选修课策略数学模型

选修课策略数学模型
选修课策略数学模型

选课策略数学模型

本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。

特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。

模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。

模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。

模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。

一.问题的重述

某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。

如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?

二.模型的假设及符号说明

1.模型假设

1)学生只要选修就能通过;

2)每个学生都必须遵守规定;

2. 符号说明

1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);

三.问题分析

对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;

对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;

对于问题三,同时考虑两者,所占权重比一样,建立模型三;

四.模型的建立及求解

模型一

目标函数:

min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9)

约束条件:

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

模型的求解:

输入:

min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9;

);

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:

Global optimal solution found.

Objective value: -2.800000

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost

X1 1.000000 -0.8000000

X2 1.000000 -0.5000000

X3 1.000000 -0.5000000

X4 1.000000 -0.2000000

X5 1.000000 -0.5000000

X6 1.000000 -0.2000000

X7 1.000000 0.1000000

X8 0.000000 0.1000000

X9 1.000000 -0.2000000

Row Slack or Surplus Dual Price

1 -2.800000 -1.000000

2 3.000000 0.000000

3 1.000000 0.000000

4 2.000000 0.000000

5 0.000000 0.000000

6 0.000000 0.000000

7 0.000000 0.000000

8 0.000000 0.000000

9 1.000000 0.000000

10 0.000000 0.000000

1.模型二:

目标函数:

min z=x1+x2+x3+x4+x5+x6+x7+x8+x9

约束条件:

X1+x2+x3+x4+x5>=2

X3+x5+x6+x8+x9>=3

X4+x6+x7+x9>=2

2*x3-x1-x2<=0

x4-x7<=0

2*x5-x1-x2<=0

x6-x7<=0

x8-x5<=0

2*x9-x1-x2<=0

模型的求解

本文运用lingo运算球的结果:

输入

min=x1+x2+x3+x4+x5+x6+x7+x8+x9;

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9);

输出:

Global optimal solution found.

Objective value: 6.000000

Extended solver steps: 0

Total solver iterations: 1

Variable Value Reduced Cost

X1 1.000000 1.000000

X2 1.000000 1.000000

X3 1.000000 1.000000

X4 0.000000 1.000000

X5 0.000000 1.000000

X6 1.000000 1.000000

X7 1.000000 1.000000

X8 0.000000 1.000000

X9 1.000000 1.000000

Row Slack or Surplus Dual Price

1 6.000000 -1.000000

2 1.000000 0.000000

3 0.000000 0.000000

4 1.000000 0.000000

5 0.000000 0.000000

6 1.000000 0.000000

7 2.000000 0.000000

8 0.000000 0.000000

9 0.000000 0.000000

10 0.000000 0.000000

模型三:

目标函数:

Max W=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;

约束条件:

X1+x2+x3+x4+x5>=2

X3+x5+x6+x8+x9>=3

X4+x6+x7+x9>=2

2*x3-x1-x2<=0

x4-x7<=0

2*x5-x1-x2<=0

x6-x7<=0

x8-x5<=0

2*x9-x1-x2<=0

x1+x2+x3+x4+x5+x6+x7+x8+x9=6

运用lingo解题:

输入:

max=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

x1+x2+x3+x4+x5+x6+x7+x8+x9=6;

@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9);

输出:

Global optimal solution found.

Objective value: 22.00000

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost

X1 1.000000 -3.000000

X2 1.000000 -2.000000

X3 1.000000 -2.000000

X4 0.000000 -1.000000

X5 1.000000 -2.000000

X6 1.000000 -1.000000

X7 1.000000 0.000000

X8 0.000000 0.000000

X9 0.000000 -1.000000

Row Slack or Surplus Dual Price

1 22.00000 1.000000

2 2.000000 0.000000

3 0.000000 0.000000

4 0.000000 0.000000

5 0.000000 0.000000

6 1.000000 0.000000

7 0.000000 0.000000

8 0.000000 0.000000

9 1.000000 0.000000

10 2.000000 0.000000

11 0.000000 2.000000

五.结果的检验与分析

经过检验输入式子正确,结果多次验证一样。结果分析:

