第七讲 微分方程模型(Ⅱ)

合集下载

微分方程模型(全)

微分方程模型(全)

第四步:了解问题中所涉及的原则或物理定律。
第五步:依据 第二、第三、第四步 建立微分 方程。 还有已知的对应某个 t 的 y 的值(可 能还有 y 的导数的值)就是求解微分方程所 需要的初始值。
第六步:求微分方程的解并给出问题的答案。 下面我们从易到难给出微分方程模型之应 用案例
例1 火车启动
例 1:火车启动
y ce .
kt
(2)
y( 24) 400.
初始值:
y(0) 100,
代入(2)求得: 因此:
c 100, k (ln 4) / 24.
t ln 4 / 24
y 100e
.
我们要求的是:
y(12) 100e
(12 / 24) ln 溶液浓度
如果有一个实际问题,要找一个量 y , 与另一个量 t(时间或其他变量)的关系, 这种关系涉及量 y 在每个 t 时的瞬时变化率, 而且这个瞬时变化率与量 y 与 t 的关系可以 确定,那么这样的问题通常可以通过微分 方程来解决。 利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步:
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关; 涉及的量为: “时间”(小时),“路程”(千米),“速 度”(千米/小时),“加速度”(常数 a );
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时); 有(待定)函数关系的两个量定为: 细菌总数 y ,时间 t ; 涉及的原则或物理定律: 导数=增长率.

微分方程模型介绍

微分方程模型介绍

微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。

微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。

求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。

建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。

2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。

下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。

()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。

这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。

微分方程模型02

微分方程模型02

微分方程模型在实际问题中,我们很难直接得出变量之间的数量关系,但是有时却很容易写出包括变量的导函数在内的一个方程,这就是微分方程,我们在一般的建模中常涉及常微分方程。

微分方程一般形式为:0),...,'',',,()(=n yy y y x F 或),...,'',',,()1()(-=n n yy y y x f y。

若在某个范围内存在具有n 阶导数的函数)(x y ψ=使得))(,...,')'(,)'(),(,()(=x x x x x F n ψψψψ,则称)(x y ψ=是微分方程的解。

微分方程所解决的问题通常可以分为两类:一类是用微分方程列出变量之间的关系式,求出位置函数的表达式,有时要借助软件进行数值分析;另一类是要了解未知变量或函数的某些性质即可,常需要根据微分方程的定性理论来研究,这两类建模问题我们将在后面进行讨论。

1. 微分方程简介1.1. 简单的微分方程模型一种比较简单的微分方程模型是变量的变化率与函数的即时值成正比,即kyy =',它的解就是kt e y t y 0)(=,这里0y 是初值,k 是待定常量。

通常情况下,如果0>k 称)(t y 指数递增;如果0<k ,称)(t y 指数递减,我们通过几个例子来说明这种事实。

1.1.1. 放射性元素的自然衰变放射性元素的自然衰变是化学上的一个基本事实,它常用于定碳测量,在考古学学上利用该方法测定古生物生存年代。

存活于生物组织中占有确定比例的碳原子是放射性同位素14C ,一旦生物组织死亡,这种14C 不会增加,而会将一定比例的14C 衰变为12C ,并保持一定的速率(14C 的半衰期为5568年)按指数规律下降。

测定它现存的比例并与活的样品比较,就可以求得比例下降了多少,也就得到了被测样品的实际年代。

建立模型:假定)(t y 为t 时刻生物体内14C 原子的个数,经过相同的时间T ,y的值减少为原值的1/2 (指数衰减)。

第七章 常微分方程模型的数值解法

第七章 常微分方程模型的数值解法

第七章 常微分方程数值解法简介微分方程在科学和工程技术中有很广泛的应用。

许多实际问题的数学模型都可以用微分方程来描述,归结为常微分方程的定解问题;很多偏微分方程问题,也可以化为常微分方程问题来近似求解,但是求出所需的解绝非易事。

实际上,除了极特殊情形外,人们不可能求出微分方程的解析解,只能用各种近似方法得到满足一定精度的近似解。

在常微分方程中已经熟悉了级数解法和Picard 逐步逼近法,这些方法可以给出解的近似表达式,称为近似解析方法。

另一类方法只给出解在一些离散点上的值,称为数值方法。

后一类方法应用范围更广,特别适合用计算机计算,本章主要介绍常用的常微分方程数值解法。

7.1实际问题的微分方程模型函数是事物的内部联系在数量方面的反映,如何寻找变量之间的函数关系,在实际应用中具有重要意义。

在许多实际问题中,往往不能直接找出变量之间的函数关系,但是有时却容易找出变量的改变量之间的关系,从而建立描述问题的微分方程模型。

例7.1.1 将初始温度00150u C =的一碗汤放置于环境温度a u 保持为024C 的桌上,10分钟后测得汤的温度为0100C 。

如果汤的温度低于055C 才可以喝,试问再过20分钟后这碗汤能喝了吗?解:为了解决这一问题,需要了解有关热力学的一些基本规律。

热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内,一个物体的温度变化速度与这个物体的温度和其所在的介质温度的差值成正比。

设物体在t 时刻的温度为()u u t =,从t t t →+∆温度从()()u t u t t →+∆,注意到热量总是从温度高的物体向温度低的物体传导,因而0a u u >,所以温度差a u u -恒正,又因物体将随时间而逐渐冷却;则温度的改变量为:()()(())a u u t t u t k u t t u t∆=+∆-=-+∆-∆两边除以t ∆,并令0t ∆→得温度变化速度为:()a du k u u dt=--这里0k >是比例常数。

