抛物线中的三角形
抛物线上的三角形的面积
抛物线上的三角形的面积
抛物线是一种二次函数的图像,其形式为$y=ax^2+bx+c$(其中$a$ 不等于0)。
如果在抛物线上存在一个三角形,则它的底边一定是抛物线的某一条直线切线,并且顶点在抛物线的极值处。
如果要计算抛物线上三角形的面积,可以使用以下步骤:
找出抛物线的极值点。
极值点的坐标为$(h,k)$,其中$h$ 是抛物线的横坐标,$k$ 是抛物线的纵坐标。
极值点的横坐标可以通过求解方程$ax^2+bx+c=0$ 来获得,其中$a$、$b$ 和$c$ 分别是抛物线的系数。
求出抛物线的切线方程。
切线的斜率为抛物线的导数$2ax+b$,可以使用斜截式$y=mx+b$ 来表示切线的方程,其中$m$ 是斜率,$b$ 是切线的截距。
求出抛物线的底边长。
底边的两个端点的坐标分别为抛物线的两个交点,可以使用切线的方程求解。
计算三角形的面积。
可以使用海伦公式求解三角形的面积,公式为$\sqrt{s(s-a)(s-b)(s-c)}$,其中$s$ 为三角形的半周长,即$s=\frac{a+b+c}{2}$,$a$、$b$ 和$c$ 分别是三角形的三条边长。
因此,计算抛物线上三角形的面积的步骤如下:
求出抛物线的极值点$(h,k)$。
求出抛物线的切线方程$y=mx+b$。
求出抛物线的底边长$a$。
计算三角形的半周长$s$。
使用海伦公式计算三角形的面积。
举个例子,假设抛物线的方程为$y=x^2-2x+1$,底边长为$a=2$,那么抛物线上三角形的面积就是$\sqrt{s(s-2)(s-2)(s-2)}=\sqrt{s(s-2)^3}$。
第五讲+抛物线中三角形的面积问题
第五讲抛物线中三角形的面积问题一、抛物线内接三角形的面积问题:例、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax²+bx+c(a≠0)经过A、B、C三点。
⑴求此抛物线的函数表达式和顶点M坐标;⑵求S△MBC;归纳:怎样求坐标系内任意三角形的面积问题:二、抛物线中三角形的等积变化:1、在抛物线上是否存在点D,使得△ABC和△ABD面积相等,若存在,求出点D的坐标,若不存在,说明理由。
2、在抛物线上是否存在点E,使得△ABC和△BCE面积相等,若存在,求出点E的坐标,若不存在,说明理由。
S△ABC。
若存在,求出点M的坐标;若不存在,请说明理由3、在抛物线上是否存在点M,使S△MBC= 134、(2011成都)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√?若存在,求出点M的坐标;若不存在,说明理由.5、点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C 运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH 的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;6、在抛物线的对称轴上有一点P的纵坐标为5,在直线上BC求一点M使得S△PBM∶S△ABC=1:5.7、在直线BC下方抛物线上是否存在一个点F,使得△BCF的面积最大,若存在,求出点F的坐标,并求出最大面积,若不存在,说明理由。
练习:1、如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.2、(2010玉溪)如图,在平面直角坐标系中,点A的坐标为(1,△AOB(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.yAB。
抛物线中的直角三角形(安松)
解:存在点M,使得∠ADM=90°. 理由如下: 由抛物线y=X2+2x-3,得C(0,-3), ∵CD∥x轴, ∴D的纵坐标为-3, 把y=-3代入y=X2+2x-3,得
X2+2x-3=-3, 解得:x1=-2,x2=0, ∴D的坐标为(-2,-3),
设直线AD的解析式为y1=k1x+b1,则:
k1 b1 0 2k1 b1 3
解得:
b1k1
1 -1
∴直线AD的解析式为y1=x-1.
如图,过点D作直线DM⊥直线 DA交抛物线于点M,
设直线MD的解析式为
y2=-x+b2,
把D(-2,-3)代入y2=-x+b2,得
b2=-5,
∴直线MD的解析式为y1=-x-5.
1
10 39
10
F( 1 , 39) 10 10
综上所述,.....
B
C
范例学习
例题1:如图,抛物线y =x2-2x-3与x轴交 于A(-1,0)、B(3,0),与y轴交于C(0,-3),且对称 轴为x=1.设点P为抛物线的对称轴x=1上的一动 点,求使∠PCB=90°的点P的坐标.
分析:设P(3,m),先 用两点间的距离公式表示 出PC2,PB2及BC2,程 有实数根,则存在;否则不 存在.
