b
【解析】 结合不等式性质和函数的性质(单调性)来比较 大小,或用特殊值法判断.
a>b 并不能保证 a,b 均为正数,从而不能保证 A,B 成 立.又 a>b⇒a-b>0,但不能保证 a-b>1,从而不能保证 C 成立.
显然只有 D 成立.事实上,指数函数 y=(12)x 是减函数, 所以 a>b⇔(12)a<(12)b 成立. 【答案】 D
依题意bbaan+n 1=q3q+3+n-nd1-d1-1q=641d=26d, ③
由②知,q 为正有理数,
∴d 为 6 的因子 1,2,3,6 中之一,
因此由②③知 d=2,q=8,
故 an=3+2(n-1)=2n+1,bn=8n-1.
≥100×2
2n-1·2n4-1=400(n≥1),
当且仅当 2n-1=2n4-1,即 n=2 时,ymin=400(万元),
由 5 000-400=4 600(万元), 所以第 2 年该县从这两个企业获得利润最少,还得另外 筹集 4 600 万元才能解决温饱问题.
(2)到 2017 年,即第 10 年,该县从这两个企业获利润:y =100×210-1+400×(12)9
因 ab=10,故 lg a+lg b=1,
只要证明lg
1 alg
b≥4(*),
由 a>1,b>1,故 lg a>0,lg b>0,
所以
0<lg
alg
b≤(lg
a+lg 2
b)2=(12)2=14.
即(*)式成立.
原不等式 loga c+logb c≥4lg c 得证.
本题证明把分析法、综合法融于一体,不仅证明不等式 经常遇到,在解决其他数学问题时也常常需要这样思考.

选修4-5高中数学基本不等式

选修4-5高中数学基本不等式

数学·选修4-5(人教A版)1.1不等式1.1.2 基本不等式一层练习1.设x,y∈R,且x+y=5,则3x+3y的最小值为( ) A.10 B.6 3C.4 6 D.18 3答案:D2.下列不等式一定成立的是( )A.lg(x2+14)>lg x(x>0)B.sin x+1sin x≥2(x≠kπ,k∈Z) C.x2+1≥2|x|(x∈R)D.1x2+1>1(x∈R)不等式和绝对值不等式解析:应用基本不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件.当x >0时,x 2+14≥2·x ·12=x ,所以lg x 2+14≥lg x (x >0),故选项A 不正确;运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.答案:C3.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +a b≥2解析:∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误. 对于B,C,当a <0时,b <0时,明显错误. 对于D,∵ab >0,∴b a +a b ≥2b a ·ab=2. 答案:D二层练习4.(2013·福建卷)若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0]C .[-2,+∞) D.(-∞,-2]解析:利用基本不等式转化为关于x +y 的不等式,求解不等式即可. ∵2x +2y ≥22x +y ,2x +2y =1, ∴22x +y ≤1, ∴2x +y ≤14=2-2,∴x +y ≤-2,即(x +y )∈(-∞,-2]. 答案:D5.(2013·山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy取得最小值时.x +2y -z 的最大值为( ) A .0 B.98 C .2 D.94解析:含三个参数x ,y ,z ,消元,利用基本不等式及配方法求最值. z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥2x y ·4yx-3=1. 当且仅当x y =4yx ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. 答案:C6.(2013·山东卷)设正实数x 、y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z的最大值为( )A .0B .1. C.94D .3解析:含三个参数x ,y ,z ,消元,利用基本不等式及配方法求最值. z =x 2-3xy +4y 2(x >0,y >0,z >0), ∴xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1. 当且仅当x y =4yx,即x =2y 时等号成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴2x +1y -2z =22y +1y -22y 2=-1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1,∴当y =1时,2x +1y -2z 的最大值为1. 答案:B7.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C.92 D .5解析:∵a +b =2,∴a +b2=1,∴1a +4b =1a +4b ⎝⎛⎭⎪⎫a +b 2=52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立,故y =1a +4b 的最小值为92. 答案:C8.(2013·天津卷)设a +b =2,b >0,则12|a |+|a |b 的最小值为________.解析:分a >0和a <0,去掉绝对值符号,用均值不等式求解. 当a >0时,12|a |+|a |b =12a +a b =a +b 4a +a b =14+⎝ ⎛⎭⎪⎫b 4a +a b ≥54; 当a <0时,12|a |+|a |b =1-2a +-a b =a +b -4a +-a b =-14+⎝⎛⎭⎪⎫b -4a +-a b ≥-14+1=34. 综上所述,12|a |+|a |b 的最小值是34.答案:349.(2013·天津卷)设a +b =2,b >0.则当a =______时,12|a |+|a |b取得最小值.解析:利用已知条件将常数“1”代换,然后利用均值不等式求最值,同时对a 的正负进行分类讨论,得到a 的值. 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b,由于b >0,|a |>0时,所以b 4|a |+|a |b ≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b 的最小值是-14+1=34,故12|a |+|b |a 的最小值为34,此时⎩⎨⎧b 4|a |=|a |b ,a <0,即a =-2.答案:-2三层练习10.若正数x ,y 满足x +3y =5xy .则3x +4y 的最小值是( ) A.245 B.285C .5D .6解析:将已知条件进行转化,利用基本不等式求解. ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x =153xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.答案:C11.(2013·上海卷)设常数a >0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围是______.答案:⎣⎢⎡⎭⎪⎫15,+∞12.设x ,y ∈R 且xy ≠0,则(x 2+1y 2)(1x2+4y 2)的最小值为________.解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时,等号成立. 答案:913.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/时).解析:(1)由题意:当 0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b .再由已知得⎩⎨⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎨⎧60,0≤x ≤20,13-x ,20<x ≤200.(2)依题意并由(1)可得f (x )=⎩⎨⎧60x ,0≤x ≤20,13x-x ,20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1200; 当20<x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +-x 22=100003,当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值100003.综上,当x =100时,f (x )在区间[0,200]上取得最大值100003≈3333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/时.1.在公式a 2+b 2≥2ab 及a +b 2≥ab 的应用中,应注意三点:(1)a 2+b 2≥2ab 和a +b 2≥ab 成立的条件是不同的,前者只要求a ,b 都是实数,而后者要求a ,b 都为正数,例如,(-1)2+(-3)2≥2(-1)×(-3)成立,而-+-2≥--不成立.(2)关于不等式c ≥d 及c ≤d 的含义.不等式“c ≥d ”的含义是“或者c >d ,或者c =d ”,等价于“c 不小于d ”,即若c >d 或c =d 有一个正确,则c ≥d 正确.不等式“c ≤d ”读作c 小于或等于d ,其含义是“c <d 或者c =d ”,等价于“c 不大于d ”,即若c <d 或c =d 中有一个正确,则c ≤d 正确.(3)这两个公式都是带有等号的不等式,因此,对定理“当a ,b ∈R 时,a 2+b 2≥2ab 当且仅当a =b 时等号成立”的含义要搞清楚.它的含义是: ①当a =b 时,a 2+b 2=2ab ; ②当a 2+b 2=2ab 时,a =b ; ③当a ≠b 时,a 2+b 2>2ab ; ④当a 2+b 2>2ab 时,a ≠b .对基本不等式:a ,b 为正数,则a +b 2≥ab 当且仅当a =b 时等号成立,作类似理解.2.解题时要注意考查“三要素”:①函数中的相关项必须都是正数;②变形后各项的和或积有一个必须是常数;③当且仅当各项相等时,“=”号才能取到,可简化为“一正二定三相等”.求函数最值时,常将不满足上述条件的函数式进行“拆”、“配”等变形,使其满足条件,进而求出最值.有些题目,尽管形式上是x +p x型的式子,即两数之积为常数,但由于定义域的限制,不能使等号成立,如y =x +1x (x ≥5)的最小值,尽管x +1x ≥2,当x =1x 时,即x =1时取“=”号,而x=1不在其定义域[5,+∞)内,因此不能使用基本不等式.这时可利用函数单调性来解:f (x )=ax +bx (a >0,b >0),在⎝ ⎛⎦⎥⎤0,b a ,⎣⎢⎡⎭⎪⎫-b a ,0内是减函数,在 ⎣⎢⎡⎭⎪⎫ba ,+∞,⎝⎛⎦⎥⎤-∞,-b a 内是增函数.函数图象如下图所示.另外,在证明或应用基本不等式解决一些较为复杂的问题时,需要同时或连续使用基本不等式,要注意保证取等号条件的一致性.。