模型一分析:模型一的结果为x1=x2=x3=x6=x7+x9=1即选修编号为1,2,3,6,7,9的选修课时达到了,在选修课的课程最少。最少为6门。

模型二分析:模型二的结果为x1=x2=x3=x5=x6=x7=1即选修编号为1,2,3,5,6,7的选修课时达到了,在选修课程最少的情况下,尽可能的分数最多,最多为22学分。

模型三分析:课程数与学分数按权重三七分,结果为x1+x2+x3+x4+x5+x6+x7+x9=1即只有编号为8的不用选修,共28学分。

六.模型的评价与推广

本文运用了0-1规划解决了学修课选择的难题,但是还没有建立满足不同需要的学生,还需要进一步的建立模型和计算。如建立以学分最多为目标的模型,或建立以课程数和学分数等权重的模型。解决不同的问题。

七.参考文献

【1】刘峰葛照强,数学建模,南京大学出版社,2005年

【2】何勇杨启帆谈之奕,数学建模,浙江大学出版社,2005年【3】姜启源谢金星叶俊,数学模型,高等教育出版社,2003年8月【4】王庚实用计算机数学建模,安徽大学出版社,2000年

数学建模 个人认识和心得体会

数学建模的体会思考 经过这段时间的学习,了解了更多的关于这门学科的知识,可以说就是见识了很多很多,作为一个数学系的学生,一直都有一个疑问,数学的应用在那里。对了,就在这里,在这里,我瞧到了很多,也学到了很多,关于各个学科,各个领域,都少不了数学,都就是用建模的思想,来解决实际问题,很神奇。 数学建模给了我很多的感触:它所教给我们的不单就是一些数学方面的知识,更多的其实就是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力与量化分析能力得到很好的锻炼与提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 数学模型主要就是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活与工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产与销售的最优方案……这些问题与建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往就是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被您把握,它就转化成了您自身的素质,不仅在您以后的学习工作中继续发挥作用,也为您的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不就是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习与查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不就是任何专业中都能涉猎得到的。它能极大地拓宽与丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习就是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来瞧,我们都就是直接受益者。就拿数学建模比赛写的论文来说。原本以为这就是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决问题,凭我们现有的知识根本不够。于就是,自己必须要充分利用图书馆与网络的作用,查阅各种有关资料,以尽量获得比较全面的知识与信息。在这过程中,对自己眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。毫不夸张的说,建模过程挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别就是自学能力得到了极大的提高,而且思想的交锋也迸发出了智慧的火花,从而增加了继续深入学习数学的主动性与积极性。再次,数学建模也培养了我们的概括力与想象力,也就就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,紧紧抓住问题的本质方面,使问题尽可能简单化,这样才能解决问题。其实,在我们做论文之前,考虑到的因素有很多,如果把这一系列因数都考虑的话,将会花费更多的时间与精神。因此,在我们考虑一些因素并不就是本质问题的时候,我就将这些因数做了假设以及在模型的推广时才考虑。这就使模型更加合理与理想。数学建模还能增强我们的抽象能力以及想象力。对实际问题再进行“翻译”,即进行抽象,要用我们熟悉的数学语言、数学符号与数学公式将它们准确的表达出来。