当PF⊥PB时,
∵点P(1,4.5)、B(4,0),
∴设直线PB的解析式为 y=-1,5x+6,
∴设直线PF的解析式为
y = 2 x + b, 3
把P(1,4.5)代入y=2/3x+b,得
b = 23,
∴根据题意6得:y
y = -x = 2x
抛物线中直角三角形存在性问题(勾股定理与K值法)
抛物线中直角三角形存在性问题(勾股定理与K值法)[例]已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x﹣5=0的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.【解答】解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,由于x1<x2,则有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).抛物线的解析式为:y=a(x+5)(x﹣1)(a>0),∴对称轴为直线x=﹣2,顶点D的坐标为(﹣2,﹣9a),令x=0,得y=﹣5a,∴C点的坐标为(0,﹣5a).依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE﹣OC=4a.S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC=(DE+OA)•OE﹣DE•CE﹣OA•OC=(2+5)•9a﹣×2×4a﹣×5×5a=15a,而S△ABC=AB•OC=×6×5a=15a,∴S△ABC:S△ACD=15a:15a=1:1.注:作铅垂线求S△ACD也是可以的(2)方法一:如解答图,过点D作DE⊥y轴于E在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,设对称轴x=﹣2与x轴交于点F,则AF=3,在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.∵∠ADC=90°,∴△ACD为直角三角形,由勾股定理得:AD2+CD2=AC2,即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=,∵a>0,∴a=,∴抛物线的解析式为:y=(x+5)(x﹣1)=x2+x﹣.方法二:(K 值法)结论1:直线1111:l y k x b =+与直线2222:l y k x b =+垂直⇔121k k =-; 结论2:点11(,)A x y 、22(,)B x y (12x x ≠)分别是直线:l y kx b =+上两个不同的点,则2121y y k x x -=-.(证明:11y kx b =+……①22y kx b =+……②, ②-①得,2121()y y k x x -=-,2121y y k x x -=-) 解:90932(5)3AD a a k a ---===----,9(5)42202CD a a a k a ----===---, ∵∠ADC =90°,∴1AD CD k k =-,即23261a a a -⨯=-=-,12a a ==. ∴抛物线的解析式为:y =(x +5)(x ﹣1)=x 2+x ﹣. 练习.已知抛物线c bx x y ++-=221与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,0).(1)求抛物线的解析式; (2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(3)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.。
第11讲 函数抛物线中的三角形
初三(上)数学第十讲 抛物线中特殊的三角形【知识梳理】一、重要基础知识回顾①抛物线顶点的坐标公式:( ),顶点为 。
②若抛物线与x 轴有两个交点A )0(1,x ,B )0,(2x ,AB=_________=__________. ③韦达定理:若)0(02≠=++a c bx ax 有两实根21,x x ,则_______________。
二、抛物线中的重要公式及应用1.抛物线交x 轴与A 、B 两点,与y 轴交于C 点,顶点为M ,△ABC 为直角三角形,则: AB=_______,并探索此时a 与c 的关系.2.第一类抛物线内接三角形的规律,当y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点,C 是顶点(利用含30°、45°角的直角三角形)可推导出以下结论: ①.当△ABC 是等腰Rt △时,△=_______;面积=_______. ②.当△ABC 是等边三角形时,△=_______;面积=______.③.当△ABC 是顶角为120°的等腰三角形时,△=_______;面积_______。
( 以上结论在填空、选择、探索性问题中比较简洁、高效。
有时在考试中甚至可做到“秒杀”。
)① ② ③3.一直线与抛物线交于A 、B 两点,在直线下方抛物线上有一动点C ,满足ABC S ∆面积最大值,时,有_________________。
☆4.探索:二次函数与等腰三角形、直角三角形的探索结合。
联想一次函数中等腰三角形、直角三角形的探索。
【典例解析】☆【知识随堂】1.二次函数y=x2-mx+m-2 图象与x轴交于A、B两点,与y轴交于点C点,M为顶点.(1)当m=________时,△AMB为直角三角形;(2)当m=________时,△AMB为正三角形;(3) 当m=________时,AB=3AM;(4) 若∠ACB=90°则m=________.2.设二次函数y=x2+2ax+3(a<0)的图象顶点为M,与x轴交点为A、B,当△ABM为等边三角形时,a的值为________。
与抛物线有关的两个重要三角形
与抛物线有关的两个重要三角形刘伟 重庆市北碚区江北中学(400714)二次函数是初等函数中最为重要的一个函数,其图象抛物线,进一步加强了代数与几何的联系,其中蕴含的数学思想和方法,对学生观察问题、研究问题、解决问题是十分有益的。
二次函数的图象抛物线与坐标轴交点构成的有关线段、三角形面积等代数与几何综合问题,是历年中考数学压轴题的重点和热点。
抛物线c bx ax y ++=2,当△=b 2-4ac >0时,抛物线与x 轴必有两个交点为)0,(1x A 、)0,(2x B ;当0=x 时,抛物线与y 轴相交于点C (0,c )。
设抛物线的顶点为P ,此时我们得到与抛物线有关的两个重要三角形:△ABC 与△ABP 。
那么这两个三角形的面积、形状与抛物线的系数a,b,c, 有怎样的内在联系呢?下面就此问题作如下探讨:一、关于△ABC∵抛物线与x 轴的两个交点为)0,(1x A 、)0,(2x B ,则02=++c bx ax 。