教学设计 选修4-5-《不等式的基本性质》教学设计

教学设计 选修4-5-《不等式的基本性质》教学设计

教学设计选修4-5-《不等式的基本性质》教学设计本教学设计旨在帮助学生掌握不等式的基本性质,理解用两个实数差的符号来规定两个实数大小的意义。

教学目标包括理解不等式研究的基础,掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,分析法证明简单的不等式。

教学重点为应用不等式的基本性质推理判断命题的真假,利用不等式的性质求范围。

教学难点在于灵活应用不等式的基本性质。

引入部分介绍了现实世界中的不等关系,说明了本章知识的地位和作用。

不等式的基本性质部分分为六个小点,包括实数的运算性质与大小顺序的关系,对称性、传递性、可加性、可乘性、乘、开方法和倒数性质。

通过例题演示了“差比法”的应用,引导学生灵活运用不等式的基本性质。

本教学设计的目的是帮助学生全面掌握不等式的基本性质,理解实数大小的比较方法,能够应用不等式的基本性质推理判断命题的真假,利用不等式的性质求范围。

1.差比法和商比法是比较大小的常用方法。

差比法指如果A减去B大于0,则A大于B;如果A减去B等于0,则A 等于B;如果A减去B小于0,则A小于B。

商比法指如果A和B都大于0,则A除以B大于1,则A大于B;如果A 除以B等于1,则A等于B;如果A除以B小于1,则A小于B。

2.在命题判断中,第一题中的命题错误,因为无法确定c 和d的大小关系;第二题中的命题正确,因为如果a除以b大于1,则a大于b;第三题中的命题错误,因为无法确定a和b的大小关系;第四题中的命题错误,因为无法确定c和d的大小关系;第五题中的命题正确,因为如果a小于b小于c,则a小于c。

3.在例3中,已知c大于a大于b大于0,可以通过分析得出证题思路。

因为a除以c大于b除以c,所以a减去b除以c减去b大于0,即(a-b)/(c-b)大于0.又因为c减去a除以c 减去b小于1,即(c-a)/(c-b)小于1.因此,可以得出a小于c乘以b除以a小于b小于c。