浅谈数学建模在高中函数教学中的应用

浅谈数学建模在高中函数教学中的应用 发表时间:2019-04-22T14:41:54.753Z 来源:《中小学教育》2019年第361期作者:张慧[导读] 本文主要阐述数学建模在函数教学课堂中的引入环节与模式,辅助学生的自主学习、逻辑思维、合作探究、数学的应用和创新等方面。 山东省潍坊滨海中学262737 摘要:本文主要阐述数学建模在函数教学课堂中的引入环节与模式,辅助学生的自主学习、逻辑思维、合作探究、数学的应用和创新等方面。 关键词:数学建模高中函数教学 数学模型就是为了达到某种目的而建立的数学表达式,它是用字母、数字及其它数学符号组成的等式或不等式,以及表格、图象等能够描述事物的特征及其内在联系的形式。为了让数学的实用性被学生更好地理解,让函数知识更容易被学生学懂,我们更应该将数学建模的思想引入函数的课堂。长期坚持下来,学生在自主学习、逻辑思维、合作探究、数学的应用和创新等方面都会有一定程度的提高。 一、数学建模在函数教学中的引入环节 1.课前导入。俗话说:“万事开头难。”一堂课能否成功,其关键因素就在开头,即课前导入。如果课前导入的趣味性浓厚,就能“四两拨千斤”,带动整个课堂教学过程,收到事半功倍的良好效果。新课程标准提倡情境式教学模式,在函数的教学中,例如学习指数函数的认识时,在课前引入一个简单的实际案例,在学习函数内容之前就先使学生对这个函数产生学习的兴趣和欲望,那么整堂课的教授过程就会轻松很多,学生学习的自主性也会有很大提高。 2.课中穿插。函数部分一直被很多学生认为是中学阶段最难的内容,而且学习起来也比较乏味,所以如果在课堂中间抽出5~10分钟的时间,穿插一个短小精悍、趣味性强的建模案例,亦或者运用一个建模案例贯穿整个课堂,那么,学生的学习心态就会改变,学习自主性和积极性就会随之提高。课中穿插实际案例不仅能活跃课堂气氛,使得函数的学习不再那么乏味,同时还能培养学生积极思考、合作探究的能力。 3.课后巩固。课后巩固是学习过程中不可或缺的一个环节,不仅能够加深对知识的理解,更重要的是加强所学知识的运用,从而形成技能技巧,培养学生的应用能力。有些函数知识,例如三角函数,首先要对三角函数的基础知识点、理论及公式进行系统的学习,但是三角函数部分公式很多,这个时候课后的巩固练习就至关重要了。我们一般在三角函数部分接触的课后练习题都是直接利用公式的或简或繁的计算题,学生难免会有抵触心理。如果在课后留一些由简到难的实际应用题,既能起到巩固练习的作用,还能使学生意识到它的重要性,从而激发学生学习的自主性。 二、数学建模在函数教学中的引入模式 1.列表法。列表法能够比较直观地表示两个变量之间的对应关系。这种方法较为简单,能够很快地得出所解决的问题结果。但是需要通过表格呈现的题目一般都要学生自己动手去收集数据,实践性较强,因此适合作为课前预习作业留给学生在上这节课之前完成,上课时作为课前引入案例。但在选题时要注意应选取趣味性较强的案例,这样不仅能锻炼学生的动手实践能力,更容易使学生对接下来所学的知识产生浓厚的兴趣。例如:可以利用表格表示出最近三天的昼夜温度变化情况,并说出温度与一天中时间的变化关系。 2.图像法。图像法可以表示函数的局部变化规律,进而可以预测它的整体变化趋势。这类题型的解题过程主要是利用题目中给出的信息进行描点画图,需要花费一定的时间,所以适合在课中穿插或者留作课后练习。在选题方面,可以尽可能地选择学生尚未接触或者不太了解的领域,让学生通过画图,自己预测它的变化趋势,激发学生对未知领域探索的积极性。例:人的心脏跳动强度是时间的函数。医学上的心电图,就是利用仪器记录心脏跳动的强度随时间变化的曲线图。心脏跳动的强度随时间的变化具有一定的规律,也就是说这个函数具有周期性。那么由此,我们便可以通过观察心电图是否具有周期性,来判断一个人的心脏是否正常。 3.解析法。解析法是利用数学式子表示函数关系,能通过计算等手段研究函数的性质。很多数学建模的题目都是通过函数解析式来表示它的模型。因为函数的计算过程有些枯燥,所以选题时尽量选取与实际生活更贴近的实例,这样可以使学生认识到函数的实用性,从而更有积极性去参与到题目的计算求解当中。此类问题宜放到课前引入或在课中做一个小练习。例:某山海拔7500m,海平面温度为25℃,气温是高度的函数,而且高度每升高100m,气温下降0.6℃,请你用解析表达式表示出气温T随高度x变化的函数关系。 函数的这三种表示形式都可以作为数学建模案例的引入模式,在函数教学的具体实践过程中,可以根据不同的课堂内容,以及不同类型的建模案例选取适当的引入模式。 一般情况下,列表法需要学生实际操作去收集数据,所以一般这类题目简短明了,只需要在前一节课下课时口头描述题目内容,简单强调题目要求即可。图像法的题目要画出图像,那么题目中肯定会有一定的文字描述以及画图所涉及到的数据,同样,解析法也是要通过文字或图片来陈述题目背景与解题要求,所以,在条件允许的情况下,这两类问题一般需要利用PPT课件来向学生呈现;若条件不允许,那么就需要通过板书和适当的教具来表述题目主旨。另外,图像类的题目如若涉及到对以后变化趋势的预测,那么也可以运用几何画板等作图工具向学生展示图像的动态变化规律,让学生更直观地理解所学内容。 参考文献 [1]王晓琴数学建模思想在高中函数教学中的应用研究[D].西北大学,2018。 [2]李栋高中数学建模教学现状调查与策略研究[D].天水师范学院,2018。

