抛物线及其标准方程【公开课教学PPT课件】
合集下载
抛物线及其标准方程优质课-PPT课件一等奖新名师优质课获奖比赛公开课
代入解得 p 1 故所求方程为 y2 2x 或 x2 2 y
(3)原则方程为
y2
2 px ,由
p1得
24
p1 2
,
所求方程为 y2 x
(4)焦点是直线x+y+1=0与坐标轴旳交点, 故 F (0, 1)
或F ( 1, 0) ,所以
y2 4x
p 2
1,
p
2
,故方程为
x2
4 y
或
例2 一种卫星接收天线的轴 截面如图2.3
的抛物线的标准方程?
y
y
OF x
x
FO
y2=2px
想一想
如右图所示,两抛物线 有关y轴对称,只需在 y2 2 px 中以-x 代换x即可.
M y2 2 px
M' y2=2px
思索
请根据前面求出旳抛物线旳原则方程完毕下表:
图形
• 原则方 程
y2 2 px
p 0
焦点坐标 准线方程
p ,0 2
3 1 所示.卫星波束呈近似平行状 态射入轴
截面为抛物线的接收天 线,经反射聚集到焦
点处 .已知接收天线的口径 直径为 4.8m,深
度为0.5m,求抛物线的标准方程和 焦点坐标 . y A
1
图2.3 3
O
Fx
B
2
y
解 如图2.3 3 2,在接收天
A
线的轴截面所在平面内建立
直角坐标系,使接收天线的顶 O
例3 根据已知条件,求抛物线旳原则方程.
(1)焦点坐标为 F 0,2 (2)经过点(2 , 2)
(3)准线方程为 x 1 (4)焦点在直线x+y+1=0
抛物线及其标准方程(优秀课件)
抛物线与圆的 焦点与准线: 对于抛物线, 焦点在准线上; 对于圆,焦点
在圆外
抛物线与圆的 离心率:对于 抛物线,离心 率恒为1;对 于圆,离心率
恒为0
抛物线的应用与拓展
第七章
抛物线在几何中的应用
● 定义与性质:抛物线是一种特殊的二次曲线,具有对称性和准线等性质。 ● 方程与标准形式:抛物线的方程有多种形式,其中最常用的是标准方程y^2=4px。 ● 焦点与准线:抛物线的焦点位于其对称轴上,准线则是垂直于对称轴的直线。 ● 离心率:抛物线的离心率始终为1,这是其与椭圆和双曲线的重要区别。 ● 焦半径公式:对于抛物线上的任意一点P,其到焦点F的距离PF等于到准线L的距离PL。 ● 焦点弦长公式:对于抛物线上的任意两点AB,其到焦点的距离之和AF+BF等于到准线的距离之和AL+BL。 ● 切线性质:抛物线上任意一点的切线与该点的射影垂直,且切线斜率等于该点横坐标的平方根。 ● 切线方程:抛物线上任意一点的切线方程可以表示为y=kx^2,其中k为切线斜率。 ● 切线与准线的关系:抛物线上任意一点的切线与准线平行,且切线与准线的距离等于该点到焦点的距离。 ● 切线与直线的交点:抛物线上任意一点的切线与过该点的直线交于一点,该点坐标为(x0,y0)。
抛物线及其标准方 程
PPT,a click to unlimited possibilities
汇报人:PPT
目录
CONTENTS
01 添加目录标题 02 抛物线的定义与性质 03 抛物线的标准方程 04 抛物线的几何意义与图像特征 05 抛物线与直线的关系
06 抛物线与圆的关系
单击添加章节标题
感谢您的观看
汇报人:PPT
第一章
抛物线的定义与性质
抛物线的定义及标准方程PPT课件-2024鲜版
性质
抛物线具有对称性,其对称轴是 过焦点且垂直于准线的直线;抛 物线上任一点到焦点的距离等于 到准线的距离。
4
抛物线的焦点和准线
焦点
抛物线上所有点到焦点的距离相等的 点,用F表示。
准线
焦点和准线的位置关系
对于开口向上的抛物线,焦点在准线 的上方;对于开口向下的抛物线,焦 点在准线的下方。
抛物线上所有点到准线的距离相等的 直线,用l表示。
18
05
抛物线与相关曲线的联系与区别