4.在例4中,已知-π/2小于等于α小于β小于等于π/2,需要求α加β除以α减去β除以2的范围。

选修4-5基本不等式

选修4-5基本不等式

题型一:利用基本不等式判断代数式的大小关系
例1:设a>0,b>0,出下列不等式(1)a 1 2 (2)(a 1 )(b 1) 4
a
ab
(3)(a b)(1 1) 4 ab
(4)a2
2
1 a2
2
2
其中成立的是 (1)(2)(3)(4)
等号能成立的是(1)(2)(3) 。 例2:若 a b 1, P lg alg b,
一、重要不等式:
一般地,对于任意实数a,b,我们有
a2+b2≥2ab
(当且仅当a=b时,取“=”号)
文字语言:两个数的平方和不小于它们积的2倍
二、定理2(基本不等式)
如果a, b>0, 那么
a b ab
2
当且仅当a=b时,等号成立。
如果a,b都是正数,我们就称 a 为 ba,b的 2
ab叫做a,b的 几何平均数
B、6 3 C、4 6 D、18 3
题型三:构造积为定值,利用基本不等式求最值
例4、 求函数 y 1 x(x 3)的最小值
x3
例5、求函数 y x2 5 的最小值
x2 4
例6、已知正数x、y满足2x+y=1,求
1 x
1y的最小值
例7、 求函数 y 1 2x 3 的值域
x
题型四:利用基本不等式证明不等式
例8、已知x, y, z都为正数,且xyz( x y z) 1 求证: ( x y)( y z) 2
1.若a1, a2 , a3,an R ,
则a1 a2 a3 an nn a1 a2 an
当且仅当a1 a2 a3 an时取 号
4.若a, b R , 则
1
2

人教版高考文科数学一轮复习资料选修-不等式的证明

人教版高考文科数学一轮复习资料选修-不等式的证明

第2讲 不等式的证明一、知识梳理 1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 常用结论基本不等式及其推广1.a 2≥0(a ∈R ).2.(a -b )2≥0(a ,b ∈R ),其变形有a 2+b 2≥2ab ,⎝⎛⎭⎫a +b 22≥ab ,a 2+b 2≥12(a +b )2.3.若a ,b 为正实数,则a +b 2≥ab .特别地,b a +ab ≥2.4.a 2+b 2+c 2≥ab +bc +ca . 二、教材衍化 求证:3+7<2+ 6. 证明:3+7<2+6 ⇐(3+7)2<(2+6)2 ⇐10+221<10+46⇐21<26⇐21<24.故原不等式成立.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)使用反证法时,“反设”不能作为推理的条件应用.( ) 答案:(1)× (2)√ (3)× 二、易错纠偏常见误区不等式放缩不当致错.已知三个互不相等的正数a ,b ,c 满足abc =1.试证明: a +b +c <1a +1b +1c.证明:因为a ,b ,c >0,且互不相等,abc =1,所以a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c.用综合法、分析法证明不等式(师生共研)(2019·高考全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c ≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c.当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3 =3(a +b )(b +c )(a +c ) ≥3×(2ab )×(2bc )×(2ac )=24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.充分利用这一辩证关系,可以增加解题思路,开阔视野.1.若a ,b ∈R ,ab >0,a 2+b 2=1.求证:a 3b +b 3a≥1. 证明:a 3b +b 3a =a 4+b 4ab =(a 2+b 2)2-2a 2b 2ab =1ab -2ab .因为a 2+b 2=1≥2ab ,当且仅当a =b 时等号成立, 所以0<ab ≤12.令h (t )=1t -2t ,0<t ≤12,则h (t )在(0,12]上递减,所以h (t )≥h (12)=1.所以当0<ab ≤12时,1ab -2ab ≥1.所以a 3b +b 3a≥1.2.(一题多解)(2020·宿州市质量检测)已知不等式|2x +1|+|2x -1|<4的解集为M . (1)求集合M ;(2)设实数a ∈M ,b ∉M ,证明:|ab |+1≤|a |+|b |.解:(1)当x <-12时,不等式化为-2x -1+1-2x <4,即x >-1,所以-1<x <-12;当-12≤x ≤12时,不等式化为2x +1-2x +1<4,即2<4, 所以-12≤x ≤12;当x >12时,不等式化为2x +1+2x -1<4,即x <1,所以12<x <1.综上可知,M ={x |-1<x <1}.(2)法一:因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1. 而|ab |+1-(|a |+|b |) =|ab |+1-|a |-|b | =(|a |-1)(|b |-1)≤0, 所以|ab |+1≤|a |+|b |. 法二:要证|ab |+1≤|a |+|b |, 只需证|a ||b |+1-|a |-|b |≤0, 只需证(|a |-1)(|b |-1)≤0,因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1, 所以(|a |-1)(|b |-1)≤0成立. 所以|ab |+1≤|a |+|b |成立.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1上面不等式中k ∈N +,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m ”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0, 所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2. 3.(2020·蚌埠一模)已知函数f (x )=|x |+|x -3|. (1)解关于x 的不等式f (x )-5≥x ;(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解:(1)f (x )=|x |+|x -3|=⎩⎪⎨⎪⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎪⎨⎪⎧x <0,3-2x ≥x +5或⎩⎪⎨⎪⎧0≤x ≤3,3≥x +5或⎩⎪⎨⎪⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8.所以不等式的解集为⎝⎛⎦⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ). 且m ≥3,n ≥3,所以m -2>0,2-n <0, 即(m -2)(2-n )<0, 所以2(m +n )<mn +4.4.(2020·开封市定位考试)已知函数f (x )=|x -1|+|x -m |(m >1),若f (x )>4的解集是{x |x <0或x >4}.(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c =m3,求证:a +2b +3c ≥9.解:(1)因为m >1,所以f (x )=⎩⎪⎨⎪⎧-2x +m +1,x <1m -1,1≤x ≤m 2x -m -1,x >m ,作出函数f (x )的图象如图所示,由f (x )>4的解集及函数f (x )的图象得⎩⎪⎨⎪⎧-2×0+m +1=42×4-m -1=4,得m =3.(2)由(1)知m =3,从而1a +12b +13c=1,a +2b +3c =(1a +12b +13c )(a +2b +3c )=3+(a 2b +2b a )+(a 3c +3c a )+(2b 3c +3c2b )≥9,当且仅当a =3,b =32,c =1时“=”成立.5.(2020·原创冲刺卷)已知定义在R 上的函数f (x )=|x +1|+|x -2|+(x -1)2的最小值为s .(1)试求s 的值;(2)若a ,b ,c ∈R +,且a +b +c =s ,求证:a 2+b 2+c 2≥3.解:(1)f (x )=|x +1|+|x -2|+(x -1)2≥|x +1|+|2-x |≥|(x +1)+(2-x )|=3,即f (x )≥3. 当且仅当x =1,且(x +1)(2-x )≥0,即x =1时,等号成立,所以f (x )的最小值为3,所以s =3.(2)证明:由(1)知a +b +c =3.故a 2+b 2+c 2=(a 2+12)+(b 2+12)+(c 2+12)-3 ≥2a +2b +2c -3=2(a +b +c )-3=3(当且仅当a =b =c =1时,等号成立). 6.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.(2020·江西八所重点中学联考)已知不等式|ax -1|≤|x +3|的解集为{x |x ≥-1}. (1)求实数a 的值;(2)求12-at +4+t 的最大值.解:(1)|ax -1|≤|x +3|的解集为{x |x ≥-1},即(1-a 2)x 2+(2a +6)x +8≥0的解集为{x |x ≥-1}.当1-a 2≠0时,不符合题意, 舍去.当1-a 2=0,即a =±1时,x =-1为方程(2a +6)x +8=0的一解,经检验a =-1不符合题意,舍去, a =1符合题意. 综上,a =1.(2)(12-t +4+t )2=16+2(12-t )(4+t )=16+2-t 2+8t +48,当t =82=4时,(12-t +4+t )2有最大值,为32.又12-t +4+t ≥0,所以12-t +4+t 的最大值为4 2. 2.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)] ≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2], 故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23. 由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

