七年级数学探索三角形全等的条件2
初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(2)
章节测试题1.【答题】如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是()A. AC=BDB. OD=OCC. ∠A=∠CD. OA=OB【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、添加AC=BD不能判定△OAB≌△COD,故此选项错误;B、添加OD=OC不能判定△OAB≌△COD,故此选项错误;C、添加∠A=∠C,可利用ASA判定△OAB≌△COD,故此选项正确;D、添加AO=BO,不能判定△OAB≌△COD,故此选项错误;选C.2.【答题】如图,下列条件中,不能证明△ABD≌△ACD的是()A. BD=DC,AB=ACB. ∠ADB=∠ADC,∠BAD=∠CADC. ∠B=∠C,BD=DCD. ∠B=∠C,∠BAD=∠CAD【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;D、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;选C.3.【答题】在△ABC和△A1B1C1中,已知∠A=∠A1,AB=A1B1,下列添加的条件中,不能判定△ABC≌△A1B1C1的是()A. BC=B1C1B. ∠C=∠C1C. AC=A1C1D. ∠B=∠B1【答案】A【分析】根据全等三角形的判定定理解答即可.【解答】解:A、不符合全等三角形的判定定理,即不能推出≌,故本选项正确;B、符合全等三角形的判定定理AAS,即能推出≌,故本选项错误;C、符合全等三角形的判定定理SAS,即能推出≌,故本选项错误;D、符合全等三角形的判定定理ASA,即能推出≌,故本选项错误;选A.4.【答题】如图,已知∠ADB=∠CBD,下列所给条件不能证明△ABD≌△CDB的是()A. ∠A=∠CB. AD=BCC. ∠ABD=∠CDBD. AB=CD【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A.∵∠A=∠C,∠ADB=∠CBD,BD=BD,∴△ABD≌△CDB(AAS),故正确;B.∵AD=BC,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(SAS),故正确;C.∵∠ABD=∠CDB,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(ASA),故正确;D.∵AB=CD,BD=DB,∠ADB=∠CBD,不符合全等三角形的判定方法,故不正确;选D.5.【答题】在下列条件中,不能说明△ABC≌△A′B′C′的是()A. ∠C=∠C′,AC=A′C′,BC=B′C′B. ∠B=∠B′,∠C=∠C′,AB=A′B′C. ∠A=∠A′,AB=A′B′,BC=B′C′D. AB=A′B′,BC=B′C′,AC=A′C【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】A、∠C=∠C′,AC=A′C ′,BC=B′C′,根据SAS可以判定△ABC≌△A′B′C′;B、∠B=∠B′,∠C=∠C′,AB=A′B′,根据AAS可以判定△ABC≌△A′B′C′;C、∠A=∠A′,AB=A′B′,BC=B′C′,SSA不能判定两个三角形全等,故C选项符合题意;D、AB=A′B′,BC=B′C′,AC=A′C,根据SSS可以判定△ABC≌△A′B′C′,选C.6.【答题】如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. AB=ACB. DB=DCC. ∠ADB=∠ADCD. ∠B=∠C【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证:A、∵AB=AC,∴∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴∴△ABD≌△ACD(AAS);故此选项正确.选B.方法总结:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.【答题】在下列各组条件中,不能说明的是()A.B.C.D.【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;选B.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【答题】如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,添加下列条件后,仍不能判断△ABC≌△DEF的是()A. BC=EFB. ∠A=∠EDFC. AB∥DED. ∠BCA=∠F【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】解:∵AD=CF,∴AD+CD=CF+DC,∴AC=DF,A、添加BC=EF可利用SSS定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠A=∠EDF可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;C、添加AB∥DE可证出∠A=∠EDC,可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;D、添加∠BCA=∠F不能判定△ABC≌△DEF,故此选项符合题意;选D.9.【答题】如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是()A. SASB. ASAC. AASD. SSS【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,而AC=CA,∴△ABC≌△CDA(ASA).选B.10.【答题】若AD=BC,∠A=∠B,直接能利用“SAS”证明△ADF≌△BCE的条件是()A. AE=BFB. DF=CEC. AF=BED. ∠CEB=∠DFA【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:用边角边证明两三角形全等,已知其中一个对应角相等和一条对应边相等,则还需要的条件是相等角的另外一条临边相等,即AF=BE,选C.11.【答题】如图所示,在△ABC中,BC=AC,BE=AE,则由“SSS”可以判定()A. △ACD≌△BCDB. △ADE≌△BDEC. △ACE≌△BCED. 以上都对【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:三条边对应相等,BC=AC,BE=AE,CE=CE. 所以△ACE≌△BCE,选C.12.【答题】如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A. AB=ACB. BE=CDC. ∠B=∠CD. ∠ADC=∠AEB 【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】A、∵在△ABE和△ACD中,AE=AD、∠A=∠A、AB=AC,∴△ABE≌△ACD (SAS),正确,故本选项不符合题意;B、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项符合题意;C、∵在△ABE和△ACD中,∠A=∠A、∠B=∠C、AE=AD,∴△ABE≌△ACD(AAS),正确,故本选项不符合题意;D、∵在△ABE和△ACD中,∠A=∠A、AE=AD、∠AEB=∠ADC,∴△ABE≌△ACD (ASA),正确,故本选项不符合题意,选B.13.【答题】下列四组条件中, 能使△ABC≌△DEF的条件有()①AB = DE, BC = EF, AC = DF; ②AB = DE, ∠B = ∠E, BC = EF;③∠B = ∠E, BC = EF, ∠C = ∠F; ④AB = DE, AC = DF, ∠B = ∠E.A. 1组B. 2组C. 3组D. 4组【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:①AB = DE, BC = EF, AC = DF,边边边;②AB = DE, ∠B = ∠E, BC = EF,边角边;③∠B = ∠E, BC = EF, ∠C = ∠F,角边角;选C.14.【答题】下列判断中错误的是()A. 有两角和一边对应相等的两个三角形全等B. 有两边对应相等的两个直角三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有两边和一角对应相等的两个三角形全等【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A. 有两角和一边对应相等的两个三角形全等,正确,不符合题意;B. 有两边对应相等的两个直角三角形全等,正确,不符合题意;C. 有两边和其中一边上的中线对应相等的两个三角形全等,正确,不符合题意;D. 有两边和一角对应相等的两个三角形全等,当两边夹一角时,正确,当两边和其中一边的对角时,不正确,故D错误,符合题意,选D.15.【答题】两个三角形有两个角对应相等,正确说法是()。
数学:11.3《探索三角形全等的条件》课件(2)(苏科版七年级下)
D C
例题讲解:
例1. 已知:点D在AB上,点E在AC上,BE和CD相 交于点O,AB=AC,∠B=∠C。
求证:BD=CE
A
D
O B
E
C
例题讲解:
例1.已知:点D在AB上,点E在AC上,BE和CD相交于 点O,AB=AC,∠B=∠C。
A D O B C E
求证:BD=CE
证明 :在△ADC和△AEB中
C
P
A
45°
60°
2.6cm
B
角边角公理
:
有两角和它们夹边对应相 等的两个三角形全等(简写成 “角边角”或“ASA”)。
练 习 1
.已知:如图,AB=A’C,∠A=∠A’,∠B=∠C 求证:△ABE≌ △A’CD
证明:在______和_______中
________ ( ________ ( ) )
初中数学七年级下册 (苏科版)
探索三角形全等的条件 (二)
1.什么样的图形是全等三角形?
2.判定两个三角形全等要具备什么 条件?
边角边公理
:
有两边和它们夹角对应相 等的两个三角形全等。
怎么办?可以帮帮 我吗?
一张教学用的三角形硬纸板不小心
被撕坏了,如图,你能制作一张与原来
同样大小的新教具?能恢复原来三角形
∠A=∠A(公共角)
AC=AB(已知) ∠C=∠B(已知) ∴△ACD≌△ABE(ASA) ∴AD=AE(全等三角形的对应边相等) 又∵AB=AC(已知) ∴BD=CE
巩 固 练 习
1.如图,∠1=∠2,∠3=∠4 求证:AC=AD 证明:∵∠——=180-∠3 ∠——=180-∠4 而∠3=∠4(已知)
数学(七下)3.3探索三角形全等的条件(二)
1、角.边.角;
2、角.角.边
每种情况下得到的三角形都全等吗?