根据一元二次方程根与系数的关系有:ac x x a b x x =-=+2121, 所以A 、B 两点间的距离.4444)()(22222121221212aa acb a ac b a c a b x x x x x x x x AB ∆=-=-=⨯-⎪⎭⎫ ⎝⎛-=-+=-=-= 即 aAB ∆= …………………………………………(1) 这就是抛物线与x 轴的两个交点之间的距离公式。
而|OC|=|y c |=|c|, 所以S △ABC =.212121∆⋅=⋅∆⋅=⋅a c c a OC AB 即 S △ABC =.2∆⋅ac ……………………………………(2) 这就是抛物线与两坐标轴交点构成三角形的面积公式。
二、关于△ABP由抛物线的对称性可知,它的形状、大小由P ,A ,B 三点坐标确定。
由(1)知:aAB ∆=. 设D 是抛物线对称轴与x 轴的交点,则|PD|=|y p |=.4442aa b ac ∆=- 设∠PAB=α,在Rt △PAD 中,..4:,21242ααtg a a AD PD tg =∆∆=∆⋅∆==平方整理得 于是我们得到:①当α=600时,△ABP 为等边三角形,此时α24tg =∆02604tg ==12;②当α=450时,△ABP 为等腰直角三角形,此时α24tg =∆02454tg ==4。
抛物线中的三角形问题
抛物线中的三角形问题在数学中,抛物线是一种二次曲线,其形状类似于开口朝上的弧线。
抛物线与三角形之间有着紧密的联系,本文将探讨抛物线中的三角形问题。
一、抛物线的定义与性质抛物线是指平面上满足平方差关系的点的集合。
一般来说,抛物线可以由二次方程的图像表示,常见的抛物线方程形式包括标准型、顶点型等。
根据方程的不同形式,可以得到抛物线的不同性质,如焦点、顶点、对称轴等。
二、抛物线中的三角形问题抛物线与三角形之间存在着丰富的几何关系,其中一些经典问题如下:问题一:抛物线上的三点确定一个三角形,该三角形的面积如何计算?解析:设抛物线的方程为y = ax^2 + bx + c,并选取抛物线上三个点A(x1, y1)、B(x2, y2)、C(x3, y3)。
根据三点确定一个三角形,可以利用三角形的高度与底边长度来计算面积。
首先,我们可以通过求解方程组得到顶点的坐标(xv, yv) = (-b/2a, f(-b/2a)),其中f(x)是抛物线的函数。
然后,利用向量的几何性质,求出三角形的高度h,再计算底边长度d,最后利用面积公式S = 0.5 * d * h计算出面积。
问题二:给定一个抛物线和一个点P,如何确定在抛物线上选择两个点形成的三角形,使其面积最大?解析:设抛物线的方程为y = ax^2 + bx + c,设点P的坐标为(xp, yp)。
对于以点P为顶点的抛物线上的任意一条直线,其倾斜角为θ,直线的方程可以表示为y = tanθ * x + C,其中C是常数。
当直线与抛物线相交时,可将两个方程联立求解,得到交点的坐标(x1, y1)和(x2,y2)。
然后,利用这两个交点与点P形成的三角形面积公式S = 0.5 *|x1y2 - x2y1 - x1yp + xpy1 + x2yp - xpy2|,求解出最大的面积。
问题三:已知一个抛物线,如何确定两个定点,使其与抛物线上的另一个点形成的三角形周长最小?解析:设抛物线的方程为y = ax^2 + bx + c。
抛物线内接直角三角形的一个性质及应用
抛物线内接直角三角形的一个性质及应用抛物线内接直角三角形是几何学中一个重要的定理,它告诉我们:如果一个直角三角形的一个顶点在抛物线上,那么其它两个顶点的坐标也会在这个抛物线上。
本文将简要介绍抛物线内接直角三角形的定义、性质及其应用。
首先,抛物线内接直角三角形定义为:一个直角三角形,其中一个顶点在抛物线上,另外两个顶点也在抛物线上,且抛物线的准线和直角三角形的两条腰都相交。
因此,抛物线内接直角三角形的性质有以下三点:
1)直角三角形的一个顶点在抛物线上,另外两个顶点也在同一
条抛物线上;
2)抛物线的准线与直角三角形的腰相交;
3)抛物线内接直角三角形的面积小于等于抛物线面积的一半。
此外,抛物线内接直角三角形还有一些其它特性:抛物线内接直角三角形的高度等于抛物线的端点之间的距离;两点定理说明了任何一点到抛物线上的点的距离等于直角三角形的斜边的长度。
抛物线内接直角三角形有许多实际应用,其中最为重要的是在机械设计中,抛物线被用来设计螺旋形线路,使得机械运动更加均匀,减少了摩擦力,减少了损耗。
在建筑过程中,抛物线也被用来设计电梯的曲线,使其运行曲线十分柔和,降低了电梯的震动,减少了乘客的不适感受。
另外,抛物线内接直角三角形也被用于医学领域中的X 射线成像技术,使得X射线的扫描更加准确,精确诊断病症。
综上所述,抛物线内接直角三角形是几何学中一个重要的定理,它描述了三角形和抛物线之间的关系,它的定义、性质和应用在许多不同的领域中有广泛的应用,它能够减少摩擦力、降低震动,使X射线扫描更准确,为人类带来科学和技术上的进步。
抛物线中三角形面积最大值问题的解法攻略
抛物线中三角形面积最大值问题的解法攻略
抛物线中三角形面积最大值问题是很多数学教师都会遇到的问题。
求得抛物线中三角形面
积最大值,就先要分析抛物线的基本参数,因为抛物线是一种比较复杂的曲线,需要对其
有一定的了解才可以解答此问题。
抛物线的标准方程为y=ax2+bx+c,a为抛物线的系数,a>0,抛物线呈转弯向上,a<0,呈
转弯向下;b表示抛物线的开口方向,b>0,表示开口向右,b<0,表示开口向左。
因此,
得知抛物线在某一瞬间的顶点位置,以及抛物线的开口位置,就可以求出抛物线上三角形
的端点位置。
在定位了三角形端点位置后,只需要利用海伦公式就可以求出三角形面积:S=√[p(p-
a)(p-b)(p-c)]其中p=(a+b+c)/2,a,b,c分别为三角形的三边长。
最后,把求的所有的三角形面积按从大到小排列,那么最大的面积就是抛物线中三角形面
积最大值了。
抛物线中三角形面积最大值问题,要求求解者要完全把握和理解方程抛物线的特征,以及
三角形的基本定义,之后再结合海伦公式求出最大面积。
海伦公式和抛物线方程是相结合,那么广大教师和学生并不必对此感到困惑,只需要把这两个概念理解深入,就能在一定的
时间内得出满意的答案。
彭赛列闭合定理抛物线内三角形面积
彭赛列闭合定理抛物线内三角形面积彭赛列闭合定理是数学中的一个重要定理,它给出了一个关于抛物线内三角形面积的有趣结果。
这个定理的证明非常巧妙,但为了遵守要求,我将以一种生动的方式来描述它。
假设我们有一个抛物线,它的形状非常优美。
我们站在抛物线上的某个点上,放眼望去,可以看到一条直线,它穿过了抛物线,形成了一个三角形。
我们感到非常好奇,想知道这个三角形的面积是多少。
为了解决这个问题,我们需要运用彭赛列闭合定理。
这个定理告诉我们,如果我们从抛物线上的两个点出发,沿着抛物线的切线走到第三个点,然后再回到起点,这样形成的三角形面积是一个常数。