数学建模实验答案微分方程模型

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时)(第5章 微分方程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt =-= 其中,i (t )是第t 天病人在总人数中所占的比例。

k 是每个病人每天有效接触的平均人数(日接触率)。

i 0是初始时刻(t =0)病人的比例。

1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最大值,并在曲线图上标注。

参考程序:提示:fplot, fminbnd, plot, text, title, xlabel1)画曲线图用fplot函数,调用格式如下:fplot(fun,lims)fun必须为一个M文件的函数名或对变量x的可执行字符串。

若lims取[xmin xmax],则x轴被限制在此区间上。

若lims取[xmin xmax ymin ymax],则y轴也被限制。

本题可用fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最大值用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2)fun必须为一个M文件的函数名或对变量x的可执行字符串。

返回自变量x在区间x1<x<x2上函数取最小值时的x值。

本题可用x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指示最大值坐标用线性绘图函数plot,调用格式如下:plot(x1,y1, '颜色线型数据点图标', x2,y2, '颜色线型数据点图标',…)本题可用hold on; %在上面的同一张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使用文本标注函数text,调用格式如下:格式1text(x,y,文本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注文本在图中添加的位置。

微分方程模型——数学建模真题解析 ppt课件

微分方程模型——数学建模真题解析  ppt课件
方程)。 (2)微元法。
微分方程的稳定性理论: 对微分方程组
dx f ( x) dt
若f(x0)=0,则称x0是方程组的平衡点。
ppt课件
7
如果在平衡点x0处,f(x)的Jacobi矩阵
f1

x1
Df Dx

D( f1, f2 ,L D(x1, x2 ,L
, fn) , xn )

ppt课件
20
请你参考下面给出的数据(或自己收集资料)建立饮 酒后血液中酒精含量的数学模型,并讨论以下问题: 1. 对大李碰到的情况做出解释; 2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾 车就会违反上述标准,在以下情况下回答: 酒是在很短时间内喝的; 酒是在较长一段时间(比如2小时)内喝的。 3. 怎样估计血液中的酒精含量在什么时间最高。 4. 根据你的模型论证:如果天天喝酒,是否还能开车? 5. 根据你做的模型并结合新的国家标准写一篇短文, 给想喝一点酒的司机如何驾车提出忠告。
第二种:机理分析方法: 实际上,对这一类问题,有成熟的机理分析方法: 房室模型。
ppt课件
25
我们可以把喝酒后酒精的变化过程描述为 喝酒酒精进入肠胃消化后进入血液排出。 这里,血液循环系统可以看作中心室,肠胃可以看 作吸收室。M1克酒精在很短时间进入吸收室,从吸 收室逐渐进入中心室,最后逐渐排出。
如果遇到我们不熟悉的问题时,应该怎么办? 答案:不要回避,到网上查一下相关的概念你就会 发现:这个不熟悉的问题可能是比较简单的!
ppt课件
11
分析:上网查一下热传导,我们可以了解到:热的 传导从温度高的地方向温度低的地方传导,单位时 间传送的热量与温差T成正比,与两个热源的距 离成反比。即

微分方程模型2

微分方程模型2

§3.5传染病模型传染病是人类的大敌,通过疾病传播过程中若干重要因素之间的联系建立微分方程加以讨论,研究传染病流行的规律并找出控制疾病流行的方法显然是一件十分有意义的工作。

在本节中,我们将主要用多房室系统的观点来看待传染病的流行,并建立起相应的多房室模型。

问题的提出:医生们发现,在一个民族或地区,当某种传染病流传时,波及到的总人数大体上保持为一个常数。

即既非所有人都会得病也非毫无规律,两次流行(同种疾病)的波及人数不会相差太大。

如何解释这一现象呢?试用建模方法来加以证明。

设某地区共有n +1人,最初时刻共有i 人得病,t 时刻已感染(infective )的病人数为i (t ),假定每一已感染者在单位时间内将疾病传播给k 个人(k 称为该疾病的传染强度),且设此疾病既不导致死亡也不会康复模型1此模型即Malthus 模型,它大体上反映了传染病流行初期的病人增长情况,在医学上有一定的参考价值,但随着时间的推移,将越来越偏离实际情况。

已感染者与尚未感染者之间存在着明显的区别,有必要将人群划分成已感染者与尚未感染的易感染,对每一类中的个体则不加任何区分,来建立两房室系统。

()odi ki dt i o i ⎧=⎪⎨⎪=⎩则可导出:故可得:()kto i t i e =(3.15)模型2记t 时刻的病人数与易感染人数(susceptible )分别为i (t )与s (t ),初始时刻的病人数为i 。

根据病人不死也不会康复的假设及(竞争项)统计筹算律,1o o o i c n i =+-其中:(1)(1)(1)()1k n t o k n to c n e i t c e +++=+解得:(3.17)()()1()o di kis dt i t s t n i o i ⎧=⎪⎪+=+⎨⎪=⎪⎩可得:(3.16)统计结果显示,(3.17)预报结果比(3.15)更接近实际情况。