数学选修4-5学案 §1.1.3基本不等式(2)

数学选修4-5学案 §1.1.3基本不等式(2)

§1.1.3基本不等式学案(2) 姓名☆学习目标: 1. 理解并掌握重要的基本不等式; 2. 理解从两个正数的基本不等式到三个正数基本不等式的推广;3. 初步掌握不等式证明和应用 ☻知识情景: 1.定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.2. 定理2(基本不等式) 如果+∈R b a ,, 那么2a b +≥当且仅当a b =时, 等号成立.讨论: 1o . 给图如右, 你能解析基本不等式的几何意义吗?2o . 怎样用语言表述基本不等式?3o . 在应用基本不等式时要注意什么?推论10. 两个正数的算术平均数2b a +, 几何平均数ab , 平方平均数 , 调和平均数b a ab +2, 从小到大的排列是:☆热身:(1) 某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x 的函数关系为),(11)6(2*∈+--=N x x y 则每辆客车营运多少年,其运营的年平均利润最大( )A .3B .4C .5D .6(2) 在算式“4130⨯∆+⨯O =”中的△,〇中,分别填入两个正整数,使它们的倒数和最小, 则这两个数构成的数对(△,〇)应为 .(3) 设+∈R x 且1222=+y x ,求21y x +的最大值.☆探究:类比基本不等式:如果+∈R b a ,, 那么2a b +≥当且仅当a b =时, 等号成立. 如果,,a b c R +∈,那么 .当且仅当 时, 等号成立.☻建构新知:问题:已知,,a b c R +∈, 求证:3333.a b c abc ++≥当且仅当a b c ==时, 等号成立.证明: ∵3333a b c abc ++-=定理3 如果,,a b c R +∈, 那么3a b c ++≥当且仅当a b c ==时, 等号成立. 定理3的文字表述: 推论 对于n 个正数12,,,n a a a , 它们的即 当且仅当a b c ==时, 等号成立. ☆案例学习:例1已知,,x y z R +∈, 求证:(1)3()27x y z xyz ++≥; (2)()()9x y z y z x y z x x y z++++≥; (3)222()()9x y z x y z xyz ++++≥.例2用一块边长为a 的正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖 的盒子.要使制成的盒子的容积最大,应当剪去多大的小正方形?例3 求函数)0(,322>+=x xx y 的最大值,指出下列解法的错误,并给出正确解法. 解一:3322243212311232=⋅⋅≥++=+=xx x x x x x x y . ∴3min 43=y . 解二:x x x x x y 623223222=⋅≥+=当x x 322=即2123=x 时, 633min 3242123221262==⋅=y . 正解:§1.1.2基本不等式练习 姓名1. 若1,0,0=+>>b a b a ,则)11)(11(22--b a 的最小值是( ) A.6 B.7 C.8 D.92. 若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )A .3-1B . 3+1C . 23+2D . 23-2 3. 若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有() A.2∈M ,0∈M ; B.2∉M ,0∉M ; C.2∈M ,0∉M ; D.2∉M ,0∈M4. 若14<<-x ,则22222-+-x x x 的最小值为( )7 C.1- D.1 .5 函数)(,422+∈+=R x x x y 的最小值为( )A.6B.7C.8D.9.6 已知1273,023++=-+y x y x 则的最小值是 ( )A. 393B. 221+C. 6D. 77. 求下列函数的最值(1)0>x 时, 求x x y 362+=的最小值.(2)设]27,91[∈x ,求)3(log 27log 33x xy ⋅=的最大值.(3)若10<<x , 求)1(24x x y -=的最大值.(4)若0>>b a ,求)(1b a b a -+的最小值为..8 某商场的某种商品的年进货量为1万件,分若干次进货,每次进货的量相同,且需运费100 元,运来的货物除出售外,还需租仓库存放,一年的租金按一次进货时的一半来计算,每件 2元,为使一年的运费和租金最省,求每次进货量应多少.9 某单位建造一间地面面积为12m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面 的长 度x 不得超过a 米,房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶 和地面的造价费用合计为5800元,如果墙高为3m ,且不计房屋背面的费用.(1)把房屋总造价y 表示成x 的函数,并写出该函数的定义域;(2)当侧面的长度为多少时,总造价最底?最低总造价是多少?.10 制作一个容积为316m π的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时,用料最 省?(不计加工时的损耗及接缝用料)。