数学建模心得体会3篇_心得体会

数学建模心得体会3篇_心得体会 数学建模学习心得(2): 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。 2. 数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 3.由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。 4.数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识,提高学生数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,从小培养学数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。 数学建模心得体会 一年一度的全国数学建模大赛在今年的9 月21 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的

数学建模课心得体会

第一次接触数学建模是在高二的时候,那时候参加全国第二届“赛先生”数学知识竞赛,笔试取得了一等奖的成绩,复试是自己选题建模,现在回想起来那时候真是天真,以为数学建模就是简单问题复杂化的弄,好比一个简单应用题偏偏要弄成几千字的论文。但是,也是那次的接触,是我对数学有了更浓厚的兴趣,也是我想到了大学要参加数学建模比赛这回事。 抱着对数学建模的憧憬,这学期的选修课,我选择了《数学建模》课程,去上课后发现老师并不给我们讲数学建模,而是讲软件MATLAB,原本有点失望的,但是自从认真听完第一次课,我的失望就全都一扫而光,因为MATLAB太强大了,不仅能解决我们微积分、线性代数上的问题,还能画出我们想不清楚的各种立体图。并且,还知道了在数学建模中,大都采取MATLAB来编程计算,于是,我下定决心要学好MATLAB。 MATLAB给我带来了很多意想不到的东西。第一就是是我对计算机的兴趣更加浓厚了,还记得安装MATLAB时就费了老大功夫,还改变了电脑系统盘某些参数,放在从前这是我想都不敢想的事,安装成功那会,真是特别开心。第二就是通过MATLAB我结交到了一些好朋友,尤其是天津一网友。因为我想学好MATLAB,于是我加入了MATLAB贴吧,再通过贴吧加入了一个MATLAB交流学习群,但后来发现在那个群上愿意帮人解决问题的并不多,有一次,有个人提了一个简单的问题,他的程序有错误,但仅仅是矩阵乘除、乘方时没有加点,于是我就顺手告诉了他,然后他就加上了我,原来他是天津一大学的大二的学生,他正好要参加学校的数学建模比赛,要用到MATLAB,但是他也只是才接触,还没上手,于是他遇到问题就会找我,我就会尽力想去帮他解决,当我不会的时候,我会查阅书籍或者翻出老师的PPT课件仔细研究,就那样几次交流我们成了好朋友,后来他正式比赛了,他都把他的论文中程序发给我要我帮他看是否能改进之类的,还把他的建模论文发给我看,并且一再鼓励我一定要学好MATLAB以后参加比赛就不会那么着急。直到现在,我们都一直保持着联系,一起探讨交流MATLAB、数学(他是学数学的)上的各种问题。第三就是意外得解决了一些问题。记得前不久一同学叫我帮他在网上做份题,原本说是高中的题,但我后来发现都是微积分的题目,偏偏好多积分微分我都觉得会比较花时间,于是我想到了MATLAB,当即我就决定能用MATLAB编程解决的问题我就用MATLAB解决,果然,试卷我完成的又快又好,当我给那同学说的时候讲得他一愣一愣的,只剩下崇拜。 在我学习MATLAB的时候,也遇到了很多问题。第一次做老师给的题时,前几题我就花了几个小时,当我后来回过头总结的时候发现,基本上我出错的地方提示的错误都是一致的:Inner matrix dimensions must agree或者是Matrix must be square,后来我懂得这是矩阵乘除、乘方维数不一致等导致的,我得出结论关于矩阵的乘除、乘方运算必须是点运算,之后就很少出现这样的错误了。还记得刚开始画三维图的时候,总是出现一个错误Matrix dimensions must agree, not rendering mesh,其实原因很简单,只是我漏了一句话:[x,y]=meshgrid(x,y),也正因为这个,更加是我坚定了不能不拘小节这一思想。就在几天前,画一个分段函数的图 像,我原本只是这样编的程序: x1=1.1:0.02:3.3; x2=-1.1:0.02:1.1; x3=-3.3:0.02:-1.1; y1=1.1; y2=x2; y3=-1.1; plot(x1,y1,x2,y2,x3,y3)