2024/3/28
19
与直线的交点问题
抛物线与直线交点的 求解方法
交点在抛物线对称轴 上的特殊情况
2024/3/28
交点个数的判断及位 置关系
20
与圆的切线问题
抛物线与圆的切线求解方法
切线个数的判断及位置关系
切点在抛物线顶点处的特殊情况
2024/3/28
21
无限延伸
抛物线在两端无限延伸,且越来越 接近其对称轴。
12
抛物线的顶点、焦点和准线的性质
顶点
抛物线的顶点是抛物线上距离对 称轴最近的点,也是抛物线的最
高点或最低点。
焦点
抛物线的焦点位于对称轴上,且 距离顶点的距离等于焦距。所有 从焦点出发的光线经过抛物线反
射后平行于对称 轴且距离顶点等于焦距的直线。 所有从焦点出发的光线经过抛物
线反射后,都会与准线相交。
2024/3/28
13
抛物线的对称性和平移性质
对称性
抛物线关于其对称轴对称,即如果点P(x,y)在抛物线上,那么点P'(-x,y)也在抛物线上。
平移性质
抛物线可以通过平移变换得到新的抛物线。如果抛物线沿x轴平移a个单位,沿y轴平移b个单位,那么新的抛物线 的方程可以通过在原方程中替换x为x-a,y为y-b得到。这种平移变换不会改变抛物线的形状和开口方向,只会改 变其位置和顶点坐标。
抛物线具有对称性,其对称轴是 过焦点且垂直于准线的直线;抛 物线上任一点到焦点的距离等于 到准线的距离。
4
抛物线的焦点和准线
焦点
抛物线上所有点到焦点的距离相等的 点,用F表示。
准线
焦点和准线的位置关系
对于开口向上的抛物线,焦点在准线 的上方;对于开口向下的抛物线,焦 点在准线的下方。
抛物线上所有点到准线的距离相等的 直线,用l表示。
18
05
抛物线与相关曲线的联系与区别
2024/3/28
19
与直线的交点问题
抛物线与直线交点的 求解方法
交点在抛物线对称轴 上的特殊情况
2024/3/28
交点个数的判断及位 置关系
20
与圆的切线问题
抛物线与圆的切线求解方法
切线个数的判断及位置关系
切点在抛物线顶点处的特殊情况
2024/3/28
21
无限延伸
抛物线在两端无限延伸,且越来越 接近其对称轴。
12
抛物线的顶点、焦点和准线的性质
顶点
抛物线的顶点是抛物线上距离对 称轴最近的点,也是抛物线的最
高点或最低点。
焦点
抛物线的焦点位于对称轴上,且 距离顶点的距离等于焦距。所有 从焦点出发的光线经过抛物线反
射后平行于对称 轴且距离顶点等于焦距的直线。 所有从焦点出发的光线经过抛物
线反射后,都会与准线相交。
2024/3/28
13
抛物线的对称性和平移性质
对称性
抛物线关于其对称轴对称,即如果点P(x,y)在抛物线上,那么点P'(-x,y)也在抛物线上。
平移性质
抛物线可以通过平移变换得到新的抛物线。如果抛物线沿x轴平移a个单位,沿y轴平移b个单位,那么新的抛物线 的方程可以通过在原方程中替换x为x-a,y为y-b得到。这种平移变换不会改变抛物线的形状和开口方向,只会改 变其位置和顶点坐标。
抛物线及其标准方程(共32张PPT)高中数学人教A版选择性必修第一册
(1)椭圆的离心率范围为0<e<1 ;(2) 双曲线的离心率的范围是e>1 ;(3)当e=1 时,它的轨迹是什么? 抛物线我们已经学习了圆、椭圆、双曲线三种圆锥曲线,今天我们类比椭圆、 双曲线的研究过程与方法,研究另一类圆锥曲线——抛物线.
情景导入
02抛物线及其标准方程 P A R T 0 N E
抛物线及其标准方程
,准线为
为F
抛物线及其标准方程 从上述过程可以看到,抛物线上任意一点的坐标(x,y)都是方程①的解,以方 程①的解为坐标的点(x,y)与抛物线的焦点 的距离和它到准线 的 距离相等,即以方程①的解为坐标的点都在抛物线上,我们把方程①叫做抛物线 的标准方程,它表示焦点在x轴正半轴上,焦点是 ,准线是 的抛物线 .