医学上称曲线为传染病曲线,并称最大值时刻t 1为此传染病的流行高峰。

微分方程模型

微分方程模型
当 σ > 1 表示传染病的日接触率>日治愈率, 表示传染病的日接触率>日治愈率, i(t)>0,反映传染病在蔓延, i(t)>0,反映传染病在蔓延,感染人数不断上 升; 如SARS这类高传染性的传染病,日接触率 SARS这类高传染性的传染病, 远大于日治愈率, i(t)→1,反映传染病迅速 远大于日治愈率, i(t)→1,反映传染病迅速 爆发; 爆发; 当 σ ≤ 1 表示传染病的日接触率≤日治愈率, 表示传染病的日接触率≤日治愈率, i(t)=0,反映传染病传染受到控制; i(t)=0,反映传染病传染受到控制;
模型评价
隔离病人和在传染病爆发前对易感人群接 种疫苗都是有效降低日接触率λ 种疫苗都是有效降低日接触率λ, 使σ减小, 减小, 从而使病人比例减小; 从而使病人比例减小; 研发特效药是有效提高日治愈率 使使σ 研发特效药是有效提高日治愈率;使使σ 减小,从而使病人比例减小; 减小,从而使病人比例减小;
微分方程模型
常微分方程
常微分方程是最简单的微分方程之一,也 是在建模中经常使用的方程; 常微分方程就是各项系数为常数的微分方 程; y '+ y + xy 2 = 0 微分方程的解就是满足这个式子的函数 y=f(x,C); y=f(x,C);
Mathematica解常微分方程 Mathematica解常微分方程
SIS模型问题描述 SIS模型问题描述
有些传染病如流行性感冒、伤风等愈后免 疫力很低,于是病人被治愈后变成健康者, 健康者还可以被感染再变成病人。 传染病的传播是有一定范围的,在传染病 传播期内所考察地区的总人口数相对稳定。
SIS模型变量假设 SIS模型变量假设
传染病区总人口设为N 传染病区总人口设为N; 传染病区人群分为健康者和病人,它们在 人口所点比例分别为s(t)和i(t); 人口所点比例分别为s(t)和i(t); 日接触率:每个病人每天有效传染的平均 人数百分比λ 人数百分比λ,当病人与健康者接触,一 部分健康者就会被感染变为病人; 日治愈率:每天被治愈的病人点总病人总 数的百分比 数的百分比;

数学建模-微分方程模型.pptx

数学建模-微分方程模型.pptx
2019年11月8
数学建模- 微分方程模型
xx 同济大学数学科学学院
谢谢你的阅读
1
一、什么是微分方程?
最最简单的例子
2019年11月8
谢谢你的阅读
2
引例 一曲线通过点(1,2),且在该曲线任一点
M( x ,y )处的切线的斜率为2x,求该曲线的方程。
解 若设曲线方程为 y f (x),(1)
2019年11月8
谢谢你的阅读
51
阻滞增长模型 (Logistic模型)
人口增长到一定数量后,增长率下降的原因:
资源、环境等因素对人口增长的阻滞作用
且阻滞作用随人口数量增加而变大
r是x的减函数
假定: r(x) r sx (r, s 0) r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
2019年11月8
x0
谢谢你的阅读
t
x(t)~S形曲线, x增加先快后慢
53
模型的参数估计
用指数增长模型或阻滞增长模型作人口预报, 必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1790 1800 1810 1820 1830 …… 1950 1960 1970 1980 3.9 5.3 7.2 9.6 12.9 …… 150.7 179.3 204.0 226.5
CO2的通入量 2000 dt 0.03, CO2的排出量 2000 dt x(t),
2019年11月8
谢谢你的阅读
29
CO2的改变量 CO2的通入量 CO2的排出量
12000dx 2000 dt 0.03 2000 dt x(t),

《微分方程模型》课件

《微分方程模型》课件
f '(x) 2x,
即 f (x) 2xdx C x2 C.
又由条件: 曲线过(1,3), 即 f (1) 3,
于是得 C 2. 故所求的曲线方程为:
y x2 2.
第一章 绪论
常微分方程是现代数学的一个重要分支,是人们解决各 种实际问题的有效工具,它在几何,力学,物理,电子技术,自 动控制,航天,生命科学,经济等领域都有着广泛的应用,本 章将通过几个具体例子,粗略地介绍常微分方程的应用,并 讲述一些最基本概念.
§1.1 微分方程模型
微分方程:
联系着自变量,未知函数及其导数的关系式.
解: 设t时刻时镭元素的量为R(t),
由于镭元素的衰变律就是R(t)对时间的变化律dR(t) , dt
依题目中给出镭元素的衰变律可得:
dR kR, dt
R(0) R0
这里k 0,是由于R(t)随时间的增加而减少 .
解之得: R(t) R0ekt
即镭元素的存量是指数规律衰减的.
例2 物理冷却过程的数学模型
物体的温度与其所在的介质的温度之差成正比.
解: 设物体在时刻 t 的温度为 u(t). 根据导数的物理意义, 则
温度的变化速度为 du . 由Newton冷却定律, 得到 dt
du dt
k (u
ua ),
其中 k 0 为比例系数. 此数学关系式就是物体冷却过程的数
学模型.
注意:此式子并不是直接给出u 和 t 之间的函数关系,而只是
(3.2)
(3.2)的解为: θ(t)= θ0cosωt
当 t T 时,θ(t)=0 4
故有
g T
l4 2
其中 g
l
由此即可得出
T 2 gБайду номын сангаас