初中数学“数学建模”的教学研究

初中数学“数学建模”的教学研究 张思明(北大附中,数学特级教师) 鲍敬谊(北大附中数学学科主任,高级教师) 白永潇(北京教育学院数学教师) 一、什么是数学建模? 1.1数学建模(Mathematical Modeling)是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下: (1)普通高中数学课程标准中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容。 (2)叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(M athematical Modeling)就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。 两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。 什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”(Mathematic Model)是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。 本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。 另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加

数学建模 选修课策略模型

科技大学 题目:选课策略数学模型 班级: 姓名: 学号:

摘要 本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。 特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。 关键词0-1规划选修课要求多目标规划 模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。 模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。 模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。 一.问题的重述 某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计

算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。 如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程? 二.模型的假设及符号说明 1.模型假设 1)学生只要选修就能通过; 2)每个学生都必须遵守规定;

2. 符号说明 1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9); 三.问题分析 对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果; 对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果; 对于问题三,同时考虑两者,所占权重比一样,建立模型三; 四.模型的建立及求解 模型一 目标函数: min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2* x8+3*x9) 约束条件: x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3;

体会:数学建模的学习心得体会

数学建模的学习心得体会 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它

数学建模感想

学习数学建模心得体会 这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。 这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

论文心得-数学建模优秀论文心得体会

论文心得-数学建模优秀论文心得体会.txt你妈生你的时候是不是把人给扔了把胎盘养大?别把虾米不当海鲜。别把虾米不当海鲜。阅读一篇论文对我主要有以下四个方面的启发与指导: (1)大致了解数学建模论文写作时应包含哪些内容 (2)每部分内容都应写些什么 (3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中 (4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误 所以,在下面的学习心得中将主要涉及以上四个方面的内容。 摘要: 简明扼要地指出了处理问题的方法途径并给出作答,起到了较好的总结全文,理清条理的作用。让读者对以下论述有一个总体印象,而且对于本题的答案用图表形式给出,清晰明了 问题重述:(略) 问题背景: 交待问题背景,说明处理此问题的意义和必要性。 优点:叙述详尽,条理清楚,论证充分 缺点:前两段过于冗长,可作适当删节 问题分析: 进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径 优点:条理比较清晰,论述符合逻辑,表达清楚 缺点:似乎不够详细,尤其是第三段有些过于概括。 模型的假设与约定: 共有8条比较合理的假设 优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。 缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS 作以说明。 符号说明及名词定义 优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。 缺点:有些地方没有标注量纲,比如A和B的量纲不明确。 模型建立与求解 6.1问题一: 对所给数据惊醒处理和统计,得出规律,找到联系。 优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。 6.2问题二: 6.2.1最短路的确定 为确定最短路径又提出了一系列假设并阐述了理由,在这些假设下规定了最短路径