做一做
1.角.边.角;
若三角形的两个内角分别是60°和80° 它们所夹的边为4cm,你能画出这个三角形吗?
2cm
60°
80°
做一做
2.角.角.边
若三角形的两个内角分别是60°和45°,且45° 所对的边为3cm,你能画出这个三角形吗?
2
C
∴△ABC≌△DCB( AAS )
巩固练习:
如图,O是AB的中点,∠A=∠B,△AOC 与△BOD全等吗?为什么? 我的思考过程如下: 两角与夹边对应相 等 A
C O B D
∴△AOC≌△BOD
补充练习
1﹑请在下列空格中填上适当的条件, 使△ABC≌△DEF。 在△ABC和△DEF中 A D
课堂小结
通过这堂课的学习你有 什么收获?知道了哪些 新知识?学会了做什么?
布置作业
P83 知识技能2.3; 问题解决。
第三章
三角形
3 探索三角形全等的条件(第2课时)
情境导入
我们已学过识别两个三角形全等的方法 是什么?识别三角形全等是不是还有其 它方法呢?
情境导入
有一块三角形纸片撕去了一个角, 要去剪一块新的,如果你手头没 有测量的仪器,你能保证新 剪的纸片形状、大小和原来的一 样吗?
实践探究
我们知道:如果给出一个三角形三条边的长度, 那么因此得到的三角形都是全等.如果已知一个 三角形的两角及一边,那么有几边对应相等的两个三 角形全等,简写成“角边角”或“ASA”
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
练一练
1.如图,已知AB=DE, ∠A =∠D, ,∠B=∠E, 则△ABC ≌△DEF的理由是:角边角(ASA) 2.如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则 △ABC ≌△DEF的理由是: 角角边(AAS)
5.7探索直角三角形全等的条件
7
探索直角三角形全等的条件
1、判定两个三角形全等方法, SSS , ASA , AAS, SAS。 判定两个三角形全等方法, 2、如图,Rt ∆ABC中,直角边 BC 、 AC ,斜边 AB 。 如图, ABC中 A C
回 顾 与 思 考
B
A 如图, BE于 BE于 3、如图,AB ⊥ BE于C,DE ⊥ BE于E, B C D,AB=DE, (1)若∠ A=∠ D,AB=DE, ABC与 全等” 则△ ABC与 △DEF 全等 (填“全等”或“不全 等”) ASA 根据 (用简写法) F E
下面让我们一起来验证这个结论。
已知线段a、 ﹤ 和一个直角 和一个直角α, 已知线段 、c(a﹤c)和一个直角 , 利用尺规作一个 一个Rt△ 利用尺规作一个 △ABC,使 使 ∠C= ∠ α ,CB=a,AB=c. ,
a
c
α
想一想,怎样画呢?
按照下面的步骤做一做: 按照下面的步骤做一做:
⑴ 作∠MCN=∠α=90°; ∠ ° M 在射线CM上截取线段 上截取线段CB=a; ⑵ 在射线 上截取线段 M B
C N 为圆心,C为半径画弧 ⑶ 以B为圆心 为半径画弧, 为圆心 为半径画弧, 交射线CN于点 于点A; 交射线CN于点A; M B
C 连接AB. ⑷ 连接 M B
N
C
A
N
C
A
N
就是所求作的三角形吗? ⑴ △ABC就是所求作的三角形吗? 就是所求作的三角形吗 剪下这个三角形,和其他同学所作的三角形进行比较, ⑵ 剪下这个三角形,和其他同学所作的三角形进行比较, 它们能重合吗? 它们能重合吗?
F C
E
Байду номын сангаас
七年级数学探索三角形全等的条件2(1)
北师大版七年级数学下册探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等
AB=AB(已证),
所以△ABD≌△A'B'D'.所以AD=A'D'.
课堂小结
内容
角边角 角角边
应用
有两角及夹边对应相等的两个三角 形全等(简写成“ASA”); 两角分别相等且其中一组等角的对 边相等的两个三角形全等(简写成 “AAS”)
为证明线段和角相等提供了新的证法
注意
注意“角角边”“角边角” 中两角与边的区分
第四章 三角形
3 探索三角形全等的条件
第2课时 利用“角边角”“角角边”判定三角形全等
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法 “ASA”和“AAS”;
2.会用三角形全等的判定方法“ASA”和“AAS” 证明两个三角形全等.(重点)
情境导入
如图所示,某同学把一块三角形的玻璃不谨慎打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的 办法是带哪块去? 学生活动:学生先自主探究出答案,然后再与同学进行交流. 教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的, 而仅仅带③则可以,为什么呢? 本节课我们继续研究三角形全等的判定方法.
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'=90°.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
2023年北师大版七年级下册数学第四章三角形第7课时探索三角形全等的条件(2)
相等
·数学 的两个三角
∠A=∠A′, ቐ∠B=∠B′,
BC=B′C′,
所以△ABC≌ △A'B'C' ( AAS ).
·数学
3.如图,已知AC=EC,∠ACB=∠ECD,要利用“AAS”判 定△ABC≌△EDC,应添加的条件是 ∠B=∠D .
知识点四:AAS的应用 例:如图,已知∠B=∠DEF,AB=DE,要说明 △ABC≌△DEF.
BC=EF 所以△ABC≌△DEF(AAS).所以AC=DF.
·数学
8.【例4】如图,在△ABC中,高AD与BE相交于点H,且AD= BD,问△BHD≌△ACD吗?为什么? 解:△BHD≌△ACD. 理由如下:因为AD⊥BC,BE⊥AC, 所以∠ADC=∠BEC=90°. 所以∠DAC=∠EBC,即∠DAC=∠DBH.
几何直观 推理能力 角形全等的条件(ASA) 两角及其 夹边 分别相等的两个三角形全等(简写成“角边 角”或“ASA”). 几何语言:在△ABC与△A'B'C'中,
∠A=∠A′, ቐ AB=A′B′, 所以△ABC≌ △A'B'C' ( ASA ).
∠B=∠B′,
AD=AB 所以△ADE≌△ABC(AAS).
·数学 7.【例3】(北师7下P111、人教8上P44)如图,点B,F,C, E在一条直线上,BF=CE,AB∥DE,∠ACB=∠DFE.试 说明:AC=DF.
解:因为BF=CE,所以BC=EF. 又因为AB∥DE,所以∠B=∠E.
∠B=∠E 在△ABC和△DEF中,ቐ BC=EF ,
·数学
2.如图,点E在AB上,点C在AD上,AB=AD,∠B=∠D. 试说明:△ABC≌△ADE.
北师大版数学七年级下册:4.3 探索三角形全等的条件——“角边角”“角角边”判定 教学设计
第四章 三角形“角边角”“角角边”判定----4.3 探索三角形全等的条件(2)一、教学目标:1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.使学生理解并掌握全等三角形的“角边角”“角角边”判定定理的条件;3.培养学生有条理的思考并进行简单的推理,继续渗透分类思想和转化思想的应用。
二、教学重、难点:教学重点:掌握全等三角形的“角边角”“角角边”判定定理,能应用其来判定两个三角形是否全等。
教学难点:使学生能够有条理的思考和理解简单的推理过程。
三、课时设计:1课时 四、教学策略:1.采用交互式一体机辅助教学,既能激发学生求知的兴趣,又能增加课堂教学的知识容量和时效性;2.采用启发式—合作探究的方式展开教学,有利于突出学生的主体地位, “以人为本”,实现让每个学生都享有优质的教育。
五、课前准备:教师:教学设计、课件等;学生:一副三角尺、铅笔、直尺等。
六、教学过程:1.引入美(情境导入)⑴ 学生展示锚图,分享探索三角形全等的条件的收获。
⑵ 问题情境:如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?你能说明其中的理由吗?设计意图:从生活实际出发,以故事的形式自然引入课题,既能引起学生对本节课学习的重视,又能激发学生求知的强烈欲望。
AB2.寻找美(师生合作)师:如果给出三个条件画三角形,共有几种可能性?生:4种可能性。
分别是:⑴三边(SSS);⑵三角(不一定全等)两角及夹边⑶两角及一边两角及其中一角的对边⑷两边及一角设计意图:通过复习,帮助学生用分类思想构建知识框架,为课堂教学的顺利进行做好铺垫。
3.冶炼美(自主-合作式探究)【做一做】(探究一)(1)已知:三角形的两个内角分别是600和300,它们所夹的边为3cm。
问:你能画出这个三角形吗?你画的三角形与同桌画的一定全等吗?学生活动:画图---对比。
探索三角形全等的条件 第二课时-七年级数学下册课件(北师大版)
1 如图,已知△ABC 的六个元素,则下列甲、乙、丙三个 三角形中一定和△ABC 全等的是( C )
A.甲、乙 B.甲、丙 C.乙、丙 D.乙
2 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图 中标有1,2,3,4的四块),你认为将其中的哪块带去,就 能配一块与原来一样大小的三角形玻璃?应该带( B ) A.第1块 B.第2块 C.第3块 D.第4块
因为∠BAE=∠1+∠2=90°,
所以∠1=∠D.
