光学教程第五章
大学《光学教程》复习要点
第一章几何光学1几何光学基本定律:光在均匀介质里沿直线传播2光的反射定律:光的入射角等于反射角3光的折射定律任何介质的折射率都等于光在真空中的传播速度c与光在该介质中的传播速度v的比值。
n=c/v绝对折射率4光的独立传播定律多束光传播时互不干扰5光路可逆定理光程费马定理费马原理的严格表述:光在传播过程中总是沿着光程为极值的路径传播。
沿着光程为极值的路径传播有三种情况:恒定值、最小值和最大值。
成像的基本概念光线的基本叫光束在均匀介质中,各光线从同一点发出或聚焦于(反向聚焦于)同一点的光束称为单心光束;点光源发出的是单心光束单心性的保持与破坏在光线传播路径中的若干反射面和折射面组成的光学系统叫做光具组。
物方空间与像方空间物与像的概念实物虚物实像虚像判别各种像光线在射到光具组前表面之前存在会聚点,称为实物光线在射到光具组前表面之后,其延长线会聚为一点的,称为虚物光线经光具组后表面射出后会聚一点,所形成的像称为实像;光线经光具组后表面射出后,反向延长会聚一点所形成的像称为虚像光的平面反射(保持光束单心性)全反射光的平面折射(破坏光束的单心性)光的折射的特殊情况,光垂直入射此时有个“相似深度”发生全反射现象的原因:1入射角大于或等于临界角光由光疏介质入射到光密介质全反射临界角。
符号法则新笛卡儿法左负右正,下负上正(1)光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正;凡在顶点左方者,其间距离的数值为负。
物点或像点至主轴的距离,在主轴上方为正,在下方为负。
(2)光线方向的倾斜角度都从主轴(或球面法线)算起,并取小于π/2的角度。
由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动的,则该角度的数值为负(在考虑角度的符号时,不必考虑组成该角度两边的线段的符号)光的球面折射:光焦度:上式右端仅与介质的折射率及球面的曲率半径有关,因而对于一定的介质及一定形状的表面来讲是一个不变量,我们定义此量为光焦度,以Φ表示,代表折射面对光线的方向改变的能力。
光学教程(姚启钧) 第5章 光的偏振-2
讨论:椭圆的形状与Ax、Ay和Δφ有关,分析几种特殊情形
Ex 2 E y 2 2Ex E y ( ) ( ) cos sin 2 Ax Ay Ax Ay
(1) Δφ=0或±2π的整数倍:
Ex 2 E y 2 2Ex E y ( ) ( ) 0 Ax Ay Ax Ay
Ex E y 2 ( ) 0 Ax Ay
光强不变为自然光
自然光
圆偏振光
自然光
线偏振光 光强变化且消光 圆偏振光
¼ 波片
旋转偏振片
25
光学教程—第五章
三、部分偏振光和椭圆偏振光的检定
(3)区分部分偏振光和椭圆偏振光(仍用1/4波片和检偏器)
部分偏 振光
部分偏 振光
光强变化无消光 部分偏振光 椭圆偏振光 线偏振光 光强变化且消光 椭圆偏振光
椭圆的一般方程
结论:电矢量E的矢端轨迹为椭圆——椭圆偏振光 边长为2Ax、2Ay的矩形,椭圆与其内切 Ey Ex 在±Ax之间变化 Ay Ey在±Ay之间变化
E α -Ax O -Ay Ax Ex
椭圆主轴(长轴)与x夹角α 2 Ax Ay tg 2 2 cos 2 Ax Ay 15
光学教程—第五章
迎光传播方向观察 合矢量顺时针旋转,右旋偏振光 合矢量逆时针旋转,左旋偏振光
Ex Ax cos( t kz)
由
相隔1/4( Δφ=π/2 )周期 E y Ay cos( t kz ) 值的分析
sin 0
判据
左旋偏振光 右旋偏振光
20
sin 0
光学教程—第五章
14
光学教程—第五章
Ey Ex E cos 1 ( x ) 2 sin Ax Ax Ay 2Ex E y Ey 2 Ex 2 Ex 2 2 2 [1 ( ) ] sin ( ) cos cos ( ) Ax Ax Ax Ay Ay Ex 2 E y 2 2Ex E y ( ) ( ) cos sin 2 Ax Ay Ax Ay
《光学教程》(姚启钧)课后习题解答之欧阳引擎创编
《光学教程》(姚启钧)习题解答欧阳引擎(2021.01.01)第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
高等光学教程-第5章-参考答案