将点(一2,3)代入抛物线方程y 得
抛物线及其标准方程
∴满足条件的抛物线的标准方程为(2)直线x—y+2=0 与两坐标轴的交点为(一2,0),(0,2). 若抛物线的焦点为(一2,0),设其方程为y²=—2px(p>0).
抛物线及其标准方程
抛物线及其标准方程 在建立椭圆、双曲线的标准方程时,选择不同的坐标系我们得到了不同形 式的标准方程,抛物线的标准方程有哪些不同的形式?请探究之后填写下表. 图像 标准方程 焦点坐标 准线方程 y²=2px(p>0) F(2,0) x=-2 y²=-2px(p>0) F(-2,0) x=2 x²=2py(p>0) F(0,2) y=-2 x²=-2py(p>0) F(0,-2 y=2
抛物线及其标准方程
抛物线及其标准方程 求轨迹方程C P_ 建立直角坐标系?使方程形式足够简洁 !
设M(x,y) 是抛物线上一点,则M 到F的距离为则M到直线l的距离为所以上式两边平方,整理可得y²= 2px ①
情景导入
02抛物线及其标准方程 P A R T 0 N E
抛物线及其标准方程
,准线为
为F
抛物线及其标准方程 从上述过程可以看到,抛物线上任意一点的坐标(x,y)都是方程①的解,以方 程①的解为坐标的点(x,y)与抛物线的焦点 的距离和它到准线 的 距离相等,即以方程①的解为坐标的点都在抛物线上,我们把方程①叫做抛物线 的标准方程,它表示焦点在x轴正半轴上,焦点是 ,准线是 的抛物线 .
将点(一2,3)代入抛物线方程y 得
抛物线及其标准方程
∴满足条件的抛物线的标准方程为(2)直线x—y+2=0 与两坐标轴的交点为(一2,0),(0,2). 若抛物线的焦点为(一2,0),设其方程为y²=—2px(p>0).
抛物线及其标准方程
抛物线及其标准方程 在建立椭圆、双曲线的标准方程时,选择不同的坐标系我们得到了不同形 式的标准方程,抛物线的标准方程有哪些不同的形式?请探究之后填写下表. 图像 标准方程 焦点坐标 准线方程 y²=2px(p>0) F(2,0) x=-2 y²=-2px(p>0) F(-2,0) x=2 x²=2py(p>0) F(0,2) y=-2 x²=-2py(p>0) F(0,-2 y=2
抛物线及其标准方程
抛物线及其标准方程 求轨迹方程C P_ 建立直角坐标系?使方程形式足够简洁 !
设M(x,y) 是抛物线上一点,则M 到F的距离为则M到直线l的距离为所以上式两边平方,整理可得y²= 2px ①
【2024版】】抛物线的定义及标准方程PPT课件
y
ox
﹒y o x
焦点
准线
标准方程
想一想:
1.椭圆,双曲线,抛物线各有几条准线? 2.根据上表中抛物线的标准方程的不同 形式与图形、焦点坐标、准线方程对应 关系,如何判断抛物线的焦点位置,开
口方向?
3.第一:一次项的变量如为X(或Y) 则X轴 (或Y轴)为抛物线的对称轴,焦点就在对称 轴上。! 第二:一次的系数决定了开口方向
解(直接法):设 M(x,y),则由已知,得
|MF|+1=|x+5|
l
y .M
即 (x 4)2 y2 1 x 5 化简得 y2 16x 即为点 M的轨迹方程 .
.
o
Fx
另解(定义法):
由已知,得点M到点F(4,0)的距离等于它到直线 l: x+4=0 的距离.
点M的轨迹是以F(4,0)为焦点的抛物线. 由抛物线定义知:
课题: 抛物线及 其标准方程(一)
复习:
椭圆、双曲线的第二定义:
与一个定点的距离和一条定直线的距离的比 是常数e的点的轨迹.
(1)当0<e<1时,是椭圆;
(2) 当e>1时,是双曲线;
(3)当e=1时,它的轨迹是什么?
M
N
··F
0<e <1
e>1
e=1
一、定义
定点F与定直线l的位置关系是 怎样的?
(3) (4)
(0, 021,4 -2)
准线方程
x=-5
y= -
1
—8
y 1 24
y=2
例2、求过点A(-3,2)的抛物线的
标准方程。
. 解:当抛物线的焦点在y轴
y
的正半轴上时,把A(-3,2) A
ox
﹒y o x
焦点
准线
标准方程
想一想:
1.椭圆,双曲线,抛物线各有几条准线? 2.根据上表中抛物线的标准方程的不同 形式与图形、焦点坐标、准线方程对应 关系,如何判断抛物线的焦点位置,开
口方向?