最新人教版高中数学选修4-5《基本不等式》知识讲解

最新人教版高中数学选修4-5《基本不等式》知识讲解

数学人教B 选修4-5第一章1.2 基本不等式1.了解两个或三个正数的算术平均值和几何平均值. 2.理解定理1和定理2(基本不等式).3.探索并了解三个正数的算术—几何平均值不等式的证明过程. 4.掌握用基本不等式求一些函数的最值及实际的应用问题.1.定理1设a ,b ∈__,则a 2+b 2≥2ab ,当且仅当____时,等号成立.【做一做1】已知θ∈⎣⎡⎦⎤0,π2,则sin θcos θ的最大值为__________. 2.定理2(基本不等式或平均值不等式)(1)如果a ,b 为____,则a +b2≥ab ,当且仅当____时,等号成立.(2)称______为正数a ,b 的算术平均值,____为正数a ,b 的几何平均值.(3)基本不等式可用语言叙述为:两个正数的________大于或等于它们的__________.(1)a 2+b 2≥2ab 与a +b2≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.有些同学易忽略这一点,例如:(-1)2+(-4)2≥2×(-1)×(-4)成立,而(-1)+(-4)2≥(-1)×(-4)不成立.(2)a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式.“当且仅当a =b 时,等号成立”这句话的含义是“a =b ”是“=”成立的充要条件,这一点至关重要,忽略它,往往会导致解题错误.(3)由公式a 2+b 2≥2ab 和a +b 2≥ab 可得到结论:①a b +b a ≥2(a ,b 同号);②21a +1b ≤ab≤a +b 2≤a 2+b 22(a ,b 是正数).(4)定理中的a ,b 可以是数字,也可以是比较复杂的代数式. 【做一做2-1】下列不等式中正确的是( )A .若a ,b ∈R ,则b a +a b ≥2b a ·ab=2B .若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC .若x <0,则x +4x ≥-2x ·4x =-4D .若x ≤0,则2x +2-x ≥22x ·2-x =2【做一做2-2】若log 2x +log 2y =4,则x +y 的最小值是__________. 3.定理3(三个正数的算术—几何平均值不等式或平均值不等式)(1)如果a ,b ,c 为正数,则a +b +c3≥____,当且仅当________时,等号成立.(2)称________为正数a ,b ,c 的算术平均值,______为正数a ,b ,c 的几何平均值. (3)定理3可用语言叙述为三个正数的____________不小于它们的________. 【做一做3】已知x ,y ,z 是正数,且x +y +z =6,则lg x +lg y +lg z 的取值范围是( ) A .(-∞,lg 6] B .(-∞,3lg 2] C .[lg 6,+∞) D .[3lg 2,+∞)4.定理4(一般形式的算术—几何平均值不等式)如果a 1,a 2,a 3,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,并且当且仅当__________时,等号成立.【做一做4】若a ,b ,c ,d 是正数,则b a +c b +d c +ad的最小值为__________.答案:1.R a =b【做一做1】12 由a ,b ∈R ,a 2+b 2≥2ab ,得ab ≤a 2+b 22,∴sin θcos θ≤sin 2θ+cos 2θ2=12.当且仅当sin θ=cos θ,即θ=π4时等号成立.2.(1)正数 a =b (2)a +b2ab (3)算术平均值 几何平均值【做一做2-1】D 对于选项A ,当a ·b >0时,b a +ab≥2;对于选项B ,当x >1,y >1时,有lg x +lg y ≥2lg x ·lg y ;对于选项C ,当x <0时,x +4x=-⎝⎛⎭⎫-x -4x ≤-24=-4. 【做一做2-2】4 由题意可知x >0,y >0,log 2xy =4, ∴xy =4.∴x +y ≥2xy =4,当且仅当x =y =2时,等号成立. 故x +y 的最小值为4.3.(1)3abc a =b =c (2)a +b +c 33abc (3)算术平均值 几何平均值【做一做3】B ∵x ,y ,z 是正数,∴xyz ≤⎝⎛⎭⎫x +y +z 33=23.∴lg x +lg y +lg z =lg xyz ≤lg 23=3lg 2,当且仅当x =y =z =2时,等号成立. 4.a 1=a 2=…=a n 【做一做4】4 由定理4可得,b a +c b +d c +ad ≥44b a ·c b ·d c ·a d=4,当且仅当a =b =c =d时,等号成立.1.三个或三个以上正数的平均值不等式的应用条件是什么?剖析:“一正”:不论是三个数的平均值不等式或者n 个数的平均值不等式,都要求是正数,否则不等式是不成立的.如a +b +c ≥33abc .取a =b =-2,c =2时,a +b +c =-2,而33abc =6,显然-2≥6不成立.“二定”:包含两类求最值问题:一是已知n 个正数的和为定值(即a 1+a 2+…+a n 为定值),求其积a 1a 2…a n 的最大值;二是已知乘积a 1a 2…a n 为定值,求其和a 1+a 2+…+a n 的最小值.“三相等”:取“=”号的条件是a 1=a 2=a 3=…=a n ,不能只是其中一部分值相等. 2.如何使用基本不等式中的变形与拼凑方法?剖析:为了使用基本不等式求最值(或范围等),往往需要对数学代数式变形或拼凑数学结构,有时一个数拆成两个或两个以上的数,这时候,拆成的数要相等,如y =4x 4+x 2=4x4+x 22+x 22,其中把x 2拆成x 22+x 22,这样可满足不等式成立的条件,若变形为y =4x 4+x 2=4x 4+x 24+34x 2,虽然满足了乘积是定值这个要求,但“三相等”这个要求就无法满足了,这是因为取“=”号的条件是4x 4=x 24=34x 2,显然x 无解.