1=D,
在△ABC 和△DEC 中,3=5,
所以△ABC ≌△DEC. BC=EC,
知识点
例5 我们把两组邻边相等的四边形叫做
“筝形”.如图,四边形ABCD 是 一个筝形,其中AB=CB,AD= CD.对角线AC,BD 相交于点O, OE⊥AB,OF⊥CB,垂足分别是 E,F. 试说明:OE=OF.
解:(1)因为AE 和BD 相交于点O, 所以∠AOD=∠BOE. 又因为在△AOD 和△BOE 中,∠A=∠B, 所以∠BEO=∠2. 又因为∠1=∠2,所以∠1=∠BEO. 所以∠AEC=∠BED. A= B, 在△AEC 和△BED 中, AE=BE,
AEC= BED,
所以△AEC ≌△BED (ASA).
导引:要说明BC=ED,需说明
它们所在的三角形全等,
由于∠B=∠E,AB=AE, 因此需说明∠BAC=∠EAD, 即需说明∠BAD+∠1=∠BAD+∠2,易知成立.
解:因为∠1=∠2,
所以∠1+∠BAD=∠2+∠BAD,
即∠BAC=∠EAD.
B=E,
在△BAC
和△EAD
中,因为
AB=AE,
所以△BAC ≌△EAD (ASA). BAC=EAD,
专题探索三角形全等的条件(SSS和SAS)(知识讲解)数学七年级下册(北师大版)
专题4.10 探索三角形全等的条件(SSS 和SAS )(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).特别说明:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).特别说明:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、用“SSS”和“SAS”直接证明三角形全等➽➼证明✮✮求值1.如图,已知:AB =AC ,BD =CD ,E 为AD 上一点.(1) 求证:△ABD △△ACD ;(2) 若△BED =50°,求△CED 的度数.【答案】(1) 证明见分析 (2) 50CED ∠=︒【分析】(1)根据SSS 即可证明△ABD △△ACD ;(2)只要证明△EDB △△EDC (SAS ),即可推出△BED =△CED ,进而得到答案. (1)证明:在△ABD 和△ACD 中, AB ACBDCD AD AD ⎧⎪⎨⎪⎩===,△△ABD △△ACD (SSS );(2)解:△△ABD △△ACD ,△△ADB =△ADC ,在△EDB 和△EDC 中,DB DC BDE CDE DE DE ⎧⎪∠∠⎨⎪⎩===,△△EDB △△EDC (SAS ),△△BED =△CED ,△△BED =50°,△△CED =△BED =50°.【点拨】本题考查全等三角形的判定和性质,解题的关键是根据图形题意,熟练掌握两个三角形全等判定与性质.举一反三:【变式1】如图,点A 、M 、N 、C 在同一条直线上,AB CD =,BN DM =,AM CN =,求证:AB CD ∥.【分析】根据AB CD =,BN DM =,AM CN =,利用SSS 定理证明ABN CDM ≌,从而得到A C ∠=∠,再根据内错角相等,两直线平行,AB CD ∥得证.解:证明:∵AM CN =∴AM MN CN MN∴AN CM =在ABN 和CDM 中AB CD BN DM AN CM =⎧⎪=⎨⎪=⎩,∴()ABN CDM SSS △≌△∴A C ∠=∠∴AB CD ∥(内错角相等,两直线平行)【点拨】本题考查了三角形全等的判定方法和性质,以及平行线的判定,解题关键是掌握全等三角形的判定方法,运用全等三角形的性质证明线段和角相等.【变式2】如图,已知AB AC =,AD AE =,BD CE =,求证:312.【分析】利用SSS 可证明△ABD△△ACE ,可得△BAD=△1,△ABD=△2,根据三角形外角的性质即可得△3=△BAD+△ABD ,即可得结论.解:在△ABD 和△ACE 中,AB=AC AD=AE BD=CE ⎧⎪⎨⎪⎩,△△ABD△△ACE ,△△BAD=△1,△ABD=△2,△△3=△BAD+△ABD ,△△3=△1+△2.【点拨】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.2.已知:如图,AB AC =,F ,E 分别是AB AC ,的中点,求证:ABE ACF ≌.在ABE 与△AB AC A A AE AF =⎧⎪∠=∠⎨⎪=⎩ABE △≌△【点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:ASAAAS 、、【变式1】如图,点D 在BC 上,,ADB B BAD CAE ∠=∠∠=∠.(1) 添加条件:____________(只需写出一个),使ABC ADE ≅;(2) 根据你添加的条件,写出证明过程.【答案】(1) AC AE = (2) 见分析【分析】(1)根据已知条件可得AB AD =,BAC DAE ∠=∠,结合三角形全等的判定条件添加条件即可;(2)结合(1)的条件,根据三角形全等的判定条件添加条件进行证明即可.解:(1)添加的条件是:AC AE =,故答案为AC AE =;(2)△,ADB B ∠=∠△AB AD =,△BAD CAE ∠=∠△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,又AC AE =△ABC ADE ≅【点拨】本题主要考查了三角形全等的判定,确定出三角形全等判定条件是解答本题的关键.【变式2】如图所示,DC CA ⊥,EA CA ⊥,CD AB =,CB AE =,求证:(1) BCD EAB ≌△△;(2) DB BE ⊥.【分析】(1)利用SAS 判定定理证明三角形全等即可;(2)由()≌DCB BAE SAS △△,可得∠=∠DBC BEA ,∠=∠BDC EBA ,再利用90DBC BDC ∠+∠=︒,可得90∠+∠=︒DBC EBA ,即90DBE ∠=︒,所以DB BE ⊥.解:(1)证明:△DC CA ⊥,EA CA ⊥,△90∠=∠=︒DCB BAE ,在DCB △和BAE 中,CD AB DCB BAE CB AE =⎧⎪∠=∠⎨⎪=⎩△()≌DCB BAE SAS △△. (2)证明:由(1)可知()≌DCB BAE SAS △△, △∠=∠DBC BEA ,∠=∠BDC EBA ,△90DBC BDC ∠+∠=︒,△90∠+∠=︒DBC EBA ,即90DBE ∠=︒,△DB BE ⊥.【点拨】本题考查全等三角形的判定定理及性质,垂直的定义,解题的关键是掌握全等三角形的判定定理及性质.类型二、用“SSS”和“SAS”间接证明三角形全等➽➼证明✮✮求值3.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC≌≌DEF .【分析】首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC△△DEF .解:△AF=DC ,△AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩△△ABC△△DEF (SSS )举一反三: 【变式1】如图,已知:PA=PB,AC =BD ,PC =PD ,△PAD 和△PBC 全等吗?请说明理由.【分析】由AC=BD ,利用线段的和差关系可得AD=BC ,利用SSS 即可证明△PAD△△PBC.解:△AC =BD ,△AC+CD=BD+CD ,即AD =BC ,又△PA =PB ,PC =PD ,△△PAD△△PBC(SSS)【点拨】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.【变式2】如图,点D ,A ,E ,B 在同一直线上,EF =BC ,DF =AC ,DA =EB .试说明:△F =△C .【分析】根据SSS 的方法证明△DEF△△ABC,即可得到结论.解:因为DA =EB , 所以DE =AB.在△DEF 和△ABC 中, 因为DE =AB ,DF =AC ,EF =BC ,所以△DEF△△ABC(SSS),所以△F =△C.【点拨】本题考查了全等三角形的判定和性质,属于简单题,找到证明全等的方法是解题关键.4.如图,在ABCD 中,点E 、F 在BD 上,ABE 与CDF 全等吗?若全等,写出证明过程;若不全等,请你添加一个条件使它们全等,并写出证明过程.(1) 你添加的条件是__________.(2) 证明过程: 【答案】(1) BE DF =,答案不唯一; (2) 证明见分析; 【分析】(1)根据选择的全等三角形判定方法添加合适的条件即可;(2)由四边形ABCD 是平行四边形得到AB CD ∥,AB CD =,得ABE CDF ∠=∠,再用上添加的条件,即可证明结论.(1)解:BE DF =(答案不唯一)故答案为:BE DF =(答案不唯一)(2)证明:△四边形ABCD 是平行四边形,△AB CD ∥,AB CD =,△ABE CDF ∠=∠,在ABE 和CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,△ABE CDF △≌△(SAS ).