第五章 部分相干光理论5.1 证明解析信号的实部u 和虚部u 之间互为希尔伯特变换,即它们之间有下面的关系()t u t r ()()t i ()()⎰∞∞--=ξξξπd )(P.V.1)()()(t u t u r i , ⎰∞∞---=ξξξπd )(.P.V 1)()()(tu t u i r证明:(1)由(5-10)式,解析函数的实部()()0()2Re ()exp(2)d r r u t j t νπνν∞⎡=-⎢⎣⎦⎰U ⎤⎥t (5.1-11)而,比较以上两式,可见有关系式)](Re[)()(t t u r u = (5.1-13)⎰∞-=0)(d )2exp()(2)(νπννt j t r U u 上式可表示为 (5.1-18)⎰∞∞--+=νπνννd )2exp()()sgn 1()()(t j t r U u 又因为 ()()exp(2)d t j νπνν∞-∞=-⎰u U所以有 ()()(1sgn )()r νν=+U νU )r (5.1-19)对上式两边取傅里叶逆变换11()1()()11((){()}{()}{(sgn )()}(){sgn )}{()}r r r t u t ννννν-----==+=+*u U U U U F F F F F ν上式中 1{sgn }jtνπ-=-F 再利用卷积定义⎰⎰∞∞---=*=*ηξηξηξd d ),(),(y x f g f g g f 令 t j f π-= , )()(t j t f -=-ξπξ , , )()(t u g r =)()()(ξξr u g =所以 ⎰∞∞--+=ξξξπd )(..)()()()(t u V P jt ut r r u (5.1-22)可见 ⎰∞∞--=ξξξπd )(..1)()()(t u V P t ur i(2)参考教材中(5.1-10)式的推导过程,对于解析函数的虚部有下式成立(P5.1-1)⎥⎥⎦⎤⎢⎢⎣⎡-=⎰∞)()(d )2exp()(Re 2)(νπννt j t ui i U)](Re[)()(t j t u i u -= (P5.1-2)比较(P5.1-1)和(P5.1-2)式,得到⎰∞-=-0)(d )2exp()(2)(νπννt j t j i U u所以⎰∞-=0)(d )2exp()(2)(νπννt j j t i U u )()sgn 1()()(νννi j U U +=对上式两边取傅里叶逆变换得)}(){sgn )}({)}({)()(1)(11ννννi i j j t U U U u ---+==F F F)()}({}{sgn )()(11t ju j i i +*=--ννU F F )(d )(..1)()(t ju tu V P i i +--=⎰∞∞-ξξξπ所以 ⎰∞∞---=ξξξπd )(..1)()()(t u V P t ui r5.2 考察用宽带光作杨氏干涉实验(1) 证明观察屏上的入射光场可表示为⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=c r t P t c r t P t t Q 222111,d d ,d d ),(u K u K u 其中 iii i i i i i cr A s cr πθπθ2)(d 2)(k k K ≅=⎰⎰个针孔第 2,1=i 而为第个针孔的面积。
光学第五章答案
1. 解:(1)()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∧∧→2cos cos 01πωωkZ t y kZt x A E()()[]()(),为左旋。
是按逆时针方向旋转的,时,,时,时,当又此即偏振光旋圆偏振光。
该列光波的偏振态是左准形式。
符合左旋圆偏振光的标∴⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==========+∴-=⎪⎭⎫ ⎝⎛--=-=∴-+-=∧∧0210410,00sin 2cos cos :sin cos 020220yxyxyxyxyxE A E T t A E E T t E A E t Z AEEkZt A kZ t A E kZ t A E or kZt y kZ t x Aωπωωωω (2()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∧∧→2sin sin 02πωωkZ t y kZ t x A E()()[]()()20220cos ,sin cos sin AE E kZ t A E kZ t A E kZt y kZ t x A