一个中学数学建模的简要案例--------教育储蓄问题

一个中学数学建模的简要案例--------教育储蓄问题 我们以高中数学教学为背景, 介绍一个数学建模的教学的设计,它的问题设计是利用“教育储蓄”的素材,学习和应用数列和数列求和的知识。它的教学目的是:使学生初步了解用数学建模方法解决生活中实际问题的过程,体会所学数学知识的应用价值和数学理论由于它的一般性和抽象性所带来的应用的广泛性。培养学生关注并能发现生活中常见现象中的数学因素、数学问题,主动应用自己所学的数学知识去概括、抽象、解决问题的意识。 由于教育储蓄问题的特殊性,可以用这个问题来学习或复习、应用等差、等比数列的通项、求和等知识。教与学的过程一种参考设计是: 请学生个人或组成小组,利用课余时间调查有关“教育储蓄”的资料,事先可以让学生讨论需要了解的信息是什么,主要途径:网上主题词检索、各大银行直接询问。 以往的应用题常常是“没有源头”的,所需解决问题的信息都是已知的,不多不少,没有信息寻求、选择、加工的过程。 而解决实际问题的第一步应该是从寻求有关信息开始。 让学生交流、互相启发补充扩展他们取得的信息。重点确认以下信息: 教育储蓄的适用对象:(在校中小学学生),储蓄类型和特点:(是“零存整取”的形式,但享受“整存整取”的利率,不扣利息税。),最低起存金额:(人民币50元),每户存款本金的最高限额(人民币2万元),支取方式:(到3年期或到六年期,凭学校开出的在学证明一次支取本息),银行现行的各类、各档存款利率:(略),零存整取、整存整取的本息计算方法。 学生常常出现的问题是信息寻求时“丢三拉四”,用互相交流的方式常常可以改善这一点;同时,合作学习,合作解决问题的意识,也是我们特别要培养的东西。 3.请学生提出拟解决的问题,根据问题,在教师带领下,寻找适用的数学工具,建立相应的数学模型,如有: (1)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)或6年时一次可支取本息共多少钱?(等差数列求和,公式应用模型)。 (2)依教育储蓄的方式,每月存a元,连续存3年,到期(3年)或6年时一次可支取本息共多少钱?(公式模型的一般化)。 (3)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)时一次可支取本息比同档次的“零存整取”多收益多少钱?(比较方知优劣)。 (4)欲在3年后一次支取教育储蓄本息合计1万元,每月应存入多少钱?

数学建模实践心得

数学建模实践心得 大学以来的第一个暑假,我参加了数学建模培训, 来作为一次暑期社会实践。或许并不像其他社会实践队可以走出校园,接触社会,但我们可以通过这次的培训,更系统化,更具体化地学习数学建模,并进一步理解其所体现的一些思想和精神。 数学建模是接触实际科学问题的第一步,利用所学的知识,利用各种数学和计算机工具,为某一具体问题建立抽象模型,并解决问题、最后撰写论文,给出客观的评价。 在两个星期的数学建模培训的过程中,我学到了很多知识,比如 LINGO软件、MATLAB软件和一些算法,可以说,这是迄今为止任何一门课程都无法比拟的,各种从未接触过的高级数学软件,令人眼花缭乱的编程和神秘的多维图像。 当初参加校级数学建模比赛的时候,起初我和我的队友都激情高昂的,但是随着三天的建模下来,我们的斗志越来越低迷,出于对数学建模的不了解,可以说,无从下手,自然最后只能草草结束。经过那次的接触后,我明白首先我们要加强建模技能和拓展课外知识面;再者,态度也是主导因素之一,态度决定一切,如果抱着试一试的态度,是不会有什么结果的。 其实,数学建模的一些思想和为人处世之道是相通的。在生活中,无论做什么事情,我们都要端正自己的态度,时常给自己一点鼓励,要相信自己的潜力,把自己融入激情之中,不要越做越懈怠。江南春曾说过“最终你相信什么,就能成为什么”。 在数学建模的培训中,我接触到一些参加过国赛的学长和学姐。执着和认真,是我在建模时从他们候身上找到的共同点。认真的人改变自己,执着的人改变命运。的确,在数学建模的过程中,只有驱除浮躁,踏实做事,全神贯注,注重每一个细节,才能把事情做好。