【点拨】此题考查了平行四边形的性质、全等三角形的判定等知识,熟练掌握全等三角形的判定是解题的关键.举一反三:【变式1】如图,在ABC 和ADE 中,AB AD =,AC AE =,且BAD CAE ∠=∠,求证:ABC ADE △≌△.【分析】根据BADCAE ∠=∠可得BAC DAE ∠=∠,再根据SAS 即可证明.证明:△BAD CAE ∠=∠,△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC ADE △≌△.【点拨】本题主要考查了用SAS 证明三角形全等,解题的关键是通过BAD CAE ∠=∠得出BAC DAE ∠=∠.【变式2】图,BE CF =,AC DF =,AC DF ∥.求证:ABC DEF ≌△△.【分析】首先根据BE CF =可得BC EF =,再由AC DF ∥可得ACB F ∠=∠,然后利用定理证明ABC DEF ≌即可.证明:△BE CF =,△BE EC CF EC ++=,即BC EF =,△AC DF ∥,△ACB F ∠=∠, 在ACB △和DFE △中,BC EF ACB F AC DF =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC DEF ≌.【点拨】此题主要考查了全等三角形的判定和平行线的性质,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.注意:AAA SSA 、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、全等的性质与“SSS”和“SAS”综合➽➼证明✮✮求值 5.已知:如图,在ABC 中,AB AC AD =,是BC 边上的中线.求证:AD BC ⊥(填空).证明:在三角形ABD ACD 和中,△()()()______________BD AB ⎧=⎪⎪=⎨⎪⎪⎩已知已知公共边,△ ≌ ( ).△ADB ∠= (全等三角形的对应角相等).△1902ADB BDC ∠∠︒==(平角的意义). △(垂直的意义).【答案】,,,,SSS DC AC AD AD ABD ACD ADC AD BC =∠⊥,△△,,【分析】证明()SSS ADB ADC ≌△△.推出ADB ADC ∠∠=,可得结论. 证明:△AD 是BC 边上的中线,△BD CD =,在三角形ABD △和ACD 中,【变式1】如图:AB AC =,BD CD =,若28B ∠=︒,求C ∠的度数.【答案】28︒ 【分析】连接AD ,利用“SSS ”证明ABD ACD △≌△,即可得到答案.解:连接AD ,在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴≌C B ∴∠=∠,28B ∠=︒,28C ∴∠=︒.【点拨】本题考查了全等三角形的判定和性质,正确作辅助线构造全等三角形是解题关键.【变式2】已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1) ABC BAD ≌.(2) AE BE =.【分析】(1)利用SSS 证明ABC BAD ≌;(2)根据全等三角形的性质得出DAB CBA ∠=∠,则OA OB =,根据等腰三角形的性质可得出结论.(1)证明:在ABC 和BAD 中,AC BD BC AD AB BA =⎧⎪=⎨⎪=⎩,△ABC BAD ≌(2)证明:△ABC BAD ≌△CBA DAB ∠=∠,△OA OB =,△OE AB ⊥,△AE BE =.【点拨】此题考查了全等三角形的判定与性质,利用SSS 证明ABC BAD ≌是解题的关键.6.如图,在ABC 中,CM 是AB 边上的中线,8AC =,12BC =,求CM 的取值范围.【答案】210CM <<【分析】倍长中线CM 至点N ,构造BNM ,易得ACM BNM ≅△△,再利用三角形的三边关系找到CN 的取值范围,进而得到CM 的取值范围.解:如图,延长CM 到点N ,使CM MN =,连接BN ,在ACM △和BNM 中,CM NM AMC BMN AM BM =⎧⎪∠=∠⎨⎪=⎩,∴ACM BNM ≅△△(SAS ),∴8AC BN ==, 在BCN △中,BC BN CN BC BN -<<+,∴128128CN -<<+,即420CN <<,∴4220CM <<,即210CM <<.【点拨】本题考查了全等三角形的性质与判定以及三角形的三边关系,解决本题的关键是倍长中线构造全等三角形.举一反三:【变式1】如图,已知在ABC 与ADE 中,90BAC DAE AB AC AD AE ∠=∠=︒==,,,点C ,D ,E 三点在同一条直线上,连接BD .图中的CE BD 、有怎样的数量和位置关系?请证明你的结论.【答案】CE BD =,证明见分析【分析】根据SAS 证明ACE ABD ≌△△,即可得到CE BD =.解:CE BD =,证明:△90BAC DAE ∠=∠=︒,△BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,在ACE △和ABD △中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩△()SAS ACE ABD ≌△CE BD =.【点拨】此题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.【变式2】如图已知AOB 和MON △都是等腰直角三角形.(1) 如图1,连接AM ,BM ,此时AM ,BN 的数量关系为___________请说明理由.(2) 若将MON △绕点O 顺时针旋转,如图2,当点N 恰好在AB 边上时,求证:222BN AN MN +=.【答案】(1) AM BN =,理由见分析(2) 见分析 【分析】(1)由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =(2)连接AM ,由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =,再求得90MAN ∠=︒,利用勾股定理即可得到222BN AN MN +=解:(1)AM BN =,理由如下:△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ON AOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =(2)如下图,连接AM ,△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,45B BAO ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ONAOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =,45B MAO ∠=∠=︒,△90MAN MAO BAO ∠=∠+∠=︒,△222AM AN MN +=,△222BN AN MN +=【点拨】本题考查了旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质及勾股定理,熟练掌握全等三角形的判定和性质是解决问题的关键。
4-3 探索三角形全等的条件(第二课时)七年级数学下册同步精品课件(北师大版)
B
C
D
∴△ABC ≌ △DEF(ASA)
E
F
小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标
有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配
一块与原来一样大小的三角形?应该带(
A.第1块
B.第2块
C.第3块
)
D.第4块
【详解】
第1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不
呢?三个条件呢?
一个条件:
两个条件:
①一角对应相等; ①两角对应相等;
②一边对应相等; ②两边对应相等;
③一边一角对应相等。
如果给出三个条件画三角形,你
能说出有哪几种可能的情况?
三个角相等
不一定全等
三条边相等
结论:只给出一个或两个条件时,都不
两角一边相等
能保证所画的三角形一定全等
两边一角相等
全等
本节课尝试证明
能带它们去。只有第2块有完整的两角及夹边,符合定理,满足题目要求的
条件,是符合题意的。故选:B.
已知∠1=∠2,∠ABD=∠ABC,求证:AD=AC.
证明:在△ABD和△ABC中
∠1=∠2
(已知)
AB=AB
(公共边)
∠ABD=∠ABC (已知)
∴ △ABD≌△ABC(ASA)
∴ AD=AC
在平行四边形ABCD中,E为CD的中点,连接BE并延长交AD的延长线于F.
由上节课所学可知:如果给出一个三角形三条边的长度,那么因此
得到的三角形都是全等。如果已知一个三角形的两角及一边,那么有几种
可能的情况呢?