想象一下,我们站在抛物线上,向左走到一个点,然后沿着切线走到另一个点,再从那个点回到起点。
我们可以选择不同的点进行这个实验,每次得到的三角形都有相同的面积。
这就是彭赛列闭合定理的精髓所在。
这个定理的证明非常复杂,但它的结果非常有趣。
它告诉我们,无论我们选择抛物线上的哪两个点,最终得到的三角形面积都是相同的。
这个常数就是抛物线的焦距。
这个定理的意义深远。
它不仅在数学中有重要的应用,还在物理学、工程学等领域起着重要的作用。
它帮助我们理解抛物线的性质,为我们解决实际问题提供了一个强大的工具。
通过这个故事,我们可以看到彭赛列闭合定理的美妙之处。
它告诉我们,无论我们站在抛物线上的哪个点,我们总能找到一个三角形,它的面积是相同的。
这个定理不仅仅是一个数学定理,更是一个关于美的故事。
它让我们感受到了数学的魅力,也让我们对世界充满了好奇和探索的欲望。
无论我们是数学爱好者还是普通人,都可以从中体会到数学的魅力和美妙之处。
抛物线三角形面积最大值
抛物线三角形面积最大值抛物线三角形面积最大值,听起来有点高大上,其实就是个数学小问题。
不过,别急,咱们慢慢来聊聊。
想象一下,阳光明媚的一天,咱们在公园里,随便找块地方坐下,开始讨论这个看似复杂的概念。
抛物线,其实就是那种弯弯曲曲的线,像是个调皮的小孩在滑滑梯,突然又调转方向。
大家对它的第一印象就是在抛物运动里,什么篮球啊、飞盘啊都和它有关系。
其实它不仅在运动中显得风光,连数学问题也逃不过它的法眼。
抛物线与三角形又有啥关系呢?简单来说,如果我们把一条抛物线和一条直线搭配,嘿,立马就能形成一个三角形。
这种三角形的面积可是可以变化的,像气球一样,吹得大大小小,关键在于你怎么把那条直线放置在抛物线上。
这就引出了一个问题:怎么才能让这个三角形的面积达到最大呢?听起来是不是有点像在玩拼图?其实不然。
想象一下,咱们把那条直线横放,抛物线在下面摇摇晃晃。
面积的公式大家都知道,底乘高除以二,但这里的“底”和“高”可不是随便的数字。
这时候,你得考虑抛物线的形状,底边得在抛物线的顶点和两侧的交点之间,这样才能得到最大面积。
是不是听起来有点拗口,但别担心,继续往下走,你会发现其实很简单。
先把心放宽,咱们来设想一下。
你想象一下,有一个小朋友在画图,他用铅笔画了一个抛物线,心里琢磨着:“我能把这条直线放在哪儿,才能让这三角形看起来更大更漂亮?”聪明的小朋友自然会选择抛物线的最高点作为参考,这样就能最大化地利用那条直线和抛物线之间的空间。
真是个小天才,是吧?我们就能得出一个结论,三角形的面积最大值其实与抛物线的对称性有关。
就像咱们的生活,很多时候,保持平衡才能让一切顺利进行。
你看,无论是在生活中还是学习里,有时候简单的选择就能给你带来意想不到的结果。
没错,抛物线三角形的面积最大值,就是通过对称和巧妙的放置来实现的。
是不是觉得这个发现有点惊喜?再说到实际应用,虽然大家可能觉得这些数学公式离生活有点远,但其实它们可以用在很多地方。
抛物线中三角形面积最值问题的七种求解策略
图10的正切函数值,则问题便可逐步解决.解析在上找点£,使= 由外角定理,知•①易知直线S C 解析式为y-6.设 £(m ,m -6),由 fi (6,0),D (2, -8),则 B £2 = (m -6)' + (m -6)2, ED 2 = (m - 2)2 + (m + 2)2.由 B £ = £7),知(;n -6)2 +(m -6)2 = (m -2)2 +(m + 2)2,解得 m =|,即 £(夺,-爭)•又易知 C £>2 + fiC 2 = fi /)2,则乙BCD = 90。
.qi n由 C (0, -6),£(|■,-$),Z )(2, -8),知 CD =2^",C £=^,P J lain^CED = j .②由①②和 A C(?B = 2 A CflD ,则 tan Z _ C(?B =当点<?在点B 左侧时,(),( -8,0).当点<?在点B 右侧时,(?2(8,0).综上,(?( -8,0)或(8,0).从上面题目的解答可以发现:抛物线中角的存在 性问题,一般运用角的特殊性及坐标条件构造基本图形,并运用图形的性质,进行推理得出有关相等线段, 并表示出有关点的坐标,代入二次函数或一次函数的 解析式,或运用勾股定理计算作答.在解答过程中,既 要构造几何图形,根据几何直观和几何性质、定理理性分析、推理,还要运用函数与方程知识进行计算和 数据分析.综合运用几何推理、函数与方程思想等多 方面技能,有较强的综合性及创新探究意识,可以很 好地考查学生的综合素养[2].“问题是数学的心脏”,数学的真正组成部分是问 题和解,在学习过程中,在一定学习范围或主题内,围 绕一定目标或某一中心问题,按照一定的逻辑结构精 心设计一组问题,即为“一题多问”,采用“一题多问” 的方式,用同一道题目将多个知识点表现出来,可以 帮助学生梳理旧知,形成网络,将数学技能及方法得 以综合运用.“一题多问”引导学生从不同角度、不同 方位进行不同层次的思考,提高学生分析问题、解决 问题和提出问题的能力,可以让学生跳出“题海”,提 高解题效益,提升数学素养.参考文献:[1 ]罗峻,段利芳.一次函数与反比例函数图象相交的性质 之证明与运用[J ]•数理化学习(初中版),2018(12) :23 -28.[2]罗峻,段利芳.当完美正方形偶遇美丽的45度角[J ]. 理科考试研究(初中),2019,26(22) :29 -32.(收稿日期:2020 -09 -21 )抛物线中三角形面积最值问题的七种求鮮策略段昆山(易县教育局教研室河北保定074200)摘要:以二次函数为栽体,结合几何图形求面积最值问题具有难度大、综合性强,区分度高的特表.本文以某地初 三上学期期末考试试卷最后一题为例,谈一谈此类问题的七种求解策略.关键词:最值问题;转化;面积;求解策略纵观近年各地中考试卷,以二次函数为载体,结 合几何图形求面积最值问题的题型是各地中考的高 频考点之一.这类试题综合运用多种数学思想方法, 不仅考查了二次函数与三角形面积的相关知识,又为后续学习高中知识奠定了基础.1试题呈现题目如图1,在平面直角坐标系中,抛物线y = <M c 2 +心+2(a #0)与.t 轴交于两点(点4在点B作者简介:段昆山(1976 -),男,河北保定人,本科,中学一级教师,研究方向:数学教育.的左侧),与y 轴交于点C ,抛物线经过点£»(- 2,- 3) 和点£(3,2),点P 是第一象限抛物线上的一个动点.(1) 求抛物线的表达式;(2) 当A B P C 的面积取最大值时,求A fiP C 面积 及点P 的坐标.2试题解析 2. 1第(1)问解析将点A £的坐标代人函数表达式,得丄_ 了,3_r故抛物线的表达式为y +2.2.2第(2)问解析 2. 2. 1分割法三角形面积通常用面积公 式(底乘髙的一半)来求,在平面 直角坐标系中求斜三角形的面 积用这个公式难度大,那如何求 呢?