在和他们交流的过程中,曾有一位学姐说道,要想有进步,就要踏踏实实学好理论、弄懂原理、看会例题、做好练习,而不是浮在面上。参加数学建模培训,还要放正心态,急功近利的想法是要不得的。数学建模的思想是在潜移默化中作用于你,而非立竿见影。所以要真正学到有益的知识和思想才是最重要的,而非顾于是否获奖之类的。 数学建模,通过利用数学知识,对一些生活中的实际问题建立模型。所以,它需要的不仅仅是数学的逻辑思维,还需要计算机编程能力,论文写作能力,其实更重要的是团队协作能力。我想,这对以后的工作与生活,有非常大的帮助的,对人生更是如此。 在建模的三天里,初看题目,感觉摸不着头脑,没有相关理论的基础,没有高人 的指点,三个伙伴只能借助唯一的网络,去找寻找问题的入手点。在反复的搜索之后,我们终于有了初步的理解。写论文的过程,我们可以说是“痛并快乐的”。当然,在数学方法上,我们很多地方也感觉困难重重,所以不断地查询资料,理解它们的含义,让比赛的过程成为我们学习的动力。虽然最终没有取得预期的结果, 但是,过程带来的快乐,远远超越了结果。令我感触最深的是,知识的扩充,和 交识了一些新朋友。 与我建模的两位同学,可以说,初次接触,不了解对方。相对于其他建模小组而言,我们还需要在短暂的几天内去了解彼此。不过,还好,我们都是随和的性子,很快就熟悉起来。在建模的过程中,我们仨一同讨论,一同努力,一同交上一份尽心尽力的答卷。可以说,我们合作的过程也可以算是一种锻炼,怎样才能更好的沟通,怎样才能各抒己见,但最终可以把各自的观点融于一体,也算是一种挑战。学会与他人合作,在相互的谦虚中学习彼此的长处,汲取对方的优点,接收别人的建议。或许,三天的交流,并不长,也并不深入,但起码,我们成为了朋友,曾经一起为数学建模奋斗过。我想,这也是数学建模的另一番魅力所在。短短的三天,可以拉近三个性格迥异的人。

元认知策略在高中数学建模教学中的应用 (2)

元认知策略在高中数学建模教学中的应用 湖南省常德市第七中学李勇 摘要:数学建模课程在高中是一门全新的课程,对培养学生应用数学知识解决实际问题的能力大有益处。元认知策略在建模教学过程中具有“导航器”的作用。关键字:数学建模教学元认知策略应用 一、数学建模在高中数学教学中的地位和作用 1.什么是数学建模 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 2. 高中数学建模在教学中的地位和作用 数学建模是高中开展探究性学习的好题材。数学建模包含了合作学习、自主学习和探究性学习的诸多因素和作用。数学建模是提高参与者数学素养的一种很好的形式。越来越多的国内教育工作者都有这样的认识:数学知识的掌握不全是教出来的,而是自己做出来的,数学建模正好是一个学数学、用数学、做数学的过程,它体现了学和用的统一。 数学建模问题存在于我们的周围和日常生活之中。例如,如何收集数据解决人们关心的问题,如公交站点设置、足球排名次问题等等。让学生自己提出问题、解决问题可以培养学生关心社会、服务社会的习惯。 通过解数学建模问题确实可以提高学生解决实际问题的能力,做不做数学建模是不一样的。 3. 在高中开设数学建模课程的困难 但是,目前高中数学教学中数学建模所占的比重太小,高校入学考试所占比例很小。这说明中学数学教育中数学建模的教学有待进一步加强。而且在我校刚开始尝试开设数学建模校本课程中,发现了许多问题,一是老师不知道怎么教,二是学生不知道怎么学。在这种形式下,本文主要设想用元认知策略理论,提高学生数学建模知识水平。 二、元认知策略的概念 学习策略是指学习者在完成特定学习任务时选择、使用和调控学习程序、规则、方法、技巧、资源等的思维模式,这种模式是影响学习进程的各种因素间相对稳定的联系,其与学习者的特质、学习任务的性质以及学习发生的时空均密切相关,是一个有特定指向的认知场函数。 学习策略分为认知策略、元认知策略、资源管理策略。笔者主要从元认知策略入手进行研究。 1、元认知理论 “元认知”这一概念最先是由美国心理专家Flavell 在20世纪70 年代提出的。他认为”元认知”就是认知主体对自身认知活动的认知, 既包括认知主体对自身心理状态、能力、任务目标、认知策略等方面的知识,又包含认知主体对自身各种活动的计划、监控和调节。 2、元认知策略 学习时,学习者要学会使用一些策略去评估自己的理解,预计学习时间,选择有效的计划来学习或解决问题。元认知策略大致可分三种:①计划策略-----包括设置学习目标、浏览阅读材料、产生待回答的问题以及分析如何完成学习任务。如整个建模问题中,思路是”实际问题-----数学模型-----模型的解-----解决问题”。 ②监控策略-----包括阅读时对注意加以跟踪、对材料进行自我提问、做题时监视自己的速度和时间。③调节策略------调节策略和监控策略有关。如数学建模对最后问题的各种解进行评价,看是否符合实际。 数学元认知策略是应用于整个数学学习过程的“导航器”,在这种策略的指导下,即使学习中思维受阻,也会及时校正思维方向,调整思维路径,形成合理的数学认知结构。大量研究结果表明,数学学习能力强的