yxyx=+-=-=---=∧∧ωωωω即:()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛--+⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∴⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧======-====∧∧∧∧∧∧→2sin 2cos 2sin 2cos 2sin sin :021041,00002πωπωπωτωππωωkZ t y kZ t x A kZ t y k Z x A kZ t y kZt x A E or A E E T t E A E T t A E E t Z yxyxyx光。
该列光波为左旋圆偏振,时,,时,时,当2. 解:()21011'1I I⋅-=()()()8/81.060cos 1011.01.01.010125.0881.0819.041210160cos 101I IIII02'121121''1211112122'1''1=⋅⋅-===∴==≈==⨯=⋅⋅-=⋅⋅-=I or I I I I I I I I I I I I 透过偏振片观察为:直接观察的光强为:自然光强为而:3. 解:201II =()()()()有最大值时,亦可得令注:此时透过的最大光强为,须使欲使I Id dd dI IIII II II I II I2cos cos 2329434323060cos30cos 2302602coscos 2coscos 2cos 2222max22232213θααθαααθααθααθαα==⎥⎦⎤⎢⎣⎡-==⋅⋅=-=====∴-=-===4. 证:21II =()()t II tII I I I I I Iωωθθθθθθπθθπθ4cos 1164cos 11612sin81sincos22cos cos2coscos22222122212-=∴=-===⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-==而5. 解:()折射定律21221sin sin nnn ii==∴30732.160sin sinsin sin12112===--ni i()()()()()()()()()()()(),一部分折射,,垂直分量一部分反射直分量为而入射光的电矢量的垂入射面的光矢量分量。
2023年大学_光学教程第三版(姚启钧著)课后题答案下载
2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。
光学教程-总结
s in 1
0.61
R
1.22
D
艾里斑的线半径为: l 1.22 f
D
第二章 光的衍射
任何具有空间周期性的衍射屏都可以叫衍射光栅。
I
p
Ap2
s in 2 u2
u
sin2 N(d sin
sin2(d sin )
)
I0
s in 2 u2
u
sin2 Nv sin2 v
第二章 光的衍射
光栅衍射的强度分布 I / I0
B
r s
第三章 几何光学基本原理
近轴光线条件下球面反射的物像公式
1 1 2 s s r
对于r一定的球面,只有一个s
P
和给定的s对应,此时存在确定的像点。
这个像点是一个理想的像点,称为高
斯像点。s称为物距, 称s为 像距
1 1 1 s s f
C P O
这个联系物距和像距的公式称为球面反射物像公式。
人眼的分辨本领是描述人眼刚刚能区分非常靠近的两个物点的能 力的物理量。
瞳孔的分辨极限角为
U0
0.610
R
0.610
555 10 7 cm 0.1cm
3.4 10 4 rad
1
望远镜物镜的分辨极限常以物镜焦平面上刚刚能够分辨开的两个 象点之间的直线距离来表示,这极限值为
y
f 1
1.220
d
/ f
显微镜是用以观察在其物镜第一焦点附近(靠外)的物体的光学
系统。物体经物镜折射后在中间像面上所产生的艾里斑与平行光束 衍射时有几乎同样大小的角半径。
y 0.610
n sin u
第四章 光学仪器的基本原理
光学教程答案(第五章)
1. 试确定下面两列光波E 1=A 0[e x cos (wt-kz )+e y cos (wt-kz-π/2)] E 2=A 0[e x sin (wt-kz )+e y sin (wt-kz-π/2)] 的偏振态。