题型一 利用基本不等式比较大小【例题1】设a ,b ∈(0,+∞),试比较a +b 2,ab ,a 2+b 22,2aba +b的大小,并说明理由.分析:解答本题应充分利用基本不等式及其变形,不等式的性质.反思:基本不等式有着重要的应用,在使用时还应记住重要的变形公式.如a ,b 是正数,且b ≥a 时,a ≤2ab a +b ≤ab ≤a +b 2≤a 2+b 22≤b ,其中2ab a +b =21a +1b 为a ,b 的调和平均值,ab 为a ,b 的几何平均值,a +b 2为a ,b 的算术平均值,a 2+b 22为a ,b 的平方平均值.要注意公式的推导和结论的运用:调和平均值≤几何平均值≤算术平均值≤平方平均值.题型二 利用基本不等式求最值【例题2】(1)已知x ,y 是正数,且x +2y =1,求1x +1y的最小值;(2)已知x >0,y >0,且5x +7y =20,求xy 的最大值;(3)已知x <54,求y =4x -1+14x -5的最大值;(4)已知a >0,b >0,且a 2+b 22=1,求a 1+b 2的最大值; (5)已知x 是正数,求函数y =x (1-x 2)的最大值; (6)θ为锐角,求y =sin θ·cos 2θ的最值.分析:根据题设条件,合理变形,创造能用基本不等式的条件.反思:解题时要注意考察“三要素”:(1)函数中的相关项必须都是正数;(2)变形后各项的和或积有一个必须是常数;(3)当且仅当各项相等时,才能取到等号,可简化为“一正二定三相等”.求函数的最值时,常将不满足上述条件的函数式进行“拆”、“配”等变形,使其满足条件,进而求出最值.题型三 基本不等式的实际应用【例题3】某国际化妆品生产企业为了占有更多的市场份额,拟在2012年英国伦敦奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例的关系,如果不搞促销活动,化妆品的年销量只能是1万件,已知2012年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完.(1)将2012年的利润y (万元)表示为促销费t (万元)的函数;(2)该企业2012年的促销费投入多少万元时,企业的年利润最大?分析:表示出题中的所有已知量和未知量,利用它们之间的关系列出函数表达式,再应用不等式求最值.反思:解答不等式的实际应用问题,一般可分为如下四步:①阅读理解材料:应用题所用语言多为“文字语言、符号语言、图形语言”并用,而且多数应用题篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型.这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.②建立数学模型:根据①中的分析,把实际问题用“符号语言”、“图形语言”抽象成数学模型,并且建立所得数学模型和已知数学模型的对应关系,以便确立下一步的努力方向.③讨论不等关系:根据题目要求和②中建立起来的数学模型,讨论与结论有关的不等关系,得出有关理论参数的值.④得出问题结论:根据③中得到的理论参数的值,结合题目要求得出问题的结论. 题型四 易错辨析易错点:利用基本不等式求最值时,应注意不等式成立的条件,即变量为正实数,和或积为定值,等号成立,三者缺一不可.【例题4】求函数y =1-2x -3x 的值域.错解:∵y =1-2x -3x =1-⎝⎛⎭⎫2x +3x ,而2x +3x ≥22x ×3x =26,当且仅当2x =3x,即x =±62时,等号成立,故值域为(-∞,1-26].错因分析:在应用基本不等式时未保证2x ,3x为正值这一条件成立.答案:【例题1】解:∵a ,b ∈(0,+∞),∴ab ≤a +b2(当且仅当a =b 时取等号),1a +1b ≥2ab, ∴ab ≥21a +1b=2aba +b (当且仅当a =b 时取等号).又⎝⎛⎭⎫a +b 22=a 2+b 2+2ab 4≤a 2+b 2+a 2+b 24=a 2+b 22.∴a +b 2≤a 2+b 22(当且仅当a =b 时取等号).综上,2aba +b≤ab ≤a +b 2≤a 2+b 22(当且仅当a =b 时取等号).【例题2】解:(1)因为x +2y =1,所以1x +1y =x +2y x +x +2y y =3+2y x +x y≥3+22y x ·xy =3+22,当且仅当2y x =xy,x +2y =1,即x =2-1,y =1-22时,等号成立.所以当x =2-1,y =1-22时,1x +1y取最小值3+2 2.(2)xy =135(5x ·7y )≤135⎝⎛⎭⎫5x +7y 22=135×⎝⎛⎭⎫2022=207, 当且仅当5x =7y =10,即x =2,y =107时,等号成立,此时xy 取最大值207.(3)因为x <54,所以4x -5<0,故5-4x >0.所以y =4x -1+14x -5=-⎝⎛⎭⎫5-4x +15-4x +4.因为5-4x +15-4x ≥2(5-4x )·15-4x=2,所以y ≤-2+4=2.当且仅当5-4x =15-4x,即x =1时,等号成立.所以当x =1时,y 取最大值2.(4)a 1+b 2=a 2⎝⎛⎭⎫12+b 22=2a ·12+b 22≤22⎣⎡⎦⎤a 2+⎝⎛⎭⎫12+b 22=324, 当且仅当a =12+b 22,即a =32,b =22时,等号成立,此时a 1+b 2有最大值324.(5)∵y =x (1-x 2),∴y 2=x 2(1-x 2)2=2x 2(1-x 2)(1-x 2)·12.∵2x 2+(1-x 2)+(1-x 2)=2,∴y 2≤12⎝⎛⎭⎫2x 2+1-x 2+1-x 233=427.