两角和他们的夹
边分别相等
全等三角形的判定第二课时教案
全等三角形的判定第二课时教案学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界,而数学教育,要抓住关键问题,引导学生形成正确的数学解题思路。
下面是为大家整理的全等三角形的判定第二课时教案5篇,希望大家能有所收获!全等三角形的判定第二课时教案1一、教材分析(一)本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两三角形间最简单、最常见的关系。
本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。
因此,本节课的知识具有承上启下的作用。
同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二)教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。
同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。
为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三)教材重难点由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。
同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。
7 探索全等三角形的条件(2)-角边角(ASA)(基础检测)(解析版)
专题1.7 探索全等三角形的条件(2)-角边角(ASA)(基础检测)一、单选题1.如图,测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.判定△EDC≌△ABC的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”【答案】B【分析】由“ASA”可证△EDC≌△ABC.【详解】解:由题意可得∠ABC=∠CDE=90°,在△EDC和△ABC中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC≌△ABC(ASA),故选:B.【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.2.如图,AB∥FC,E是DF的中点,若AB=10,CF=6,则BD等于()A.6 B.4 C.3 D.2【答案】B【分析】根据平行的性质求得内错角相等,已知对顶角相等,又知E是DF的中点,所以根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,那么BD的长就不难求出.【详解】∵AB∥FC,∴∠ADE=∠F,∵E是DF的中点,∴DE=EF,在△ADE和△CFE中,ADE FDE FEAED CEF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CFE(ASA),∴AD=CF=6,∴BD=AB﹣AD=10﹣6=4,故选:B.【点睛】此题主要考查了全等三角形的判定与性质,判定两个三角形全等是解题的关键.3.如图,乐乐书上的三角形墨迹污染了一部分,很快他就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【答案】B【分析】结合图,根据全等三角形的判定定理ASA可得到答案【详解】解:根据题意,三角形的两角和他们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形故选:B【点睛】本题考查全等三角形的判定定理4.如图,一定全等的两个三角形是()A.①与②B.①与③C.②与③D.以上答案都不对【分析】根据ASA 进行判断即可.【详解】在三角形①和三角形③中∠B=∠D ,BC=DE ,∠C=∠E ,∴△ABC ≌△FDE (ASA ),故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握知识点是解题关键.5.如图,在ΔABC 和ΔDEF 中,∠A=∠D ,∠B=∠DEF ,要使ABC DEF △≌△,需要添加下列条件中的( )A .AB=EFB .AC=DEC .BC=DFD .AB=DE【答案】D 【分析】添加条件为AB=DE ,根据ASA 推出两三角形全等即可.【详解】解:条件是AB=DE , 理由是:∵在ABC 和DEF 中A D AB DEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC DEF △≌△(ASA ),故选D .【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.如图,小强画了一个与已知ABC 全等的DEF ,他画图的步骤是:(1)画DE =AB ;(2)在DE 的同旁画∠HDE =∠A ,∠GED =∠B ,DH ,EG 相交于点F ,小强画图的依据是( )A .ASAB .SASC .SSSD .AAS【分析】根据题意可知全等的条件是两角及夹边,即可得出答案.【详解】根据题意可知,在ABC 和DEF 中,A FDE AB DEB FED ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DEF ASA ∴≌故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形判定的条件是解题的关键.二、填空题7.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是__.【答案】ASA【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形, 他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA ).故答案为:ASA .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .8.如图,12∠=∠,BC EC =,请补充一个条件:______,能使用“ASA ”方法判定ABC DEC ≌△△.【答案】∠B =∠E【分析】已知∠1=∠2,就是已知∠ACB =∠DCE ,则根据三角形的判定定理“ASA ”即可证得.【详解】可以添加∠B =∠E .理由是:∵∠1=∠2,∴∠1+∠BCE =∠2+∠BCE ,∴∠ACB =∠DCE ,∴在△ABC 和△DEC 中,ACB DCE BC ECB E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEC (ASA ).故答案是:∠B =∠E【点睛】本题考查了三角形全等的判定,熟练掌握“两角及夹边对应相等的两个三角形全等”是解题关键. 9.如图,∠B =∠DEF ,AB =DE ,若要以“ASA ”证明△ABC ≌△DEF ,则还缺条件_____.【答案】∠A =∠D .【分析】利用全等三角形的判定方法结合ASA 得出即可.【详解】当添加∠A =∠D 时,可证明△ABC ≌△DEF ;理由:在△ABC 和△DEF 中A D AB DEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ).故答案为∠A =∠D .【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.10.如图,要测量水池宽AB ,可从点A 出发在地面上画一条线段AC ,使AC AB ⊥,再从点C 观测,在BA 的延长线上测得一点D ,使ACD ACB ∠=∠,这时量得120m AD =,则水池宽AB 的长度是__m .【答案】120【分析】利用全等三角形的性质解决问题即可.【详解】AC BD ,90CAD CAB ∴∠=∠=︒,CA CA =,ACD ACB ∠=∠,()ACD ACB ASA ∴∆≅∆,120AB AD m ∴==,故答案为120.【点睛】本题考查全等三角形的应用,解题关键是理解题意,正确寻找全等三角形解决问题.11.如图所示,某三角形材料断裂成A 、B 、C 三块,现要配置与原材料一样的三角形材料,应该选用材料____,理由是____.【答案】C ASA【分析】显然C 中有完整的三个条件,用ASA 易证现要的三角形与原三角形全等.【详解】解:因为C 块中有完整的两个角以及它们的夹边,利用ASA 易证三角形全等,故应带C 块. 故答案为:C ,ASA .【点睛】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题数学化石正确解答本题的关键.12.如图,ABC ∆的面积为22cm ,AP 与ABC ∠的平分线垂直,垂足是点P ,则PBC ∆的面积为______2cm .【答案】1【分析】延长AP 交BC 于点M ,则由条件可知ABP MBP S S ∆∆=, APC CPM S S ∆∆=,则阴影部分面积为△ABC的一半,可得出答案.【详解】如图,延长AP 交BC 于点M 。
4-3-2 探索三角形全等的条件(第2课时)(课件)-七年级数学下册同步精品课堂(北师大版)
转化的思想:
角角边
角边角
由三角形内角和定 理可知,两角相等, 则必然三角都相等!
探究新知
归纳总结 两角和其中一角的对边对应相等的两个三角形全等。
简写成“角角边”或“AAS”。 符号语言:∵在△ABC和△DEF中
∠B=∠E (已知) ∠C= ∠F (已知) AC = DF (已知) ∴ △ABC ≌△DEF (AAS)
∴△ADC≌△BDF(AAS). AC=BF,
随堂练习
7.已知:如图,△ABC ≌△A′B′C′ ,AD,A′ D′ 分别是 △ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话说 出你的发现.
A
A′
B
D C B′
D′ C′
随堂练习
解:因为△ABC ≌△A′B′C′ ,
所以AB=A'B'(全等三角形对应边相等),
A E
F
B
D
C
随堂练习
解:∵AD⊥BC, BE⊥AC, ∴∠ADC=∠BDF=∠BEA=90°. ∵∠AFE=∠BFD, ∠DAC+∠AEF+∠AFE=180°, B ∠BDF+∠BFD+∠DBF=180°
A E
F
C D
∴∠DAC=∠DBF. 在△ADC和△BDF中,∵
∠DAC=∠DBF, ∠ADC=∠BDF,
4.如图,Rt△ABC中,∠BAC=90°,AB=AC,分别过 点B,C作过点A的直线的垂线BD,CE,垂足分别为D, E,若BD=3,CE=2,则DE= 5 .
随堂练习
5.解决课前导入的问题:一张教学用的三角 形硬纸板不小心被撕坏了,如下图,你能制作一张 与原来同样大小的新教具吗?能恢复原来三角形的 原貌吗?
重庆市第110中学校七年级数学下册 4.3 探索三角形全等的条件(第2课时)导学案
4.3探索三角形全等的条件学习目标:知识与技能1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握三角形的“角边角”“角角边”条件,了解三角形的稳定性。
过程与方法学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,由此带动知识发生、发展的全过程。
情感、态度、价值观1.学生善于观察生活发生的事情,并愿意解决提出的难题,在实践反思中敢于发表自己的观点,树立实事求是的科学态度。
2.学生积极参与三角形全等条件的探究过程,从中体味全作与成功的快乐,建立学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值。
教学重点:三角形“角角边”、“角边角”的全等条件教学难点:用三角形“角角边”、“角边角”的条件进行有条理的思考并进行简单的推理。
学习过程:一、创设问题情境,引入课题活动内容:问题1:我们已学过识别两个三角形全等的简便方法是什么?识别三角形全等是不是还有其它方法呢?设计目的:既复习了全等三角形的定义和“SSS”的识别方法,又唤起学生对新知识探索学习的渴望,引发学生兴趣,从而提高学生学习的热情。
问题2:实物显示有一块三角形纸片撕去了一个角,要去剪一块新的,如果你手头没有测量的仪器,你能保证新剪的纸片形状、大小和原来的一样吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉,于是教师引导学生,抓住问题的本质:三角形的三个元素---两个角一条边.由此引入课题—探究三角形全等的条件(2)DEA活动目的:这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,让学生通过观察思考,对三角形全等条件的探索有一个感性认识。
教学效果:明确活动要求,设置开放的课堂情境。
学生亲身实践,汇报出不同的实践结果,促使学生学习主动化。
从而引出本课的研究内容:探索三角形全等的条件,在实践中产生感性认识。
学生在一个开放的环境下想出很多的方法,从中获取了大量的信息,亲身经历了感受全等的过程,而且气氛热烈。
探索三角形全等的条件(第2课时)教学课件北师大版中学数学七年级(下)
A.一定不全等
B.一定全等
C.不一定全等
D.以上都不对
随堂训练
3.如图∠ACB=∠DFE,BC=EF,那么应补充一
个条件
,才能使△ABC≌△DEF
(写出一个即可).