3.第一:一次项的变量如为X(或Y) 则X轴 (或Y轴)为抛物线的对称轴,焦点就在对称 轴上。! 第二:一次的系数决定了开口方向
解(直接法):设 M(x,y),则由已知,得
|MF|+1=|x+5|
l
y .M
即 (x 4)2 y2 1 x 5 化简得 y2 16x 即为点 M的轨迹方程 .
.
o
Fx
另解(定义法):
由已知,得点M到点F(4,0)的距离等于它到直线 l: x+4=0 的距离.
点M的轨迹是以F(4,0)为焦点的抛物线. 由抛物线定义知:
课题: 抛物线及 其标准方程(一)
复习:
椭圆、双曲线的第二定义:
与一个定点的距离和一条定直线的距离的比 是常数e的点的轨迹.
(1)当0<e<1时,是椭圆;
(2) 当e>1时,是双曲线;
(3)当e=1时,它的轨迹是什么?
M
N
··F
0<e <1
e>1
e=1
一、定义
定点F与定直线l的位置关系是 怎样的?
(3) (4)
(0, 021,4 -2)
准线方程
x=-5
y= -
1
—8
y 1 24
y=2
例2、求过点A(-3,2)的抛物线的
标准方程。
. 解:当抛物线的焦点在y轴
y
的正半轴上时,把A(-3,2) A
抛物线及其标准方程带动画 ppt课件
.
OF
x
ppt课件
19
小结:
1、抛物线的定义,标准方程类型与图象的对应 关系以及判断方法
2、抛物线的定义、标准方程和它 的焦点、准线、方程
3、求标准方程(1)用定义;
(2)用待定系数法
ppt课件
20
y y=ax2
y=ax2+c y=ax2+bx+c
o
x
ppt课件
21
4
O
x
当焦点在x轴的负半轴上时,
把A(-3,2)代入y2 = -2px,
2
得p=
∴抛物3线的标准方程为x2
=
9
y或y2
=
4
x
。
2 ppt课件
3 18
思考题、M是抛物线y2 = 2px(P>0)上一点,若点
p M 的横坐标为X0,则点M到焦点的距离是
+ — X0
2 . ————————————
yM
平面内到定点 F与到定直线 L 的距
离的比值为 1 的点的轨迹叫抛物线.
定点 F 叫做 抛
物线的焦点;
N
M
定直线 L 叫做
抛物线的准线.
KF
L
ppt课件
6
平面上与一个定点F和一条定直线l(F 不在l上)的距离相等的点的轨迹叫做
抛物线。
F在l上时,轨迹是过点F垂
注意 直于L的一条直线。
ppt课件
7
二、标准方程
2设点3列式4化简5检验设点m的坐标为xy由定义可知化简得取过焦点f且垂直于准线l的直线为x轴线段kf的中垂线y轴2pxp0叫做抛物线的标准方程叫做抛物线的标准方程其中p
抛物线极其标准方程
抛物线及其标准方程(优质课) ppt
p 0
p 0, 2
p y 2
作业布置:
课本p64 练习2、3、5.
课外练习:
1、求抛物线 y a x (a 0) 的焦点和准线方程。
2
2、求过点A(-3,2)的抛物线的标准方程。
p p 2 2 d | x |, | MF | ( x ) y 2 2 p 2 p 2 ( x ) y | x | . 2 2
2 y 将上式两边平方并化简,得: 2 px
y
方程
y 2 px 叫抛物线的标准
2
方程,它表示的抛物线的焦点在x轴 的正半轴上,焦点坐标是 (
求曲线方程的基本 步骤是怎样的?
如图,建立直角坐标系xOy, 使x轴经过点F且垂直于直线 l ,垂足为K, 并使原点与线段KF的中点重合.
y
设 KF p( p 0) ,那么焦点F的坐标
p p 为( ,0) , 准线 l 的方程为 x . 2 2
O
x
设点M(x,y)是抛物线上任意
一点,点M到l 的距离为d.由抛物线的 定义可知, | MF | d
y 2 12 x
课堂小结
1、掌握抛物线的定义。 平面内与一个定点F和一条定直线l(l不经过点F) 的距离相等的点的轨迹叫做抛物线。
2、深化曲线方程的求解方法: (1)建系设点(2)找等量关系式 (3)代入 (4)化简.