当且仅当2x 2=1-x 2,即x =33时,等号成立.∴y ≤239,即y max =239.(6)y 2=sin 2θcos 2θcos 2θ =12·2sin 2θ(1-sin 2θ)(1-sin 2θ) ≤12⎝⎛⎭⎫233=427, 当且仅当2sin 2θ=1-sin 2θ,即sin θ=33时,等号成立.∴y max =239.【例题3】解:(1)由题意可设 3-x =kt +1(k ≠0).将t =0,x =1代入,得k =2.∴x =3-2t +1.当年生产x 万件时,∵年生产成本=年生产费用+固定费用,∴年生产成本为32x +3=32⎝⎛⎭⎫3-2t +1+3.当销售x 万件时,年销售收入为150%⎣⎡⎦⎤32⎝⎛⎭⎫3-2t +1+3+12t .由题意,生产x 万件化妆品正好销完,由年利润=年销售收入-年生产成本-促销费,得年利润y =-t 2+98t +352(t +1)(t ≥0).(2)y =-t 2+98t +352(t +1)=50-⎝⎛⎭⎪⎫t +12+32t +1 ≤50-2t +12×32t +1=50-216=42, 当且仅当t +12=32t +1,即t =7时,等号成立,此时y max =42,∴当促销费投入为7万元时,企业的年利润最大.【例题4】正解:当x >0时,y =1-2x -3x=1-⎝⎛⎭⎫2x +3x ≤1-26,当且仅当2x =3x ,即x =62时,等号成立.当x <0时,y =1+⎣⎡⎦⎤(-2x )+⎝⎛⎭⎫-3x ≥1+2(-2x )·⎝⎛⎭⎫-3x =1+26, 当且仅当-2x =-3x ,即x =-62时,等号成立.∴所求函数的值域为(-∞,1-26]∪[1+26,+∞).1下列函数中,最小值为2的是( )A .y =x 2+2xB .y =x 2+2+1x 2+2C .y =sin x +sec x ,x ∈⎣⎡⎦⎤0,π2 D .y =7x+7-x2(2012·山东青岛一模)已知a >0,b >0,且2a +b =4,则1ab的最小值为( )A .14B .4C .12D .23若a >b >0,则a +1b (a -b )的最小值是( )A .3B .4C .5D .64周长为l 的矩形的面积的最大值为__________,对角线长的最小值为__________.5若a ,b ∈(0,+∞),且a +b =1,则a 2+b 2的最小值为__________,1a 2+1b2的最小值为__________.答案:1.D 对于选项A ,需考虑x 的符号;对于选项B ,不能用基本不等式求最值,等号不成立;对于选项C ,x =π2时sec x 无意义.对于选项D ,y =7x +7-x ≥27x ·7-x =2,当且仅当7x=7-x ,即x =0时,等号成立.2.C3.A ∵a >b >0,∴a +1b (a -b )=(a -b )+b +1b (a -b )≥33(a -b )·b ×1b (a -b )=3,当且仅当a -b =b =1b (a -b ),即a =2,b =1时等号成立.4.l 216 24l 设矩形的两邻边长分别为x ,y ,则x +y =l 2,∴面积S =xy ≤⎝⎛⎭⎫x +y 22=l 216(当且仅当x =y 时取等号),对角线长a =x 2+y 2≥(x +y )22=24l (当且仅当x =y 时取等号).5.12 8 因为a >0,b >0,则a 2+b 2≥(a +b )22=12,当且仅当a =b =12时取等号, 1a 2+1b 2=a 2+b 2a 2b 2≥2ab ≥2⎝⎛⎭⎫a +b 22=8,当且仅当a =b =12时取等号.1设x ,y ∈(0,+∞),且满足x +4y =40,则lg x +lg y 的最大值是( ) A .40 B .10 C .4 D .2答案:D ∵x ,y ∈(0,+∞),42x y+≤.44x y+=10,∴xy ≤100. ∴lg x +lg y =lg xy ≤lg 100=2.当且仅当x =4y ,即x =20,y =5时等号成立.2若a >b >1,P 1(lg lg )2Q a b =+,lg 2a b R +⎛⎫⎪⎝⎭=,则( )A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q答案:B ∵a >b >1,∴lg a >lg b >0且2a b+>∴Q =1(lg lg 2a b -P .R =lg 2a b +⎛⎫⎪⎝⎭1(lg lg )2a b +=Q , ∴R >Q >P .3若x >0,则294x x+的最小值是( )A .9B .C .13D .不存在答案:B 因为x >0,所以294x x +=2922x x x ++≥,当且仅当292=x x ,即x 时等号成立. 4已知不等式1()9a x y x y ⎛⎫+≥⎪⎝⎭+对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案:B 1()a x y x y ⎛⎫++⎪⎝⎭=1+ax ya y x ++≥1+a +=2(当且仅当yx=). ∵1()a x y x y ⎛⎫++ ⎪⎝⎭≥9对任意正实数x ,y 恒成立,∴2≥9.∴a ≥4.5若正数a ,b 满足ab =a +b +3,则ab 的取值范围是______.答案:[9,+∞) t (t >0),由ab =a +b +3≥3, 则有t 2≥2t +3,即t 2-2t -3≥0.解得t ≥3或t ≤-1(不合题意,舍去).3.∴ab ≥9,当且仅当a =b =3时取等号.6若正实数x ,y ,z 满足x -2y +3z =0,则2y xz的最小值是______.答案:3 由x -2y +3z =0,得y =32x z +,代入2y xz,得229666=344x z xz xz xzxz xz +++≥,当且仅当x =y =3z 时取“=”.7若直线2ax -by +2=0(a >0,b >0)经过圆x 2+y 2+2x -4y +1=0的圆心,则11a b+的最小值是__________.