那就需要运用转化的方法 把斜三角形分割成底与高分别 与坐标轴平行的三角形,充分利用定点的横纵坐标来求三角形面积•如图2,过点P 作丄;c 轴于点F ,A fiP C 被分 割成两个三角形,即A //P C 和所以SA B P C =S 娜c + SAW ,过点C 作C Z )丄/^于点Z ),过点B 作BE _L PF 于点 E ,S A H P C =夸PH x CD.解法1如图3,连接S C ,过点P 作W ///y 轴交S C 于点//,将点C ,S 代入一次函数表达式,可得直线的表达式为y = -+ 2.设点 P U ,+如 +2),则点+2).所以 S A P C B =-%2 +4%.f 4a -2b +2 =-3, 19a +36+2=2,解得,根据二次函数性质,利用配方法,当* = 2时, S apm 的最大值为4.故当A B P C 的面积取最大值时,点P (2,3),S A P C B 二 4.2.2.2补形法在平面直角坐标系中求斜 三角形的面积不仅可以运用分 割法,也可以转换思路,用补形 的方法把不规则图形转化成规 则图形,将斜三角形面积转化 成矩形面积减去三角形的面 积,再充分利用定点的横纵坐标,就可以求斜三角形面积了 • 图4如图4,过点P 作轴,垂足为点£,过点5作 fiZ )丄/)£,垂足为点£»,贝丨J 四边形为矩形•所以S APCB = S 酿形OBOE - S A P E (: 一 S APDB _ S a (X b .解法2如图5,过点P 作轴,垂足为点£,过点B 作丄/)£;,垂足为点/),所以四边形 OBD £为矩形.所以 s A PC b 二 S 四边形〇B D e : — S A P E (: - S _ s A 0C B 二(-+ ^-x + 2) x 4 - (- -^-x2 + -^-x ) x x x ~y - (4-x) x (- ~^x2 ++ 2) x -^--4=-x ~+ 4x.根据二次函数性质,利用配方法,当x =2时,^ A P C B的最大值为4.故当A B P C的面积取最大值时,点P(2,3),■5而=4_2.2.3铅垂法如图6,过A P S C的顶点分别作出水平线的垂线, 外侧两条垂线间的距离叫做水平宽.中间的垂线与 S C相交于点£,线段就叫做铅垂高.如图7,因为S apcb=S A peb+S&PCE二y PE x EU +j PE x EF =所以铅垂法本质上也是分割法.,铅垂高I图7解法3如图8,过点P作P//丄;c轴交B C于点//,设点 ,-+ 2),则点 //(x,+ 2)•所以11,312^apcb =^2^~^2X+Y"x+2+y*-2)x4=-x+4x.在直线B C上.根据平行线间的距离相等,所以ABPC 和A B fiC的高相等,底是BC.所以厶B P C和A B//C的面积相等.求A B P C的面积就转化成求A//£C的面积.解法4如图10,过点Z3作户////沉交7轴于点 所以 S&P C B= S A C H B-将点c,B代人一次函数表达式,可得直线C B的表达式为y= - 士;':+ 2.因为W///S C,所以设直线P//的表达式为y根据二次函数性质,利用配方法,当x= 2时,S apos的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.4平行线法如图9,W///B C,点//,P在直线W/上,点5,CH E P设点户(%,- y i2 + y x+ 2),所以-2 =-—x +b,b22+ ~z~x + 2 + ~z~x2,//C=-y^2+2x+2-2TT22x.x2 +2x+PJflll S A P C B = ^H C xOB =-x2-t-4x.利用配方法,当x= 2时,S A P(:iB的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.5相似法如图11,求三角形的面积可以用面积公式足为点D.所以BC= VOC2 + OB2 = 7^5.求三角形的 面积只要求出高就可以了.高如何求呢?我 们仔细观察图形发现丄SO,所以™//y轴.所以 APHC= AOCB•因为P E±B C,所以 APEH=厶COB.所以ABOC w•所以g = I I所以= PH^~° .这样就可以求出高了.解法5如图12,过点P作丄BC,垂足为点 £,PD丄50交 SC 于点 由题意,5C= VOC1+ OB2 = 2/5 ,APEH^ABOC.m i0BPH = BC'因为+ 2x,PE PH x BOBC¥(-士解法6如图13,过点P作P£//fiC,因为将点C,B代入一次函数表达式,同理可得直线C Z?的表达式为;^=-士尤+2.所以设直线的表达式为y=-+ 6.1,j=- y x + b-H i2+3+2y= - ~z~x+ ~zrx+1.1/22整理,得-士尤2 +~|~尤+2=-士a:+ 6 一士丨2 +2% +2-6=0.所以 A =4-4 x(-士)x(2 -6) =8 -26 =0.解得6=4_所以点P(2,3),A P C fi最大值为4 .2.2.7中点法如图14,设直线S C与抛物线交于B,C两点,直线B C的解析式可设为y= ^+ n,抛物线解析式可设为y= m2 +心+ C,求其交点坐标就是联立两解析式’所以 ax2 + + c = n w c + n_ 整理,得[y= mx+ n.ax2+ (b- m)x+ c- n= 0. fffVJs x, + x2 = ——因为直a%2 +2a〇,所以 S A P C fl =^^(-士尤2 +2幻x2V^x士 =-x2 + 4x.利用配方法,当* =2时,S A P efl的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB-4-2.2.6切线法如图13,若使点P在抛物线上,S A P eB最大,则需 使P£//BC,且与抛物线有且只有一个交点才能使心^8最大.因为底B C确定,只要高最大.因为点P 在抛物线上与抛物线有且只有一个交点时,SC 边上的高才最大.线B C平移到与抛物线只有一个交点时,七即& = 也就是%所以过点P作*轴的垂线,垂足M是O S的中点.所以当抛物线被直线 B C所截,P为抛物线上一动点(此时点P为线段SC 与抛物线所组成的封闭图形上抛物线上一点)丄%轴于点m,交s c于点yv,当点yv为b c中点时,s APC8 的面积有最大值.解法7如图15,过点尸作P////S C,所以& = X B+X C^所以点P 坐标为(2,3).所以=S 四边形"W /Y ;+ S APMB ""SA O R Cx (2+ 3) x 2+冬 x 2x 3_4-x 2x 4=4.' 2 2此法适用于填空、选择或验证.3感悟解法这一类以二次函数为载体,结合几何图形求面积最值问题的题型涉及的知识面多、难度大、综合性强, 要想顺利解答此类问题,必须抓住以下几点.(1)立足转化,抓住动点(设动为定).合理构造辅助线,以转化 思想为基本出发点,抓住动点,根据不同思路过动点 作平行,或作垂直等辅助线,把复杂问题转化为简单问题,把未知问题转换为已知问题.