微分方程模型

微分方程模型

房室具有以下特征:它由考察对象均匀分 布而成,房室中考察对象的数量或浓度(密 度)的变化率与外部环境有关,这种关系被 称为“交换”且交换满足着总量守衡。在本 节中,我们将用房室系统的方法来研究药物 在体内的分布。在下一节中,我们将用多房 室系统的方法来研究另一问题。
单房室系统
交换 环境
内部
均匀分布
,i(t)单 s0 增。但在i(t)增加的同时,伴随地有s(t)单减。当 s(t)减少到小于等于 时, i(t)开始减小,直 至此疾病在该地区消失。
(2)如果
则: s(t ) s
r (t )
1
o
e

di ,则开始时 dt 0
五.稳定性问题
在研究许多实际问题时,人们最为关心的也许并 非系统与时间有关的变化状态,而是系统最终的发展 趋势。例如,在研究某频危种群时,虽然我们也想了 解它当前或今后的数量,但我们更为关心的却是它最 终是否会绝灭,用什么办法可以拯救这一种群,使之 免于绝种等等问题。要解决这类问题,需要用到微分 方程或微分方程组的稳定性理论。在下两节,我们将 研究几个与稳定性有关的问题。
容器损失的水量为:
[ R ( R r ) ]dh
2 2
由质量守恒
[ R ( R r ) ]dh sv(t )dt
2 2
其中
v(t ) 0.6 2gh(t)
从而建立方程:
0.6s 2 gh dh 2 2 dt [R (R r) ]
解得
0.6s 2 gh 14 R T dh 2 2 R [R (R r) ] 9s 2 g
微分方程 模型
• 微分方程建模
对于某种现象或提出的问题,通过建立微分方程 来解释或解决.通常可分为两大类:

数学建模---微分方程模型简介

数学建模---微分方程模型简介
N rN x 0 x* £ µ Í É » à ¬ ´ ³ Ï ² À Í hm ¬ ¤ º ªà Ø é ï Õ ð ò ¾ ª 2 4 E 当 x =x* N 时, E E * r x 0 N (1 ) 0 2 2 r r 结论:当捕捞强度控制在 E * 时, 鱼量保持在最大 2 鱼量 N 的一半, 可获得最大持续产量, i.e.,
Malthus模型特点: 在有限的时间内, 在生存空间和食物供应充足 的环境下, Malthus人口模型是比较准确的; 但是, 由于生存空间 有限、食物短缺、战争、疾病、自然灾害, 以及人为控制人口增 长等等原因, Malthus人口模型不能准确地反映出人口的实际增 长情况.
11
上页 下页 返回
Logistic阻滞增长模型
hR £ ¹
r c E R (1 ) 2 pN
N c xR 2 2p
比较:
è ò ¾ £ Ì ªÎ ¬ Ø ¬ï ¬ï §æ à ­ î Á ¬ Ò ² À Ã Ï Ç ¼ £ Ó «Æ é ´ Ï Ñ µ Ó Ó Î £ ¶ Ë ¾ Ç ©Õ ð ò ¾ ñ Ï ñ î × ¬ ð æ ¡ ß ¾ æ È ª ² ¿ Æ ¶ » ³ Ï ² À ½ Ò Ê » È £ ¶ Ò ³ Ò À Ê ³ ½ c à ï Ò ð ï Ò ¬ «Î µ É ° ï £ µ Ó » ¶ Ó » £ ñ ¹ É » Æ ¾ ¡
x
上页 下页 返回
§2 、人口模型
设 t 时刻人口数为 x(t ) ,经过 t 时间后,人数变为
x 则从 t 时刻到 t t 时刻的平均增长速度为 , x( t ) x , t x x( t )。 相对增长率为 t
t ªË à ­ Ó ï ¤É ¹ É ¾ µ Î ¶ Ó ³ Á £

lesson7微分方程模型(2)

lesson7微分方程模型(2)
解: x0 5 1
案例2
房屋管理部门想在房顶的边缘 安装一个檐槽,其目的是为了雨天 出入方便。简单说来,从屋脊到屋檐的房顶可以看 成是一个12米长,6米宽的矩形平面,房顶与水平方向的 倾斜角度要视具体的房屋而定,一般说来,这个角度通常 在200~500之间。
现在有一个公司想承接这项业务,他们允诺:提供一 种新型的可持久的檐槽,它包括一个横截面为半圆形(半径 为7.5厘米)的水槽和一个竖直的排水管(直径为10厘米), 并且不管天气情况如何,这种檐槽都能排掉房顶的雨水.
质点在这曲线上用最短的时间由A滑至B点 (介质的摩擦力和阻力忽略不计)。
速降线问题实验
速降线是否连接A和B的直线段?
X
牛顿的实验(1630年) 在铅垂平面内,取同样的两个球,其中一个
沿圆弧从A滑到B,另一个沿直线从A滑到B。发 现沿圆弧的球先到B。伽利赂也曾研究过这个问 题,他认为速阵线是圆弧线。
在生物、经济等学科中,许多现象所满足的 规律并不很清楚,而且现象也相当复杂,因而需 根据实际资料或大量的实验数据,提出各种假设, 在一定的假设下,给出实际现象所满足的规律, 然后利用适当的数学方法得出微分方程。
5、一个考古问题
(1)问题分析与模型的建立
1、
2、
(2)解
(3)一个事实
6、堂上问答
因为镭-226衰变为铅一210
问题:y0既不能直接测量,计算也有困难
鉴别油画的方法:
要区别17世纪的油画和现代膺品,可根据下 述简单事实:如果颜料的年头比起铅的半哀期22 年长得多,那么颜料中铅-210的放射作用量就几 乎接近于颜料中镭的放射作用量,即两者每克铅 白中每分钟蜕变的原子数应非常接近。另一方面, 如果油画是现代作品(大约20年左右),那么铅-210 的放射作用量就要比镭的放射作用量大得多。