3、掌握并理解抛物线的四种形式的标准方程. 注:①p的几何意义是:焦点到准线的距离; ②对称轴看一次项系数,符号确定开口方向。
的准线方程是 x p . 2
p ,它 ,0 ) 2
O
x
注意:
p的几何意义是:焦点到准线的距离。
抛物线及其标准方程ppt课件
l
平面内与一个定点 F 和一条定直线 l(l 不经
H
过点 F)的距离相等的点的轨迹叫做抛物线.点 F
叫做抛物线的焦点,直线 l 叫做抛物线的准线.
准线
M
F
焦点
根据抛物线的几何特征,如图,取经过点 F 且垂直于直线 l 的直线为 x 轴,垂
足为 K,并使原点与线段 KF 的中点重合,建立平面直角坐标系 Oxy.设| KF | p( p 0) ,
的值是( C)
A. 4
B.2
C.4
D.8
解析:抛物线的准线方程为:
x
p 2
,因为
M
到焦点距离为
5,所以
M
到准线
的距离1 p 5 ,即 p 8 ,则抛物线方程为 y2 16x .将1, m 代入得:m2 16 ,
2
因为 m 0,所以 m 4 .故选:C.
5.抛物线 y2 mx( m 0) 的准线方程为 x 2 , 那么抛物线 y mx2 的焦点坐标为
焦点坐标
p 2
,
0
p 2
,
0
0,
p 2
0,
p 2
准线方程
x p 2
x p 2
y p 2
y p 2
四种标注方程对应抛物线的比较 相同点:
(1)顶点都是原点
(2)焦点都在坐标轴上
·
(3)焦点到准线的距离都是 p
(4)准线与焦点所在的坐标轴垂直,准线与坐标轴的交点与焦点关于原点对称,
它们与原点的距离都等于
p 2
1,得到
p
2
.
A 2.抛物线 y x 2 的焦点到双曲线 x2 y2 1 的渐近线的距离为( ) 24
抛物线的标准方程(公开课课件)PPT课件
即 2p=136,2p1=94.
2020/3/21
12
∴所求抛物线的方程为 y2=136x 或 x2=-94y. (2)由题意,可设抛物线的方程为 y2=2px(p >0). A(3,m)到焦点距离为 5,∴p2+3=5.即 p= 4. ∴所求抛物线方程为 y2=8x.
2020/3/21
13
【点评】 求抛物线标准方程时,若抛物线 的焦点位置不确定,则要分情况讨论;另外,
学习目标
1.理解抛物线的定义,明确焦点、准线的概念; 2.了解用抛物线的定义推导开口向右的抛物线的标准 方程的推导过程,进一步得出开口向左、向上、向下 的抛物线的标准方程; 3. 熟练掌握抛物线的四种标准方程及其所对应的开 口方向、焦点坐标、准线方程之间的关系。
2020/3/21
2
生活中的抛物线
桥梁
∴m=±2 6.
2020/3/21
17
考点二、 抛物线定义的应用
抛物线的定义可以实现到定点的距离与到定 直线距离的转化,利用这种等价性可以解决 相关的问题.
例2
求证:以抛物线的焦点弦(通过焦
点的弦)AB为直径的圆与抛物线的准线l相
切.
【思路点拨】 解答本题可结合抛物线的定
义,分析各线段与圆的半径的关系.
时,可将抛物线方程设为y2=ax(a≠0),此 时焦点在x轴上;(或x2=ay(a≠0),此时焦 点在y轴上,)再根据条件求a,若a>0,则 开口向右(上);若a<0,则开口向左(下).
(2)焦点在坐标轴上,顶点在坐标原点,其 方程才具有标准形式,否则应用定义法或转 化法求抛物线的方程.
2020/3/21
∴P(2,2).
2020/3/21
3.3.1抛物线及其标准方程-课件(共26张PPT)
(2)抛物线实质上就是双曲线的一支.( × )
(3)若抛物线的方程为2 = −4,则其中的焦参数 = −2.( × )
(4)抛物线y=6x2的焦点在x轴的正半轴.( × )
1
上
2.抛物线x2= 2 y的开口向____,焦点坐标为
1
(0, )
8
,准线方程是
=−
1
8
.