(2)数形结合,设 出动点坐标.充分挖掘已知条件与隐含条件,要明确 角边在数量关系变化中哪些是保持不变的量,哪些是 变化的量.哪些是变化的量.这需要在充分理解的基 础上,进行多方位思考、多角度着手、多层次探索m , 利用相似、面积公式、根与系数的关系等知识,表示出相关的数量关系.(3)根据相关的数量关系,把面积表示成一个含有某未知量的二次函数关系式,然后利用 公式法或配方法求出最值.参考文献:[1] 段昆山.构造图形求准确数形结合找临界一•一类“儿何”型新定义压轴题解法浅析[J ].中学数学教学,2020(01) :79 -80.[2]周威.圆锥曲线中几个特殊三角形面积最值问题探究[J ].理科考试研究,2020(09) :25 - 27.(收稿日期:2020 _08-15)指向“深度学习”的教学课壹教学策略李娜沈南山(合肥师范学院数学与统计学院安徽合肥230601)摘要:从认知结构观点来看,“深度学习”是一种理解性的学习,注重学习思维的批利性、学习内容的整合性、知识体系的建构性和知识学习的迁移性.指向深度学习的数学课堂教学需要深入追问学什么、怎么学、学得怎么样三个教 学本源问题,其教学策略应当注重数学知识对象的多重表征、数学学习脚手架的适时搭建、数学学习问题的逻辑引领、 数学学习方法的积极反思等.关键词:初中数学;深度学习;教学策略1 “深度学习”的基本特征“深度学习”(Deep Learning )最早由美国学者 Marlon 等人于1976年提出的一个比较性学习概念, 是相对于孤立记忆和非批判性接受知识的浅层学习 (Surface Learning )而言的.随后国内外学者对“深度 学习”开展理论与实践研究,其基本内涵是在教师引 领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程,并 在这个过程中学生掌握学科的核心知识,理解学习的 过程,把握学科的本质及思想方法,形成积极的内在 学习动机、高级的社会性感情、积极的态度、正确的价 值观等m .“深度学习”的基本特征蕴含理论和实践两个层 面.理论上,从知识结构观点来看,深度学习是基于学基金项目:合肥师范学院研究生创新基金项目“深度学习理念下初中数学课堂问题提出的教学实践研究”(项目编号:2020yjs 033).作者简介:李娜( 1995 -),女,安徽阜阳人,硕士研究生,研究方向:数学教育;沈南山(1964 -),男,安徽六安人,博士,教授,研究方向:数学课程与教学论研究.。
抛物线中的等腰三角形课件
性质3
等腰三角形的对称轴是其底边 的中垂线。
等腰三角形的判定定理
01
02
03
判定定理1
若一个三角形有两个角相 等,则这两个角所对的边 也相等,即该三角形为等 腰三角形。
判定定理2
若一个三角形的中线和高 线重合,则该三角形为等 腰三角形。
判定定理3
若一个三角形的一边垂直 于另一边,且垂足是该边 的中点,则该三角形为等 腰三角形。
疑难
如何快速确定等腰三角形的存在。
解析
除了按照判定定理逐步进行外,还可以通过观察法、 数形结合法等方法快速判断。在实际操作中,可以结合 图像和计算,更直观地得出结论。
05
CATALOGUE
典型例题与练习题
典型例题解析
例题1
给定抛物线y = x^2和点A(1,1),在抛物线上找两 点B、C,使得三角形ABC为等腰三角形。
等腰三角形的顶角平分线、中线以及高 线三线合一,这条线同样与抛物线的对 称轴重合。
性质
由于抛物线本身的对称性,所以等腰三 角形的两个底角相等。Βιβλιοθήκη 抛物线中等腰三角形的判定方法
方法一
利用定义判定。若抛物线内一三角形满足两腰相等,且底边 与抛物线对称轴平行,则此三角形为抛物线中的等腰三角形 。
方法二
利用性质判定。若一三角形在抛物线中满足两个底角相等, 且顶角平分线、中线以及高线三线合一,并与抛物线的对称 轴重合,则此三角形为抛物线中的等腰三角形。
2. 找两个与对称轴平 行的线,使得这两条 线到抛物线的距离相 等。
3. 确定这两条线与抛 物线的交点,以及抛 物线的顶点。这三个 点构成的三角形即为 等腰三角形。
如何求解抛物线中等腰三角形的参数
抛物线的焦点三角形面积公式
抛物线的焦点三角形面积公式抛物线的焦点三角形面积公式是一个有趣的几何学概念,它可以用来计算抛物线上任意三点所组成的三角形的面积。
抛物线是一类曲线,当这类曲线经过一定变换后,它们的焦点就会凸显出来。
在抛物线上任意三点A,B,C所组成的三角形ABC的面积,可以用下面的抛物线的焦点三角形面积公式来计算:面积S=1/4[(AB²+AC²+BC²)-2(AB.AC+AB.BC+AC.BC)]其中,AB、AC、BC分别表示三角形ABC的三条边长度,AB.AC、AB.BC、AC.BC分别表示三边长之间的点乘积。
抛物线的焦点三角形面积公式可以帮助我们计算出抛物线上任意三点所构成的三角形的面积,而不需要求出抛物线的方程,这个公式比较简单,如果我们了解了它的原理,就可以很容易地计算出抛物线上任意三点所构成的三角形的面积。
抛物线的焦点三角形面积公式的原理是:如果抛物线上任意三点所构成的三角形的面积,其面积可以由抛物线的方程来求解,而抛物线的方程可以采用下面的标准形式:y=ax²+bx+c其中a,b,c是抛物线的方程中的常数。
假设抛物线上任意三点A(x1,y1)、B(x2,y2)、C(x3,y3),则把抛物线的方程代入,可以得到:y1=ax12+bx1+cy2=ax22+bx2+cy3=ax32+bx3+c这三式子可以组成一个三元二次方程组,可以求解出a,b,c的值,然后将a,b,c的值代入抛物线的面积公式,即可求出抛物线上任意三点所构成的三角形的面积。
因此,抛物线的焦点三角形面积公式的原理是:利用抛物线的方程求解出a,b,c的值,然后将a,b,c的值代入抛物线的面积公式,即可求出抛物线上任意三点所构成的三角形的面积。
总之,抛物线的焦点三角形面积公式是一个有趣的几何学概念,它可以用来计算抛物线上任意三点所组成的三角形的面积。
它的原理是:利用抛物线的方程求解出a,b,c 的值,然后将a,b,c的值代入抛物线的面积公式,即可求出抛物线上任意三点所构成的三角形的面积。
抛物线焦点三角形面积公式二级结论
抛物线焦点三角形面积公式二级结论好的,以下是为您生成的文章:在咱们学习数学的过程中,抛物线可是个常客。
而其中关于抛物线焦点三角形面积公式的二级结论,那更是隐藏在知识丛林中的宝藏。
先来说说什么是抛物线焦点三角形。
它呀,就是以抛物线的焦点和抛物线上的两点为顶点组成的三角形。
这听起来有点抽象,咱们举个例子。
就像有一次,我在课堂上讲这个知识点,看到同学们一脸懵的样子,我就决定用一个简单的例子来帮大家理解。
假设抛物线方程是 y² = 2px(p>0),焦点是 F,抛物线上有两点A(x₁,y₁),B(x₂,y₂)。
我们设直线 AB 的倾斜角为θ。
这时候,这个抛物线焦点三角形的面积公式就登场啦!它的面积 S= p² / (2sinθ) 。