2.微分方程模型

2.微分方程模型

牛顿冷却(加热)定律:将温度为T的物体 放入处于常温 m 的介质中时,T的变化速率 正比于T与周围介质的温度差.
分析:假设房间足够大,放入温度较低或较 高的物体时,室内温度基本不受影响,即室温 分布均衡,保持为m,采用牛顿冷却定律是一个 相当好的近似.
建立模型:设物体在冷却过程中的温度为 T(t),t≥0,
“T的变化速率正比于T与周围介质的温度差”
翻译为
dT 与T m成正比 dt
数学语言
建立微分方程
dT k (T m ), dt T (0) 60.
其中参数k >0,m=18. 求得一般解为
ln(T-m)=-k t+c,

T m ce
kt
, t 0,
1 16 代入条件,求得c=42 , ln , 最后得 k 3 21 1 16 ln t T(t)=18+42 e 3 21 , t ≥0.
1 16 结果 :T(10)=18+42 3 ln 21 10 =34.97℃, e
该物体温度降至30℃ 需要13.82分钟.
例2、车间空气的清洁
问题:已知一个车间体积为V立方米,其中有一 台机器每分钟能产生r立方米的二氧化碳(CO2),为 清洁车间里的空气,降低空气中的CO2含量,用一台 风量为K立方米/分钟的鼓风机通入含CO2为m%的新鲜 空气来降低车间里的空气的CO2含量。假定通入的新 鲜空气能与原空气迅速地均匀混合,并以相同的风量 排出车间。又设鼓风机开始工作时车间空气中含x0% 的CO2.问经过t时刻后,车间空气中含百分之几的CO2? 最多能把车间空气中CO2的百分比降到多少?
30000 60 24 365
这些铀约重

微分方程模型

微分方程模型
人口将按指数规律无 限增长!
r0
r0
x(t ) x0
x(t ) 0
人口将始终保持不变! 人口将按指数规律减少直 至绝灭!
2 T ln r
人口倍增时间
Malthus模型预测美国人口
Malthus模型预测美国人口
Malthus模型预测的优缺点
优点 缺点 原因 短期预报比较 准确 不适合中长期预报 预报时假设人口增长率 r 为常数。没有考虑环 境对人口增长的制约作用。
机动
目录
上页
下页
返回
结束
医学(流行病,传染病问题)模型,经济(商业销 售,财富分布,资本主义经济周期性危机)模 型,战争(正规战,游击战)模型等。 下面,我们给出如何利用方程知识建立 数学模型的几种方法。
机动
目录
上页
下页
返回
结束
1.利用题目本身给出的或隐含的等量 关系建立微分方程模型。这就需要我们仔 细分析题目,明确题意,找出其中的等量关 系,建立数学模型。 2.从一些已知的基本定律或基本公式出 发建立微分方程模型.我们要熟悉一些常用 的基本定律,基本公式.例如力学中的牛顿第 二运动定律,电学中的基尔霍夫定律等.从 这些知识出发我们可以建立相应的微分方 程模型。
到t t时刻, 除去死亡的人外 , 活着的都变成了
r dr1 , r dr dr1 区间内的人, t t时刻年龄在
即p(r dr 1 , t dt) dr.这里dr 1 dt.
而在这段时间內死去的 人数为 r , t pr , t drdt, 它们之间的关系为 : pr , t dr pr dr 1 , t dt dr r , t p r , t drdt r , t pr , t drdt

微分方程模型2(2课时)

微分方程模型2(2课时)

第2章 微分方程模型2(2课时)教学目的懂得如何根据实际情况建立微分方程。

教学内容介绍应用微分方程方法建模。

模型Ⅱ 人口模型1. 引言在研究某些实际问题时,经常无法直接得到各变量之间的联系,问题的特性往往会给出关于变化率的一些关系。

利用这些关系,我们可以建立相应的微分方程模型。

在自然界以及工程技术领域中,微分方程模型是大量存在的。

它甚至可以渗透到人口问题以及商业预测等领域中去,其影响是广泛的。

问题:人口问题是当今世界上最令人关注的问题之一,一些发展中国家的人口出生率过高,越来越威胁着人类的正常生活,有些发达国家的自然增长率趋于零,甚至变为负数,造成劳动力紧缺,也是不容忽视的问题。

另外,在科学技术和生产力飞速发展的推动下,世界人口以空前的规模增长,统计数据显示:年 1625 1830 1930 1960 1974 1987 1999人口(亿) 5 10 20 30 40 50 60可以看出,人口每增长十亿的时间,由一百年缩短为十二三年。

我们赖以生存的地球,已经带着它的60亿子民踏入了21世纪。

长期以来,人类的繁衍一直在自发地进行着。

只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系,人口数量的变化规律,以及如何进行人口控制等问题。

我国是世界第一人口大国,地球上每九个人中就有一个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表:年 1908 1933 1953 1964 1982 1990 2000人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.95 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。