AB=DE可以吗?×
B
A
AB∥DE
∠B=∠E (ASA)
C
F
或∠A=∠D (AAS)
D
E
随堂训练
4. 已知△ABC中,BE AD于E,CF AD于F ,
形全等. (简写成“角角边”或“AAS”)
C
几何语言:
在△和△中,
∠ = ∠,
ቐ∠ = ∠ ,
= ,
∴ △ ≌△ (AAS).
A
B
F
D
E
知识讲授
例4 已知:如图, AB⊥BC,AD⊥DC,∠1=∠2.
A
求证:AB=AD.
12
证明: ∵ AB⊥BC,AD⊥DC,
D
被撕坏了,如图,你能制作一张与本来
同样大小的新教具吗?
能
你能说明其中的理由吗?
C
E
B
新课导入
想一想:
探究三角形全等的条件:有三个条件对应相等时
三个角对应相等; 不能
三条边对应相等; SSS
两个角和一条边对应相等
?
知识讲授
探究:
两个角和一条边对应相等时,两三角形是否全等?
思考:已知一个三角形的两个角和一条边,那么这两个角与这条边的位
∴ AB=CD , BC=AD,(全等三角形对应边相等)
2
4
3
∴ ∠1=∠2 ,
C
1
A
B
江苏省姜堰市大伦中学七年级数学《11.3探索三角形全等的条件》课件(2)
A
1 2
3 B 4
C
)
∴△____≌ △_____(
∴AC=BD (全等三角形对应边相等)
已知,如图,∠1=∠2,∠C=∠D 求证:AC=AD
1 2
D
A
B
C
想一想
如图,在⊿ABC和⊿MNP中,∠B=
∠M, ∠B=∠N,BC=NP,⊿ABC和⊿MNP全等吗? 为什么?
A M
B
C
N
P
判定方法3
一张教学用的三角形硬纸板不小心
被撕坏了,如图,你能制作一张与原来
同样大小的新教具?能恢复原来三角形
的原貌吗? 确定原三角形具备什么已知条件? 这三个条件有什么联系?
A
D
C
E
B
做一做
若三角形的两个内角分别是 45°和60°,它们所夹的边为 2.6cm,你能画出这个三角形吗?
2.6cm
45°
60°
45°
C O A D B
∴△AOC≌△BOD
AEAB =AD ,∠ B=∠ C, 4、如图:已知 =AC ,∠ B=∠ C, △ABD与△ACE全等吗?为什么? A
解:全等。 在ABD 和ACE中
B(已知) =∠C C B=∠ AB=∠ AC A(已知) =∠A A=A(公共角) AD=AE
角角边公理
:
两角和其中一角的对边对 应相等的两个三角形全等(简写 成“角角边”或“AAS”)。
已知,如图,∠1=∠2,∠C=∠D 求证:AC=AD
1 2
D
A
B
C
练习1、请在下列空格中填上适 当的条件,使△ABC≌△DEF。 ∵在△ABC和△DEF中
A
第11讲 探索三角形全等的条件七年级数学下册同步精品讲义
第11讲探索三角形全等的条件目标导航1.了解全等三角形的稳定性;2.根据已知条件判断出两三角形全等.知识精讲知识点01三角形的稳定性当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.这一特性主要应用在实际生活中.【知识拓展1】(2021秋•凉山州期末)王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根【即学即练1】(2021秋•临海市期末)如图所示的自行车架设计成三角形,这样做的依据是三角形具有.【即学即练2】(2021秋•祁阳县期末)小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解释这一现象的依据为.【即学即练3】(2018秋•从江县校级期中)有一个人用四根木条钉了一个四边形的模具,两根木条连接处钉一颗钉子,但他发现这个模具老是走形,为什么?如果他想把这个模具固定,再给一根木条给你,你怎么把它固定下来,画出示意图,并说出理由.知识点02全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【知识拓展1】(2022•长沙开学)根据下列条件,不能画出唯一确定的△ABC的是()A.AB=3,BC=4,AC=6B.AB=4,∠B=45°,∠A=60°C.AB=4,BC=3,∠A=30°D.∠C=90°,AB=8,AC=4【即学即练1】(2021秋•抚远市期末)如图,点D在AB上,点E在AC上,AB=AC,添加一个条件,使△ABE≌△ACD(填一个即可).【知识拓展2】(2021秋•铅山县期末)如图,AB=AD,∠1=∠2,DA平分∠BDE.求证:△ABC≌△ADE.【即学即练1】(2021秋•濂溪区校级期末)如图,AD,BC相交于点O,∠OAB=∠OBA,∠C=∠D=90°.求证:△AOC≌△BOD.【即学即练2】(2021秋•铅山县期末)如图,在△ABC中,∠ACB=90°,AC=8cm,BC=10cm.点C在直线l上,动点P从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A 运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为秒时,△PMC与△QNC全等.【即学即练3】(2022•南召县开学)证明命题“全等三角形的面积相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,求证:.请你补全已知和求证,并写出证明过程.【即学即练4】(2021秋•临海市期末)如图,点B,E,C,F在同一条直线上,AB=DE,BE=CF,∠B=∠DEF.求证:△ABC≌△DEF.【即学即练5】(2021秋•朝阳区校级期末)如图,在矩形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD﹣DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD﹣DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为t秒.(1)在运动过程中当M、N两点相遇时,求t的值.(2)在整个运动过程中,求DM的长.(用含t的代数式表示)(3)当△DEM与△DFN全等时,请直接写出所有满足条件的DN的长.【即学即练6】(2021秋•钢城区期末)如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.知识点03全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.【知识拓展1】(2021秋•民权县期末)如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=44°,AB交EF于点D,连接EB.下列结论:①∠F AC=44°;②AF=AC;③∠EFB=44°;④AD=AC,正确的个数为()A.4个B.3个C.2个D.1个【即学即练1】(2021秋•弋江区期末)如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是()A.6B.7C.8D.9【即学即练2】(2021秋•天津期末)如图,AC⊥BC,BD⊥BC,AB=CD,AC=5,则BD的大小为.【知识拓展2】(2021秋•澄城县期末)如图,△ABC和△ADE的顶点交于一点A,已知∠BAD=∠CAE,AB=AD,AC=AE.求证:∠B=∠D.【即学即练1】(2021秋•金寨县期末)已知:如图,在△ABC中,BE、CD分别是AC、AB边上的高,且BE=CD.求证:AB=AC.【即学即练2】(2021秋•岳麓区校级期末)如图,已知△ABC,作射线AP∥BC,E、F分别为BC、AP上的点,且AF=CE.连接EF交AC于点D,连接BD并延长,交AP于点M.(1)求证:△ADF≌△CDE;(2)求证:AM=BC.【即学即练3】(2021秋•巴彦县期末)如图,在△ABC中,AC=BC,点D在AB上,点E在BC上,连接CD、DE,AD=BE,∠CDE=∠A.(1)求证:DC=ED;(2)如图2,当∠ACB=90°时,作CH⊥AB于H,请直接写出图2中的所有等腰三角形.(△ABC除外)【即学即练4】(2021秋•普兰店区期末)如图,△ABC中,∠ABC=45°,∠ACB=75°,D是BC上一点,且∠ADC=60°,CF⊥AD于F,AE⊥BC于E,AE交CF于G.(1)求证:△AFG≌△CFD;(2)若FD=1,AF=,求线段EG的长.【即学即练5】(2021秋•漳州期末)如图,在△ABC和△A'B'C'中,∠B=∠B',∠C=∠C',AD平分∠BAC 交BC于点D.(1)在△A'B'C'中,作出∠B'A'C'的角平分线A'D'交B'C'于点D';(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A'D',求证:BD=B'D'.【即学即练6】(2021秋•九龙坡区期末)如图所示,在△ABC中,AD为中线,过C作CE⊥AD于E.(1)如图1,若∠B=30°,∠A=90°,AC=BD,AE=1,求BC的长.(2)如图2,延长DA至F,连接FC.若∠F=∠BAD,求证:AF=2DE.【即学即练7】(2021秋•两江新区期末)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E 是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.能力拓展1.