解 :E 1 =A 0[e x cos(wt-kz)+e y cos(wt-kz-π/2)]=A 0[e x cos(wt-kz)+e y sin(wt-kz)] 为左旋圆偏振光E 2 =A 0[e x sin(wt-kz)+e y sin(wt-kz-π/2)]=A 0[e x sin(wt-kz)+e y cos(wt-kz)] 为右旋圆偏振光2. 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察。
两偏振片透振方向的夹角为60°。
若观察到两表面的亮度相同,则两表面的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的10%。
解∶∵亮度比 = 光强比设直接观察的光的光强为I 0,入射到偏振片上的光强为I ,则通过偏振片系统的光强为I':I'=(1/2)I (1-10%)cos 2600∙(1-10%) 因此:∴ I 0/ I = 0.5×(1-10%)cos 2600∙(1-10%) = 10.125%.3. 两个尼科耳N 1和N 2的夹角为60°,在他们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统。
假设各尼科耳对非常光均无吸收,试问N 3和N 1 的偏振方向的夹角为何值时,通过系统的光强最大?设入射光强为I 0,求此时所能通过的最大光强。
解:201I I()()()()有最大值时,亦可得令注:此时透过的最大光强为,须使欲使I I d d d dI I I II I I II I II I 20cos cos 2329434323060cos 30cos 2302602cos cos 2cos cos 2cos 2222max22232213θααθαααθααθααθαα==⎥⎦⎤⎢⎣⎡-==⋅⋅=-=====∴-=-===4. 在两个理想的偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转(见题5.4图),若入射的自然光强为I 0,试证明透射光强为I =16πI 0(1-cos4ωt ).解: I = 12I 0 cos 2ωt cos 2(2π-ωt ) = 12 I 0cos 2ωtsin 2 ωt = 18 I 0 1-cos4t2ω= I 0(1-cos4ωt ) `题5. 线偏振光入射到折射率为1.732的玻璃片上,入射角是60°,入射光的电失量与入射面成30°角。
光学教程第五 姚启钧 光的衍射PPT学习教案
bsin k
3. 次极大位置:
满足
d I 0 tg u u
du
y
y1 = tgu
·
0
-2
·-
·
·
·
y2 = u
u
2
-2.46
-1.43
0
+2.46
+1.43
解得:
u 1.43, 2.46, 3.47,…
相应:
bsin 1.43, 2.46, 3.47,… 第21页/共66页
衍射花样特点: 1.平行于光源的亮暗直条纹,中央主 最大光 强最大 ,次最 大光强 远小于 主最大 的值, 且随着 级数的 增大而 很快减 小;
光栅方程
谱线的级数
斜入射光栅方程:
dsin sin 0 K
k 0,1,2
光栅 L
d sinθ0
夫琅禾费衍射
第12页/共66页
4.4.2 圆屏衍射
P点合振幅为:
AP ak1 ak2 ak3 ak4 ...
ak1 ak1 ak2 ak2 ... 222 2
ak1 2
如果圆屏足够小,只遮住中心 带的一小部分,观察屏中心为 一亮点 (泊松点) 。
圆屏衍射 泊松点
第13页/共66页
1 R
1 r0
1 2 k
第14页/共66页
k 2 1 1 R r0
11
1
——与薄透镜物象公式相似
R r0 f '
焦距:
f ' 2
k
波带片焦距的特点: :
1.大小取决于透光孔的半径ρ 2.与波长成反比
3.存在多个次焦距,如f´/3, f´/5
f ' 2
《光学教程》第五版姚启钧第五章光的偏振
我们将探索光的偏振在光学器件 中的实际应用,比如偏振滤光器 和偏振镜。
在通信和显示技术中的应用 对生物学的影响
我们将研究光的偏振在通信和显 示技术中的重要性,如液晶显示 器和光纤通信。
我们将了解光的偏振如何在生物 界中发挥作用,例如蝴蝶的翅膀 颜色和昆虫的视觉系统。
光的偏振实验
1
可视化光的偏振的实验方法
我们将介绍一些通用的实验方法,用于可视化光的偏振现象,如波片实验和波浪 板实验。
2
常用工具和设备
我们将了解一些常用的实验工具和设备,如偏振光源、偏振片和偏振计。
光的偏振现象
偏振光是如何产生的?