认识人口数量的变化规律,建立人口模型,作出较准确的预报,是有效控制人口增长的前提,下面介绍两个最基本的人口模型。

2. 模型1 (Malthus 模型)18世纪末,英国人Malthus 在研究了百余年的人口统计资料后认为,在人口自然增长的过程中,净相对增长率(出生率减去死亡率为净增长率)是常数。

微分方程模型

微分方程模型

微分方程模型重点:车间空气清洁问题、减肥问题、单种群增长问题与多物种相互作用问题等数学模型的建立过程与所使用的方法要求: 1.进一步理解建模基本方法与基本建模过程,掌握平衡原理与微元法在建模中的用法.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理是从物质运动机理的角度组建数学模型的一个关键问题.就象中学的数学应用题中等量关系的发现是建立方程的关键一样.微元法是指在组建对象随着时间或空间连续变化的动态模型时,经常考虑它在时间或空间的微小单元变化情况,这是因为在这些微元上的平衡关系比较简单,而且容易使用微分学的手段进行处理.这类模型基本上是以微分方程的形式给出的.例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过80%(mg/ml). 现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是56%(mg/ml), 又过两个小时后, 测得其酒精含量降为40%(mg/ml),试判断: 事故发生时,司机是否违反了酒精含量的规定? 解:模型建立设)(t x 为时刻t 的血液中酒精的浓度, 则依平衡原理时间间隔],[t t t ∆+内, 酒精浓度的改变量t t x x ∆⋅∝∆)(, 即t t kx t x t t x ∆-=-∆+)()()(其中k >0为比例常数, 式前负号表示浓度随时间的推移是递减的, 遍除以t ∆, 并令0→∆t , 则得到,d d kx t x-= 且满足40)5(,56)3(==x x 以及0)0(x x =.模型求解容易求得通解为kt c t x -=e )(, 代入0)0(x x =,得到kt x t x -=e )(0则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得17.04056e 40e 56e 25030=⇒=⇒⎩⎨⎧==--k x x k kk 将17.0=k 代入得 25.93e 5656e 17.03017.030≈⋅=⇒=⨯⨯-x x >80 故事故发生时,司机血液中的酒精浓度已超出规定.2.理解种群的相互关系模型的建立原理与结论. ∙ 马尔萨斯模型 模型假设(1)初始种群规模已知(设为N 0),种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的;(2)种群在空间分布均匀,没有迁入和迁出(或迁入和迁出平衡);(3)种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等. (4)环境资源是无限的. 确定变量和参数 :t 自变量,t t N :)(时刻的种群密度, :b 出生率,:d 死亡率.模型的建立与求解由上述假设,单种群增长模型与马尔萨斯人口模型极为类似,于是使用完全相同的建模过程易得)(:)()(d )(d t rN t N d b t t N =-= (3.1) 满足初始条件0)0(N N =的解为.e e )(0)(0rt t d b N N t N ==-于是有,)(lim ,,0+∞=>>+∞→t N d b r t 则有即,)(lim ,,00N t N d b r t ===+∞→则有即,0)(lim ,,0=<<+∞→t N d b r t 则有即在种群生长的初期,种群规模较小,有足够的生存空间、足够的食物,彼此间没有利益冲突.但随着种群规模的逐渐扩大,对有限的空间、食物和其他生存必须条件的种内竞争越来越激烈,这必然影响种群的出生率和死亡率,从而降低实际增长率,因而在上述模型中假设出生率、死亡率为常数,资源无限不尽合理.∙ 罗捷斯蒂克模型完全类似于人口模型的分析知道,种群的增长模型为⎪⎩⎪⎨⎧=-=,)0(),1(0N N K N rN dt dN(3.2) 其中r 是种群的固有(N =0时)增长率,K 是环境的最大容纳量.方程(3.2)既是变量可分离方程,又是贝努利型方程.容易求得其解为00)()(N e N K KN t N rt +-=- (3.3)3.会建立较为简单的相关实际问题的数学模型.例2 在凌晨1时警察发现一具尸体, 测得尸体温度是29︒C, 当时环境温度是21︒C .一小时后尸体温度下降到27︒C , 若人的正常体温是37︒C , 估计死者的死亡时间.解 运用牛顿冷却定律T ')(T T out -=-α, 得到它的通解为 )(0out out T T T T -+=t α-e , 这里0T 是当0=t 时尸体的温度, 也就是所求的死亡时间时尸体的温度, 将题目提供的参数代入:⎩⎨⎧=-+=-++--27e)2137(2129e )2137(21)1(t t αα 解得: 168e =-t α 和 166e )1(=+-t α 则34e =α 求得:)(409.2)12(,2877.0h Ln t ≈-=≈αα 这时求得的t 是死者从死亡起到尸体被发现所经历的时间, 因此反推回去可推测死者的死亡时间大约是前一天的夜晚10:35.例3 设某种动物头数的变化服从Logistic 规律.