(2021秋•章贡区期末)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP=2cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ 全等.2.(2020秋•丹徒区月考)八年级数学社团活动课上,《致远组》同学讨论了这样一道题目:如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明:∠ADC=∠AEB.其中一个同学的解法是这样的:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA”说明三角形全等.请你给出正确的解法.3.(2021秋•济南期末)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是DE=BD+CE;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.4.(2021秋•黔西南州期末)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.分层提分题组A 基础过关练一.选择题(共10小题)1.(2021秋•九龙坡区校级期末)如图,AB=AD,∠B=∠DAE,请问添加下面哪个条件不能判断△ABC≌△DAE的是()A.AC=DE B.BC=AE C.∠C=∠E D.∠BAC=∠ADE2.(2021秋•覃塘区期末)如图,AC与BD相交于点O,∠1=∠2,若用“SAS”说明△ABC≌△BAD,则还需添加的一个条件是()A.AD=BC B.∠C=∠D C.AO=BO D.AC=BD3.(2021秋•新罗区期末)下列图形中,不具有稳定性的是()A .B .C.D.4.(2021秋•苏州期末)如图,已知AD=AB,∠C=∠E,∠CDE=55°,则∠ABE的度数为()A.155°B.125°C.135°D.145°5.(2021秋•定州市期末)如图,D、E分别为AB、AC边上的点,∠B=∠C,BE=CD.若AB=7,CE=4,则AD的长度为()A.2B.3C.4D.56.(2022•九龙坡区校级开学)如图,∠B=∠C,要使△ABE≌△ACD.则添加的一个条件不能是()A.∠ADC=∠AEB B.AD=AE C.AB=AC D.BE=CD7.(2021秋•岑溪市期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论,一定成立的是()A.BD=AD B.∠B=∠C C.AD=CD D.∠BAD=∠ACD8.(2021秋•澄海区期末)如图,已知AB=AC,CD⊥AB于点D,BE⊥AC于点E,CD与BE相交于点F,连接AF,则图中共有()对全等三角形.A.3B.4C.5D.69.(2021秋•老河口市期末)如图,∠CAB=∠DBA,添加下列条件,不能使△ABC≌△BAD的是()A.∠C=∠D B.AC=BD C.∠1=∠2D.AD=BC10.(2021秋•原阳县期末)如图,在3×3的方格图中,每个小方格的边长都为1,则∠1与∠2的关系是()A.∠1=∠2B.∠2=2∠1C.∠1+∠2=90°D.∠1+∠2=180°二.填空题(共8小题)11.(2021秋•滨城区期末)如图,OM=ON,若用“边边边”证明△CMO≌△CNO,则需要添加的条件是.12.(2021秋•海曙区期末)如图,AB=DB,∠1=∠2,要使△ABC≌△DBE还需添加一个条件是.(只需写出一种情况)13.(2021秋•启东市期末)已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为cm.14.(2021秋•阳江期末)如图,已知AE=BE,DE是AB的垂线,F为DE上一点,BF=11cm,CF=3cm,则AC=.15.(2021秋•台江区期末)如图,已知∠CDE=90°,∠CAD=90°,BE⊥AD于B,且DC=DE,若BE =7,AB=4,则BD的长为.16.(2021秋•朝天区期末)木工师傅在做好门框后,为了防止变形,常常按如图所示的方法钉上两根斜拉的木板条,其数学依据是三角形具有.17.(2021秋•惠州期末)如图,AD是△ABC的高,AD=BD,BE=AC,∠BAC=70°,则∠ABE=.18.如图所示,在△ABC中,高AD,CE相交于H,且CH=AB,则∠ACB=度.三.解答题(共6小题)19.(2021秋•钢城区期末)如图,△ABC与△DCB中,AC与BD交于点E,且AB=DC,∠A=∠D.(1)试说明BE=CE;(2)若∠AEB=50°,求∠EBC的度数.20.(2021秋•祁阳县期末)如图,AB∥CD,AB=CD,CE=BF.求证:DF=AE.21.(2021秋•雁塔区校级期末)如图,点C、D在线段AB上,且AC=BD,AE=BF,AE∥BF,连接CE、DE、CF、DF,求证CF=DE.22.(2021秋•滑县期末)如图,点C在线段AB上,△CDE是等腰三角形,CD=CE,AD=BC,AC=BE.(1)求证:AD∥BE;(2)若∠CDE=50°,∠BCE=20°,求∠B的度数.23.(2021秋•天津期末)如图,已知AC,BD相交于点O,AB∥CD,BF=DE,∠OAE=∠OCF.求证AE =CF.24.(2022•黄石港区校级开学)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=6,CF=4,求BD的长.题组B 能力提升练一.选择题(共4小题)1.(2021秋•永川区期末)如图,已知AF=CE,BE∥DF,那么添加下列一个条件后,能判定△ADF≌△CBE的是()A.∠AFD=∠CEB B.AD∥CB C.AE=CF D.AD=BC2.(2021秋•玉屏县期末)如图,AD∥MN∥BC,∠ADC=90°,AD=BC,那么,图中的全等三角形共有()A.1对B.2对C.3对D.4对3.(2021秋•惠州期末)如图,AB=AC,BD=CE,要使△ABD≌△ACE,添加条件正确的是()A.∠DAE=∠BAC B.∠B=∠C C.∠D=∠E D.∠B=∠E4.(2021秋•天津期末)如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是()A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C二.填空题(共3小题)5.(2021秋•覃塘区期末)如图,在△ABC中,AB=AC,点D、E、F分别在边BC、AB、AC上,且CD=BE,BD=CF.若∠EDF=42°,则∠BAC的度数是.6.(2021秋•覃塘区期末)如图,在△ABC中,点D在AB边上,E是AC边的中点,CF∥AB,CF与DE 的延长线交于点F,若AB=4,CF=3,则BD的长为.7.(2021秋•咸安区期末)如图,C为线段AB上一动点(不与点A、B重合),在AB的上方分别作△ACD 和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE,AE、BD交于点P.有下列结论:①AE=DB;②∠APB=2∠ADC;③当AC=BC时,PC⊥AB;④PC平分∠APB.其中正确的是.(把你认为正确结论的序号都填上)三.解答题(共3小题)8.(2021秋•零陵区期末)如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=20,EC=8,求BC的长.9.(2021秋•方正县期末)已知:点D是∠ABC的边BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.(1)如图1,求证:AE=AF;(2)如图2,若∠BAC=90°,连接AD交EF于M,连接BM、CM,在不添加任何辅助线的情况下,直接写出图中面积是△AED面积2倍的所有等腰三角形和四边形.10.(2022•定远县校级开学)如图,∠1=∠E,∠2与∠C互余,DB⊥AC,垂足为点F,AF=CF,请说明AC平分DB.题组C 培优拔尖练一.解答题(共15小题)1.(2021秋•弋江区期末)已知:如图,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,连接BD,CE交于点F,连接AF.(1)求证:△ABD≌△ACE;(2)求证:F A平分∠BFE.2.(2021秋•黔西南州期末)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.3.(2021秋•绥滨县期末)如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.4.(2021秋•营口期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连接BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连接BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.5.(2021秋•宁津县期末)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.6.(2021秋•凉山州期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.7.