答案:4 圆x 2+y 2+2x -4y +1=0,即(x +1)2+(y -2)2=4,其圆心为(-1,2). 又直线2ax -by +2=0(a >0,b >0)过圆心(-1,2), 所以-2a -2b +2=0,化简得:a +b =1(a >0,b >0).所以111a b a b ab ab++==. 又2124a b ab +⎛⎫≤= ⎪⎝⎭,所以1114a b ab +=≥,当且仅当a =b =12时等号成立. 8(2012·江苏徐州第一次质检)已知a 1,a 2,…,a n 都是正数,且a 1·a 2·…·a n =1,求证:(2+a 1)(2+a 2)…(2+a n )≥3n.答案:证明:因为a 1是正数,所以2+a 1=1+1+a 1≥同理2+a j =1+1+a j ≥j =2,3,…,n ),将上述不等式两边相乘,得(2+a 1)(2+a 2)…(2+a n )≥3n 因为a 1·a 2·…·a n =1,所以(2+a 1)(2+a 2)…(2+a n )≥3n .当且仅当a 1=a 2=…=a n =1时,等号成立.9如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,已知AB =3米,AD =2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积. 答案:解:(1)设AN =x (x >2),则ND =x -2.由题意,得ND AN DC AM =,∴23x x AM-=.∴3=2xAM x -.∴S 矩形AMPN =32xx x ⋅->32. ∴3x 2-32x +64>0.∴(3x -8)(x -8)>0. ∴2<x <83或x >8. ∴AN 的长的范围是82,3⎛⎫⎪⎝⎭∪(8,+∞).(2)S 矩形AMPN =2233(2)12(2)1222x x x x x -+-+=-- =123(2)++122x x --≥, 当且仅当x =4时取“=”.∴当AN 的长度为4米时,矩形AMPN 的面积最小,矩形AMPN 的最小面积为24平方米.10求函数y =a <b )的最大值. 答案:解:解法一:函数的定义域为[a ,b ],y >0, 所以y 2=b a -+2(b -a ),当且仅当=2a bx -时,等号成立. 所以y解法二:利用不等式22222a b a b ++⎛⎫≥ ⎪⎝⎭.22=22y ⎛⎛⎫ ⎪ ⎝⎭⎝⎭()()22x a b x b a-+--≤=, 所以y 2≤2(b -a ),即y ≤当且仅当x -a =b -x ,即2b ax +=时,等号成立,所以max y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ab叫做a,b的 几何平均数
这样,基本不等式可以表述为:
算术平均数
两个正数的算术平均数不小于它们的几何平均数。
注意:
1、重要不等式与基本不等式有什么区别与联系? 基本不等式可以看作是重要不等式的变形,但它们
的前提条件不同。重要不等式中a,b属于全体实数,
而基本不等式中a,b均为大于0的实数。 2、重要不等式与基本不等式的几个推广公式:
1.若a1, a2 , a3,an R ,
则a1 a2 a3 an nn a1 a2 an
当且仅当a1 a2 a3 an时取 号
4.若a, b R , 则
1
2 1
ab
ab a b 2
a2 b2 2
几何平均数 算术平均数 平方平均数 调和平均数
(当且仅当a=b时,取“=”号)
例8、已知x, y, z都为正数,且xyz( x y z) 1 求证: ( x y)( y z) 2
题型五:基本不等式的实际应用
例9:一个商店经销某种货物,根据销售情况,年进货量为5万件 分若干次等量进货(设每次进货x件),每进一次货运费50元 且在销售完该货物时,立即进货,现以年平均x/2件货储存在 仓库里,库存费以每件20元计算,要使一年的运费和库存费 最省,每次进货量x应是多少?
(3)三相等:求最值时一定要考虑不等式是否能取 “=”。
练习:
1、当x>0时,x 1 的最小值为 2 ,此时x= 1 。 x
2、已知 2x 3 y 2( x 0, y 0)
1
则x y 的最大值是 6 。
3、若实数 x, y ,且 x y 5,则 3 x 3 y的最小
值是( D )
A、10
第一讲 不等式和绝对值不等式 2、基本不等式及其应用
一、重要不等式:
一般地,对于任意实数a,b,我们有
a2+b2≥2ab
(当且仅当a=b时,取“=”号)
文字语言:两个数的平方和不小于它们积的2倍
二、定理2(基本不等式)
如果a, b>0, 那么
a b ab
2
当且仅当a=b时,等号成立。
如果a,b都是正数,我们就称 a 为 ba,b的 2
题型一:利用基本不等式判断代数式的大小关系
例1:设a>0,b>0,给出下列不等式
(1)a 1 2 (2)(a 1 )(b 1) 4
a
ab
(3)(a b)(1 1) 4 ab
(4)a 2
2
1 a2 2)(3)(4)
等号能成立的是(1)(2)(3) 。 例2:若 a b 1, P lg alg b,
Q 1 (lg a lg b), R lg( a b) ,则( B )
2
2
A、R P Q B、P Q R C、R P Q D、P Q R
题型二:解决最大(小)值问题
结论:利用 a b 2 ab(a 0,b 0) 求最值时要注意下面三条:
(1)一正:各项均为正数
(2)二定:两个正数积为定值,和有最小值。 积定,和最小 两个正数和为定值,积有最大值。 和定,积最大
B、6 3 C、4 6 D、18 3
题型三:构造积为定值,利用基本不等式求最值
例4、 求函数 y 1 x(x 3)的最小值
x3
例5、求函数 y x2 5 的最小值
x2 4
例6、已知正数x、y满足2x+y=1,求
1 x
1y的最小值
例7、 求函数 y 1 2x 3 的值域
x
题型四:利用基本不等式证明不等式
相关文档
最新文档