有的同学可能会问,这公式咋来的呀?别着急,咱们慢慢捋一捋。
我们先通过抛物线的定义,把焦点和抛物线上的点的关系搞清楚。
然后利用三角函数和一些几何关系,经过一系列的推导就能得出这个公式。
这个公式在解决一些问题的时候,那可真是太好用啦!比如说,给你一个具体的抛物线方程,让你求某个焦点三角形的面积,直接把相关的数据代入这个公式,答案很快就能算出来。
还记得有一次考试,就有这么一道题,很多同学都用常规方法在那苦苦计算,花费了大量的时间。
但是有几个同学用了这个二级结论,很快就得出了答案,节省了不少时间,最后成绩也很不错。
所以说呀,掌握这个二级结论,就像是在数学的战场上拥有了一件秘密武器,能让我们在解题的时候更加得心应手。
但是同学们要注意哦,不能死记硬背这个公式,得理解它的推导过程,这样才能真正地掌握它,灵活运用。
希望大家在学习抛物线焦点三角形面积公式这个二级结论的时候,都能轻松拿下,让数学成为我们的好朋友,而不是可怕的大怪兽!。
抛物线中焦点弦与原点围成的三角形面积
抛物线中焦点弦与原点围成的三角形面积要计算抛物线中焦点弦与原点围成的三角形的面积,需要先找到抛物线的焦点坐标。
抛物线的方程可以表示为:y=ax^2,其中a为常数。
焦距的定义为p=2a,焦点的坐标为(F,0)。
根据焦点的性质,可以得到焦点的横坐标F=p/2a=1/(4a)。
现在,我们需要找到焦点弦的方程。
由于焦点弦与原点围成的三角形,我们可以将焦点弦表示为y=kx,其中k为斜率。
将弦的方程y=kx和抛物线的方程y=ax^2联立,得到方程ax^2kx=0。
为了找到焦点弦的两个交点,需要将方程ax^2kx=0转化成二次方程,并求解其根。
对方程ax^2kx=0使用求根公式,可以得到两个解x1和x2:x1=0,x2=k/a。
因此,焦点弦与抛物线的交点坐标为(0,0)和(k/a,k),其中k 为任意非零实数。
现在,我们可以计算焦点弦与原点围成的三角形的面积。
三角形的底边长为原点到焦点弦的距离,即x轴上的坐标差值:D=|F0|=F=1/(4a)。
三角形的高为点到直线的距离,即点(0,0)到焦点弦的距离,使用点到直线的公式:d=|ax+by|/√(a^2+b^2),其中直线的一般式方程为ax+by=0。
将焦点弦的方程y=kx代入直线的一般式方程,可以得到bkx=0,即b=kx。
将坐标点(0,0)代入点到直线的公式,可以得到d=|by|/√(a^2+b^2)=|kxy|/√(a^2+k^2)。
此时,我们可以计算出三角形的面积S为底边乘以高的一半:S=1/2*D*d=1/2*(1/(4a))*(|kxy|/√(a^2+k^2))。
最后,我们得到了抛物线中焦点弦与原点围成的三角形的面积公式:S=1/(8a√(a^2+k^2))*|kxy|。
注意:这个公式对于所有非零实数k和常数a都成立,其中k为焦点弦的斜率。
中考数学复习总结探究抛物线中特定三角形的存在性问题
探究抛物线中特定三角形的存在性以抛物线为载体、满足某种条件的几何图形是否存在的问题,是中考的热点和难点.解决这类问题的关键是,弄清函数与几何图形之间的联系,在解题过程中将函数问题几何化,几何问题数量化,数形统一,同时要学会将大题分解为小题,各个击破,本文选取“抛物线中特定三角形的存在性”为例,说明这类问题的解题策略.一、抛物线中等腰三角形的存在性例1(湖南湘西州中考题)如图1,已知抛物线y =-14x 2+bx +4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点坐标为A (-2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求C 点坐标,连结AC 、BC 并求线段BC 所在直线的解析式;(3)试判断△AOC 与△COB 是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形,若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.解 (1)易得抛物线解析式为配方得,y =()2125344x --+, 所以对称轴方程为x =3;(2)在213442y x x =-++中,令x =0, 则y =4,所以点C(0,4).令y =0,则2134042x x -++= 解得x 1=8,x 2=-2,∴A (-2,0),B(8,0).设直线BC 的解析式为y =kx +b ,把B(8,0),C(0,4)的坐标分别代入解析式,解得直线BC 的解析式为142y x =-+; (3) △AOC ∽△COB .理由:在△AOC 与△COB 中∵OA =2,OC =4,OB =8, ∴2141,4282OA OC OC OB ==== ∴OA OC OC OB =.又∠AOC =∠BOC =90°,∴△AOC ∽△COB ;(4)因为抛物线的对称轴方程为x =3,Q 点在对称轴x =3上,如图2.点评 本题点的移动贯穿始终,其中对于等腰三角形的确定需要分类讨论,在具体求点Q 坐标时,还要充分注意图形的几何特点,利用数形结合思想.二、抛物线中的直角三角形的存在性例2 (广州市中考题)如图3,抛物线y =-38x 2-34x +3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E(4,0),M 为直线l 上一动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 解析式.解 (1)A (-4,0),B(2,0)(过程略);(2)因为抛物线y =-38x 2-34x +3的对称轴为x =-1, 与y 轴交点C 的坐标为(0,3),所以直线AC 的解析式为y =34x +3.且当x =-1时,有y =94,所以直线AC 与对称轴x =-1的交点H 的坐标为(-1,94). 因为AB =6,CO =3,所以△ACB 的面积为,S △ACE =9.不妨设点D 的坐标为(-1,m ),如图4,则△ACD 的面积为S △ACD =12×DH ×AO =9.当点D 位于AC 上方时,DH =m -94, 代入解得m =274; 当点D 位于AC 下方时,DH =94-m , 代入解得m =-94.所以点D 的坐标为 (-1,274),或(-1,-94) (3)如图5,以AB 为直径作⊙P ,当且仅当直线l 与⊙P 相切时符合题意.因为Rt △PME 中,∠PME =90°,PM =3,PE =5,所以由勾股定理,可得ME =4.利用三角形相似可以求得点M 的坐标M (45,125) 设直线l 的解析式为y=kx+b ,代入M (45,125),E(4,0),解得 4125540k b k b ⎧+=⎪⎨⎪+=⎩,即343k b ⎧=-⎪⎨⎪=⎩ 所以直线l 的解析式为y =-34x +3 同理可得直线l 的另一个解析式为y =34x -3. 