lingo实现 建立选课策略多目标模型

数学模型实验—实验报告9 一、实验项目:选课策略模型建立和求解 二、实验目的和要求 a.根据题目要求建立优化模型 b.通过Lingo软件求解模型 三、实验内容 1.根据教材4.4节内容建立选课策略多目标模型。 目标一:课程数最少;目标二:学分最多, 1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6; 2)引入权重将两目标转化为单目标模型 一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W 2. 编写lingo程序求解: 1)以课程数最少为单目标的优化模型(注意xi为0-1变量) min x1+x2+x3+x4+x5+x6+x7+x8+x9 x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3; x4+x6+x7+x9>=2; 2*x3-x1-x2<=0; x4-x7<=0; 2*x5-x1-x2<=0; x6-x7<=0; x8-x5<=0; 2*x9-x1-x2<=0; @BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9); 运行结果如下: Global optimal solution found. Objective value: 6.000000 Objective bound: 6.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0

数学建模比赛总结

数学建模比赛总结 我是广西电力职业技术学院发电厂及电力系统专业的一名学生,我很高兴有机会参加20XX年的数学建模竞赛并幸运地获得了广西二等奖。首先要感谢的是学校、学院领导及老师对我们队的支持和帮助。特别要感谢施宁清老师、覃州老师、麦宏元老师、陶国飞老师等老师一直以来对我们精心的辅导和鼓励,才有我们队获奖的机会。参加数学建模竞赛是一件很有意义的事情,它不仅能锻炼每个参赛者连续工作的能力、创造性的思维、把各方面的知识综合运用的能力、熟练使有用计算机以及计算机软件的能力,而更重要的是锻炼了参赛者与伙伴合作、共同完成某项工作的能力。 今年的这个暑假是个不平凡的暑假,我们参加20XX全国数目竞赛的同学都只有一般的时间,因为还有一半的时间是用来进行培训的。起初参加学校的数学建模选修课,我只是对于数学的爱好,那是的我根本不知道什么是数学建模,更不知道它的魅力何在?我们有一个30多人组成数模之家,其中有几个大家长,那就是我们的指导老师。他们为了我们花了很多功夫和时间。我们培训只有短短的一个月,而要在一个月内让一个初学者变成一个能参加全国比赛的选手,是多么大的挑战啊?老师在图书馆的阅览室为我们上模模培训课,从最数模软件Lingo到Mathematic,再到Spss等,

从简单的线性规划到层次分析法,从牛奶配送问题到NBA赛事分析,老师指导我们一步一步走向数模,去零落数模的魅力! 在这次竞赛当中,我们队的三个人我,黄国志,张高做了很好的分工,一个人主要写论文、另一个人主要收集资料还要协助写论文,而我主要在计算机上编程序进行计算。我们队首先选择了题目C,开赛第一天我们就在讨论C题,确定了基本思路,但是到了下午,我们的思路断了,3个人都没了思路然后我开始看题目D,题目D是学生宿舍的分析,这个题很类似于我们培训时老师讲评过的NBA赛事分析题,于是我们想可不可以运用相同或者类似的方法思路去求解D 题呢?我们就开始集中全力对D题展开分析进行计算。下午我们已经有了比较清晰的思路去求解D题了,最后在晚上决定悬着D题来做。第二天,我们在网上查阅了很多相关的资料,数据。然后我进行计算机模拟,即根据我得到的数据用数学软件如Matlab把我们要的图形模拟出来,把实际的东西转化为数字来计算,然后我负责编辑图形和输入软件进行求解,而他们两个人负责去讨论并把他们想到的新思路告诉我,然后开始写论文。写论文是一件很繁琐的事,因此要用的时间也多,这样等到我把一些基本的结果得出来时正好给他们加到论文里面去,在模拟时要用很多时间,而这些时间都是计算机在工作,所以我就利用这段时间去他们写论文,

相关文档
最新文档