典例剖析
例1
(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;
D. y 2 2ax
4.以坐标轴为对称轴,焦点在直线 3x 4 y 12 0 上的抛物线的标准方程为( C )
A. x 2 16 y 或 y 2 12x
B. y 2 16 x 或 x 2 12 y
C. y 2 16 x 或 x2 12 y
D. x 2 16 y 或 y 2 12 x
y2=8x
.
【解析】由圆(x-2)2+y2=1可得,圆心F(2,0),半径r=1.
设所求动圆圆心为P(x,y),过点P作PM⊥直线l:x+1=0,M为垂足.
则|PF|-r=|PM|,可得|PF|=|PM|+1.
因此可得,点P的轨迹是到定点F(2,0)的距离和到直线l:x=-2的距离相等的点的集合.
由抛物线的定义可知,点P的轨迹是抛物线,定点F(2,0)为焦点,定直线l:x=-2是准线.
【解】如图建立直角坐标系,
设桥拱抛物线方程为 2 = −2( > 0),
由题意可知, 4, −5 在抛物线上,所以 = 1.6,得 2 = −3.2,
当船面两侧和抛物线接触时,船不能通航,
设此时船面宽为AA’,则 2, ,
(3)若抛物线的方程为2 = −4,则其中的焦参数 = −2.( × )
(4)抛物线y=6x2的焦点在x轴的正半轴.( × )
1
上
2.抛物线x2= 2 y的开口向____,焦点坐标为
1
(0, )
8
,准线方程是
=−
1
8
.
典例剖析
例1
(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;
D. y 2 2ax
4.以坐标轴为对称轴,焦点在直线 3x 4 y 12 0 上的抛物线的标准方程为( C )
A. x 2 16 y 或 y 2 12x
B. y 2 16 x 或 x 2 12 y
C. y 2 16 x 或 x2 12 y
D. x 2 16 y 或 y 2 12 x
y2=8x
.
【解析】由圆(x-2)2+y2=1可得,圆心F(2,0),半径r=1.
设所求动圆圆心为P(x,y),过点P作PM⊥直线l:x+1=0,M为垂足.
则|PF|-r=|PM|,可得|PF|=|PM|+1.
因此可得,点P的轨迹是到定点F(2,0)的距离和到直线l:x=-2的距离相等的点的集合.
由抛物线的定义可知,点P的轨迹是抛物线,定点F(2,0)为焦点,定直线l:x=-2是准线.
【解】如图建立直角坐标系,
设桥拱抛物线方程为 2 = −2( > 0),
由题意可知, 4, −5 在抛物线上,所以 = 1.6,得 2 = −3.2,
当船面两侧和抛物线接触时,船不能通航,
设此时船面宽为AA’,则 2, ,
抛物线及其标准方程 课件
【解析】1.取反射镜的轴即抛物线的对称轴为x轴,抛物线的顶 点为坐标原点,建立直角坐标系xOy,如图所示. 因灯口直径|AB|=24,灯深|OP|=10, 所以点A的坐标是(10,12). 设抛物线的方程为y2=2px(p>0),由点A(10,12)在抛物线上, 得122=2p×10,所以p=7.2. 所以抛物线的焦点F的坐标为(3.6,0).因此灯泡与反射镜顶点 间的距离是3.6cm. 答案:3.6cm
∴点E到拱底AB的距离为 a y a 0.64 3.
4
4a
解得a>12.21,∵a取整数,
∴a的最小整数值为13.
【拓展提升】求解抛物线实际应用题的五个步骤
x=- p 2
(- p ,0) ___2___
p _x_=__2_
标准方程 图 形
x2=2py (p>0)
焦点坐标 p
_(_0_,_2__)_
准线方程 y_=___p2__
x2=-2py (p>0)
_(_0_,__p2__)
p _y_=__2__
判断:(正确的打“√”,错误的打“×”) (1)抛物线的方程都是二次函数.( ) (2)抛物线的焦点到准线的距离是p.( ) (3)抛物线的开口方向由一次项确定.( )
【解析】1.选D.方程x=-2y2的标准形式是y2=-1 x,
2
∴抛物线开口向左且p= 1,∴准线方程为x= .1
4
8
2.(1)抛物线y= 1x2的标准形式为x2=4y,
4
∴p=2,∴焦点坐标是(0,1),准线方程是y=-1.
(2)抛物线x=ay2(a≠0)的标准形式为y2=1 x, a
∴2p= 1 . a
【典型例题】