点评 此题借助于几何图形的知识考查函数的综合应用,这是初中阶段的重点,解答这类题型时要注意数形结合、综合分析思考,第3问具有较高的区分度,对学生的能力要求特别高,学生必须具有较强的观察能力、分析能力和综合运用知识的能力.三、抛物线中相似三角形的存在例3 (山东日照中考题)已知,如图6,抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,128x x-=.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;(3)如图7,点Q为弧EBF上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.(2)如图8,由抛物线的对称性可知:AD=BD,△ADB为等腰三角形.若在抛物线对称轴的右侧图象上存在点P,使△ABP与△ADB相似,必须有∠BAP=∠BPA=∠BAD.设AP交抛物线的对称轴于D’点,显然同理可说明在对称轴左边的抛物线上也不存在符合条件的P点.所以在该抛物线上不存在点P,使得与△PAB与△ADB相似;点评解决存在性问题的基本思路是:先假设存在,然后根据问题的已知条件去探索,但对于按部分条件得出的结论,还需要验证是否满足题目的全部要求.。
抛物线焦点三角形的面积公式
抛物线焦点三角形的面积公式
1、有一边在坐标轴上:S=1/2xa-xb×yc,有一边与坐标轴(x轴)平行:S=1/2xa-xb×yc-ya。
(得出结论)
2、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。
它有许多表示方法,例如参数表示,标准方程表示等等。
它在几何光学和力学中有重要的用处。
抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。
(原因解释)
3、抛物线在合适的坐标变换下,也可看成二次函数图像。
(内容延伸)抛物线焦点三角形面积公式
P²/2Sina。
任意抛物线焦点F作抛物线的弦,与抛物线交于A、B两点,分别过A、B两点做抛物线的切线l1,l2相交于P点。
那么△PAB称作阿基米德三角形。
该三角形满足以下特性:
1、P点必在抛物线的准线上
2、△PAB为直角三角形,且角P为直角
3、PF⊥AB(即符合射影定理)
另外,对于任意圆锥曲线(椭圆,双曲线、抛物线)均有如下特性
抛物线焦点三角形面积公式
焦点三角形面积=b*b*tan(r/2)(其中b为短半轴长,r表示椭圆周角)设焦点为f1,f2,椭圆上任意点为a,设角f1af2为角r推导方式是设三角形另外一点是a,af1+af2=2aaf1向量-af2向量=f2f1向量。
两式都两边平方再整理得mn=2b^2/(1-cosa)(0度可以不考虑)面积就是1/2mnsina,把上面带入即得。
{注:m,n为af1和af2的长}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
III.QP=QB
P E Q 45°
(4,4)
微探究1——抛物线与等腰三角形
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当
△PQB为等腰三角形时,求m的值。
I.PB=PQ
II.BP=BQ
III.QP=QB
(4,4) F
45°
微探究2——抛物线与直角三角形
例2:如图,在平面直角坐标系中,己知抛物线
y x2 5x 过A(5,0),B(4,4).
在抛物线上找一点M, 使△MBO是直角三角形,其中 M的横坐标为m,求m的值.
B(4,4)
O
y x2 5x
y
x
M
MD
y x2 5x y x 8
E
PM
Q(4,4)
E
ቤተ መጻሕፍቲ ባይዱ
OP QM MP QB
M
m2 5m -( 4 m )
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当
△PQB为等腰三角形时,求m的值。
I.PB=PQ
II.BP=BQ
III.QP=QB
(4,4)
45°
微探究1——抛物线与等腰三角形
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当
△PQB为等腰三角形时,求m的值。
I.PB=PQ
II.BP=BQ
中考一轮复习
抛物线中的三角形
回顾:
例1:如图,在平面直角坐标系中,己知点O(0,0),A (5,0),B(4,4)。
(1)求过O、B、A三点的抛物线的解析式;
(2)在线段OB上方的抛物线上存在点M,使以O、A、B、
M为顶点的四边形面积最大,求点M的坐标。
M
(4,4)
y x2 5x
N
微探究1——抛物线与等腰三角形
y
y
Q N (0,3) P1
OA
Mx
P2 N Q
AO
Mx
例4:如图,已知二次函数的图象过点O(0,0), A(4,0),B(2,﹣ 4 33),M是OA的中点. (1)求此二次函数的解析式;
(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交 于另一点Q,要使四边形PQAM是平行四边形,求P点的坐 标;
F
m -(m2 5m 4)
例3:如图,在平面直角坐标系中,顶点为M的抛物线
y ax2 bx(a 0) 经过点A和x轴正半轴上的点B ,
AO=OB = 2, AOB 120 .
(1)求这条抛物线的表达式;
(2)连接OM ,求 AOM 的大小;
y
A
1,3
G
y 3 x2 2 3 x
3
3
N
O
B
x AOM 150
M (1,- 3 ) 3
微探究3——抛物线与相似三角形
(3)如果点C在 x轴上,且△ABC 与△AOM 相 似,求点C的坐标.
y
1ABC AOM
1,3A
DO
30° 150°
B
M(1,-
3) 3
x
C
(3)如果点C在 x轴上,且△ABC 与△AOM 相 似,求点C的坐标.
y 3 x2 4 3 x
3
3
N
(1, 3 )
(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线 OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方 部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点 D.若△CDA的面积是△MDA面积的2倍,这样的点C是否 存在?若存在求出C点的坐标,若不存在,请说明理由.
y
2CBA AOM
1,3A
DO
30° 150°
B
M(1,-
3) 3
x
C
微探究3——抛物线与相似三角形
例4:已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1), 直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、 y轴分别交于点M和N.若线段MP与PN的长度之比为3:1, 试求抛物线的函数关系式。