(2021秋•黄石期末)已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E 在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.8.(2021秋•通榆县期末)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.9.(2021春•北碚区校级期末)如图,已知凸五边形ABCDE中,EC,EB为其对角线,EA=ED.(1)如图1,若∠A=60°,∠CDE=120°,且CD+AB=BC.求证:CE平分∠BCD;(2)如图2,∠A与∠D互补,∠DEA=2∠CEB,若凸五边形ABCDE面积为30,且CD=AB=4.求点E到BC的距离.10.(2021•金东区校级模拟)【问题探索】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.探索BE与MN的数量关系.聪明的小华推理发现PM与PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中的BE与MN的数量关系是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;【解决问题】若CB=8,CE=2,在将图1中的△DEC绕点C逆时针旋转一周的过程中,当B、E、D 三点在一条直线上时,求MN的长度.11.(2021•香洲区校级模拟)探究问题1已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为.拓展问题2已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE =DF.推广问题3如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.12.(2020秋•婺城区校级期末)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.13.(2021•罗湖区校级模拟)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB 上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.14.(2020秋•婺城区校级期末)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是、.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是、.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.15.(2021春•简阳市期中)把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[多选]下列各项中,应列入资产负债表“应收账款”项目的有()。A.预付职工差旅费B.代购货单位垫付的运杂费C.销售产品应收取的款项D.对外提供劳务应收取的款项 [名词解释]提青 [填空题]新型干法预热分解窑内一般划分为()、()、()三个带,C2S吸收f-CaO生成C3S发生在烧成。 [单选]某写字楼工程主楼尚未完工,裙楼商场部分未经验收即投入使用。使用中发现一楼基础底板断裂。对此,应承担质量责任的是()。A.建设单位B.施工单位C.使用单位D.质量监督机构 [单选]甲乙双方签订买卖合同,丙为乙的债务提供保证,但保证合同中未约定保证方式及保证期间,下列说法正确的是()。A.丙的保证方式为一般保证B.保证期间与买卖合同的诉讼时效相同C.如果甲在保证期间内未要求丙承担保证责任,则丙免除保证责任D.如果甲在保证期间内未经丙书面 [单选]下列法的形式中,由全国人民代表大会及其常务委员会经一定立法程序制定颁布的规范性文件是()。A、宪法B、行政法规C、法律D、行政规章 [单选]信息社会指标分为()大类。A.5B.6C.3D.2 [单选]“计算机集成制造系统”英文简写是()。A.CADB.CAMCIMSD.ERP [单选]患者恶寒较甚,发热,无汗,头痛身楚,咳嗽,痰白,咯痰无力,舌淡苔白,脉浮而无力。治法宜首选()A.辛温解表B.辛凉解表C.祛湿解表D.益气解表E.滋阴解表 [单选]高压供电系统中,当时,计算短路电流可以只考虑()。A.系统短路电阻B.系统短路阻抗C.系统短路电抗D.系统短路电压 [名词解释]地球化学旋回 [单选]如图,正常甲状腺中部横切面的超声声像图,中央气管环状软骨前方组织为()A.甲状腺峡部B.皮下组织C.甲状旁腺D.淋巴结E.以上均不对 [单选,A1型题]小儿活动期间佝偻病6个月内出现的颅骨体征是()A.颅骨软化B.方颅C.前囟迟闭D.肋骨串珠E.鸡胸或漏斗胸 [单选,A2型题,A1/A2型题]在用紫外线治疗时,其照射范围包括病灶区和相应神经根区的上下肋间的疾病是()A.单纯疱疹B.湿疹C.带状疱疹D.变应性皮肤血管炎E.玫瑰糠疹 [单选]()是完成调查取证任务的关键。A、成立调查组B、明确调查取证内容C、正确的方法与步骤D、严格的调查取证纪律 [单选]男,24岁,颈部疼痛,并右上肢麻木,以手部明显,根据所提供图像,最可能的诊断是()A.(颈4~5)神经鞘瘤B.(颈4~5)脊膜瘤C.(颈4~5)海绵状血管瘤D.(颈4~5)血管母细胞瘤E.(颈4~5)胶质瘤 [填空题]在供电电路中,提高功率因数的方法之一是并()补偿。 [单选]关机及不可及转移的编码操作方式是()?A.**21*DN#发送键;B.**62*DN#发送键;C.**67*DN#发送键;D.**61*DN#发送键。 [多选]鼠疫的预防A.灭鼠灭蚤,监控鼠间鼠疫B.加强疫情报告C.用来苏水消毒病人排泄物和分泌物D.加强个人防护E.预防服药和预防接种 [单选]再造想象和创造想象在性质上存在的差异主要表现在()上。A.表象储备B.实践要求C.知识经验D.新颖程度 [判断题]内力是金属内部产生的与外力相抗衡的力,在某些条件下,不加外力也会产生。()A.正确B.错误 [单选]下列各项中,能使企业资产总额增加的是()。A.支付职工工资B.计提行政部门固定资产折旧C.处置固定资产,发生的净损失D.交易性金融资产公允价值上升 [单选,A1型题]下列属于《母婴保健法》规定可以申请医学技术鉴定的是()A.对孕妇、产妇保健服务有异议的B.对婚前医学检查结果有异议的C.对医学指导意见有异议的D.对孕产期保健服务有异议的E.对婚前卫生咨询有异议的 [单选,B1型题]内源性维生素D是()A.麦角骨化醇B.胆骨化醇C.维生素DD.25-(OH)DE.1,25-(OH)D [单选]()是指为改善车辆的技术性能或延长车辆使用寿命,改变原车辆零部件或总成的工作。A.车辆技术改造B.车辆大修C.车辆小修D.车辆改装 [单选]诊断癫痫主要靠()。A.神经系统检查B.头颅X线平片C.脑脊液检查D.病史询问E.脑电图检查 [问答题,简答题]现场钢丝绳采用绳卡固定法连接时的要求是什么? [单选]保险凭证是简化了的保险单,保险凭证的效力与保险单相比()。A.前者大于后者B.前者小于后者C.相等D.视具体情况而定 [单选]关于精神康复的主要内容,下列说法错误的是()A.生活技能训练,包括人际交往技能、解决问题技能、应付应激技能等B.使病人了解药物对预防与治疗的重要意义,自觉接受药物治疗C.使病人学习有关精神药物的知识,学会自己用药,从而做到自己管理自己而不需向医生求助D.使病人了 [多选]护理科研最基本的准则是()。A.实事求是B.尊重科学C.团结协作D.目的明确E.科研动机端正 [单选]胎儿电子监测胎心率变化,错误的是()A.周期性FHR与子宫收缩有关B.宫缩后FHR增加15~20次,可能是脐带静脉暂时受压C.FHR指每分钟胎儿心搏次数D.基线胎心率为无宫缩时的FHRE.FHR基线变异消失提示胎儿有一定储备能力 [单选]社区健康护理诊断的目的不包括()A.发现社区存在的健康问题B.明确社区内居民的卫生服务要求C.收集与社区整体健康状况相关的资料D.确定社区中需要优先解决的健康问题E.为实施社区健康护理提供依据 [单选,A1型题]关于胰岛素的作用下列哪项错误()。A.促进脂肪合成,抑制脂肪分解B.抑制蛋白质合成,抑制氨基酸进入细胞C.促进葡萄糖利用,抑制糖原分解和产生D.促进钾进入细胞,降低血钾E.促进蛋白质合成及氨基酸转运 [单选,A2型题,A1/A2型题]带状疱疹病的病因下列哪项是正确的()A.初次或原发感染水痘-带状疱疹病毒引起B.再次或继发感染水痘-带状疱疹病毒引起C.由单纯疱疹病毒Ⅰ型引起D.由腺病毒引起E.由单纯疱疹病毒Ⅱ型引起 [单选,A2型题,A1/A2型题]有较大胆汁排泄率的药物的分子量是()A.200B.500C.2000D.5000E.20000 [单选]带电粒子在某一长度径迹上消耗的能量与该径迹在光电效应中,γ光子()A.通过多次散射失去能量B.失去的能量等于光子能量减去结合能C.失去一半能量D.失去全部能量E.损失的能量与物质密度有关长度之比是() [单选]ISDN能提供()通信业务.A.语音B.非语音C.语音和非语音 [多选]使用IC卡进行劳务实名制管理可实现的管理功能有()。A.人员信息管理B.门禁管理C.工资管理D.实时跟踪E.考勤管理 [单选,A2型题,A1/A2型题]中华人民共和国卫生部颁布的《医务人员医德规范及实施办法》这一文献的基本精神是()。A.对患者一视同仁B.文明礼貌服务C.廉洁行医D.为患者保守医密E.实行社会主义人道主义 [问答题,简答题]为什么巴比妥C5次甲基上的两个氢原子必须全被取代