在正常情况下净相对增长率为a 1,环境容许的极限头数为N 1.假设当头数增加到Q (Q < N 1)时瘟疫流行,使净相对增长率为a 2,极限头数降为N 2(N 2< Q ),于是头数下降.当降至q (q >N 2)时,瘟疫停止,恢复正常.试建立这种情况下动物头数的模型,并讨论在瘟疫影响下动物头数的周期性变化,周期与哪些因素有关.解 由题中条件知,动物头数x (t )应满足:⎪⎪⎩⎪⎪⎨⎧-=-=瘟疫流行时正常时)1(~d ~d )1(d d 2211N x x a t x N x x a t x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=----瘟疫流行时正常时)(22)(111201e )1(1)(~e )1(1)(t t a t t a Q N N t x q N N t x其中10,t t 分别为开始转入正常的时刻和开始转入瘟疫流行的时刻,由Q qNN t x t t a =-+=--)(1101e )1(1)(解得 )()(ln 11110Q N q q N Q a t t --=-由 q QNN t x t t a =-+=--)(2212e )1(1)(~解得 )()(ln 12221N q Q N Q q a t t --=- 即动物头数周期性变化,其周期为)()(ln 1)()(ln 1222111N q Q N Q q a Q N q q N Q a T --+--=典型例题一、填空题:1.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 ,其解为 .解 应该填写:⎪⎩⎪⎨⎧==0)0(d d x x rxt x,.e )(0rt x t x =2.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为 ,其解为 .解 应该填写: ⎪⎩⎪⎨⎧=-=0)0()1(d d x x x x rx t xm ,.e )1(1)(0rt m m x x x t x --+=二、分析判断题1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用. 解:设t 时刻采用新技术的人数为x (t ).(1)指数模型x txλ=d d .(2)Logistic 模型)(d d x N ax tx-=,N 为总人数.(3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图1.图12.某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性.解: 根据题意可知:下一年病人数=当年患者数的一半+新患者.于是令n X 为从2000年起计算的n 年后患者的人数,可得到递推关系模型:10005.01+=+n n X X 得递推公式).211(2000210n n n X X -+=由,12000=X 可以算出2005年时的患者数19755=X 人.由递推公式容易看出,,2000→n n X X ,且是单调递增的正值数列故结论正确.三、计算题1.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度.解:在图2坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x= ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为ααααcos )2sin (cos sin 212222v g hgv g v R ++=图2 这个关系还可表为 )tan (cos 2222ααR h v g R +=.由此计算0d d =*ααR ,得最佳出手角度和最佳成绩分别为:)(2sin 21gh v v +=-*α, gh v gvR 22+=*. 设h =1.5m ,v =10m/s ,则 4.41=*α,m 4.11=*R .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度 E m 和渔场鱼量水平x *0. 解: 模型为 Ex x N rx x F x-==ln )( , 如图3所示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N . 图33.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象. 解:记B 的浓度为时间t 的函数y (t ),A 的浓度为x (t ). 一、假设1.1molA 分解后产生n molB .2.容体的体积在反应过程中不变. 二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx tx-=d d 其中k 为比例系数.设反应开始时t = 0,A 的浓度为x 0,由题中条件知当t = 20(分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-)0(d d x x kx tx得 kt x t x -=e )(0 它应满足020021e )20(x x x k ==⨯-rN/解得 2ln 201=k 所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000ttnx x x n t y ---=-=三、作图(如图4) 图4nx。

第7章 微分方程模型

第7章 微分方程模型

z 随着 y 的增加而增长,但增长速度递减
z Q / L f g ( y ) 0
Q f L ( K / L ) 0
g(y)
1 Q ( K , L ) f K L Douglas生产函数 0
Q Q 2Q 2Q , 2 0 含义? , 0 2 K L K L
Q ( K , L ) f K L ,0 , 1 ,f 0
0 0

2)资金与劳动力的最佳分配(静态模型)
资金来自贷款,利率 r 资金和劳动力创造的效益 劳动力付工资 w
S Q rK wL
求资金与劳动力的分配比例K/L(每个 劳动力占有的资金) ,使效益S最大
S S 0 , 0 K L
dK f0Ly dt
f f 1 ( 1 ) t 0 0 y ( t ) ( y ) e 0 K0 1 1 y K / L , Q f K L , K Q y0 f0 0 000 0 0 0 0 0 0 K
1 1
dK dy L Ly dt dt
dy y f0 y dt
Bernoulli方程

f K ( 1 ) t 0 0 y ( t ) 1 ( 1 ) e ] [ K 0
1 1
3) 经济增长的条件
无法求出 i(t),s(t)


的解析解 在相平面 s ~ i 上
研究解的性质
i s 1 ( 通常 r ( 0 ) r 很小) 0 0 0
模型4
di dt si i ds si dt i ( 0 ) i0 , s ( 0 ) s 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
x(t)
( y0 / x0 )2 100
乙方必须10倍于甲方的兵力方可取胜.
美国曾用这个模型分析越南战争.美国正规部队 (乙方)要取胜越南游击部队(甲方),至少要投入8 倍于游击部队一方的兵力,而美国最多只能派出6倍于 越南的兵力,美国得出不可取胜的结论,最终撤出了
越南.
正规战模 Engel J.H. 利用二次大战末期美日硫黄岛
m 0 甲方胜
x(t)
m 0 平局
结果 分析
y 0
d
rs s x rx x
线性律
x0 c ry sry s y 模型
乙方胜
即初始兵力之比y0/x0以线性关系影响战争结局,并 且当射击率和射击有效面积一定时,增加活动面
积Sx与增加初始兵力y0起着同样的作用.
Байду номын сангаас
3.4.4混合战争模型 甲方为游击部队,乙方为正规部队
3.4.3 游击战争模型 双方都用游击部队作战
•甲方战斗减员率还随着甲方兵力的增加而增加 f(x, y)=cxy, c~ 乙方每个士兵的杀伤率
c = ry py ry~射击率 py ~命中率
py=sry /sx sx ~ 甲方活动面积 sry ~ 乙方射击有效面积
g(x, y) dxy, d rx px rxsrx / sy
在式(14)中令t=36,得
36
u A36
a 1 36
a=ry py, ry ~射击率, py ~命中率
x -ay -x u(t) y -bx - y v(t) (2)
g bx, b rx px
•忽略非战斗减员 • 假设没有增援
x ay
y
bx
(3)
x(0) x0 , y(0) y0
正规战争模型
x ay
y
bx
x(0) x0 , y(0) y0
建模思路和方法为用数学模型讨论社会 领域的实际问题提供了可借鉴的示例
3.4.1一般战争模型
x(t) ~甲方兵力,y(t) ~乙方兵力
1)每方战斗减员率取决于双方的兵力和战斗力,
模 型
f(x,y)~甲方战斗减员率,g(x,y)~乙方战斗减员率
假 2)每方非战斗减员率与本方兵力成正比,比
设 例系数分别为 ,
x cxy
y
bx
x(0) x0 , y(0) y0
y(t)
n 0,乙方胜
n 0,平局
cy 2 2bx n
n cy 2 2bx
0
0
n0 乙方胜
2
y0 x0
2b cx0
2
y 0
x0
2r p s x xx
ry sry x0
n 0,甲方胜 设 x0=100, rx/ry=1/2, px=0.1, sx=1(km2), sry=1(m2)
A0 0, J 0 21500
(13)
由u(t)及每天的伤亡 人数可算出A(t), t=1,2, …,36(见图 3.4.4 中虚线)
图3.4.4
对式(13)用求和代替积 分得
dA aJ (t) ut
dt dJ bA(t) dt
A0 0, J 0 21500
(13)
t
t
At A0 a J u (14)
•忽略非战斗减员 •假设没有增援
x cxy
y
dxy
x(0) x0 , y(0) y0
游击战争模型
x cxy
y
dxy
x(0) x0 , y(0) y0
y(t)
m0
dy d dx c
cy dx m
m cy dx
0
0
m 0 x 0时y 0
乙方胜
m0
mc
0
m d
m0
y0 d rx srx sx 线性律 x0 c ry sry s y 模型
第三章 微分方程建模(Ⅱ)
§3.4 战争模型 §3.5 饿狼追兔问题 §3.6 放射性废物的处理问题
§3.4 战争模型
第一次世界大战Lanchester提出预测战役结局的模型 战争分类:正规战争,游击战争,混合战争 只考虑双方兵力多少和战斗力强弱 兵力因战斗及非战斗减员而减少,因增援而增加 战斗力与射击次数及命中率有关
y(t)
g(x,
y)
y
v(t),
0
(1)
在模型(1)中取 α = β = 0(忽略非战斗减员),
且 vt 0, f x, y a J (t), gx, y bA(t),
54000 0 t 1
ut
6000 13000
2t3 5t 6
0
其它
于是有
dA aJ (t) ut
dt dJ bA(t) dt
3)甲乙双方的增援率分别为u(t), v(t)
模型 x(t) f (x, y) x u(t), 0
建立
y(t)
g(
x,
y)
y
v(t),
0
(1)
f, g 取决于战争类型
3.4.2 正规战争模型 双方均以正规部队作战
甲(乙)方战斗减员率只取决于乙(甲)方的兵力和战斗力
f(x, y)=ay, a ~ 乙方每个士兵的杀伤率
为判断战争的结局,不求x(t), y(t) 而在相平面上讨论 x 与 y 的关系
dy bx dx ay
ay2 bx2 k
k ay02 bx02
y(t)
k 0
k 0 x 0时y 0 乙方胜
k 0
2
ka
k 0
y 0
x0
b
r x
p x
a ry py
平方律 模型
k 0 甲方胜
0
k b
x(t)
k 0 平局
结果 分析
2
y0 x
0
b rx px a rp
yy
平方律 乙方胜 模型
上式说明双方初始兵力之比y0/x0以平方关系影响 着战争的结局,如乙方兵力增加到原来的2倍(甲 方不变),则影响战争结局的能力增加到4倍,或 者若甲方的战斗力如射击率ry增加到原来的4倍(px, rx, py不变),乙方只要将初始兵力y0增加到原来的2 倍就可抗衡.
型检验
战役时美军的战地记录验证了正规战争模 型.
美军1945年2月19日开始进攻硫黄岛,战斗36 天,日军21500人全部阵亡或被俘,战地记录全部 遗失,美军投入兵力73000人,伤亡20265人.
美军有增援,日军没有增援.
用A(t)和J(t)表示美军和日军第t天的人数,
x(t) f (x, y) x u(t), 0
1
1
t
J t J 0 b A
(15)
1
由A(t)的实际数据可得
36
A 2037000
1
因J(36)=0, J(0)=21500, 式(15)中令t=36求得
b 21500 0.0106, 2037000
再将b=0.0106代入(15)式,又可算出J(t), t=1,2, …,36
相关文档
最新文档