我们将探索偏振光是如何通 过选择性吸收和散射来产生 的。
偏振光的特性和传播方 式
我们将了解偏振光的特性, 包括振动方向、强度和光的 传播方式。
偏振片和偏振现象之间 的关系
我们将研究偏振片与偏振现 象之间的联系,以及如何利 用偏振片来改变光的偏振状 态。
光的偏振应用
《光学教程》第五版姚启 钧第五章光的偏振
光的偏振是一个有趣的现象,它使光变得有方向性和振动方向约束。在这一 章中,我们将深入探讨光的偏振的概念、性质和应用。
光的偏振概述
1 光的偏振是什么?
我们将学习什么是光的偏振,以及它是如何 与光的振动方向相关联的。
2 为什么光会发生偏振?
我们将讨论光的偏振产生的原因,包括光的 源头和与介质的相互作用。
《光学教程》第五版 姚启钧 第五章 光的偏振
主截面
d—波片厚度为
nod—— o光在波片中的光程 ned—— e光在波片中的光程
光程差:
= (no- ne)d
相位差:
2
no
ne
d
2k
1
2
2k 1
¼波片 ½波片(半波片)
a.自然光入射:
在任意两个垂直方向的分量无固定位相差 o 光和e 光无固定位相差 出射光为自然光
波片
y
Ae
Ax
Ao
光轴
P
Ae A
线偏振光
椭圆偏振光
Ao
d
光轴
Ao Asin
Ae Acos
通过厚为d的晶片,o、e光产生相位差:
no ne
d 2
一般情形--从晶片出射的两束光合成为一束椭圆偏振光。
特例----当 4(Ao Ae), 且
, 3
5.3 单轴晶体的双折射
5.3.1寻常光和非寻常光
1.双折射现象
自然光
n1 i
自然光入射到各向异性介质中, 折射光分成两束的现象。
n2
各向异 性介质
ro
o
re e
2.寻常(o)光和非寻常(e)光
{ n1 sin i n2 sin ro
o o 光折射线在入射面内。
遵从折射定律
sin i const.
=0, = /2
Ex Ey
Ax
Ay
线偏振光
{ E
2 x
Ax2
E
2 y
Ay2
1
AxAy 椭圆偏振光
光学教程姚启钧
一、光的偏振性 1、横波和纵波的区别——偏振
振动方向对于传播方向的不对称性,称为波的偏振。
N
r
N
r
ME
ME
纵波:包含传播方向的任何平 横波:包含传播方向的平面中,
面上,其振动均相同,没有谁 又包含振动矢量的那个平面具
更特殊。
有特殊性。
——振动对传播方向具有对称性 ——振动对传播方向没有对称性
光的偏振度
•自然光:
Imax=Imin,P=0,偏振度最小;
•线偏振光: Imin=0,P=1,偏振度最大;
•部分偏振光: 0<P<1。
例 通过偏振片观察一束部分偏振光,当偏振片由对 应透射光最大的位置转过600时,其光强减为一半。 试求这束部分偏振光中的自然光和线偏振光的强度 之比以及光束的偏振度。
量,此时的入射角用i10表示。
i10——起偏角或布儒斯特角。
i1
n1
i2
n2
线偏振光
n1
i 10
n2
i2
i10 i2 900 由折射定律:
n1 sin i10 n2 sin 900 i10 n2 cos i10
tg i10
n2 n1
当自然光从介质n1入射到n2的分界面时,若入射角 则其反射光为光矢垂直于入射面的线偏振光。
2 sin(900 i2 ) cosi2 cos(i2 900 i2 )
A(1) p2
2 cos2 i2 sin2i2
n1 n2
A(1) p2
cosi2 sini2
A(1) p2
ctgi2
n1
i1 i2,i2 i10
《光学教程》(姚启钧)第五章 光的偏振
自然光
线偏振光
. . . .
起偏器 检偏器
.
光强变化!
偏振光通过旋转的检偏器,光强发生变化
自然光
线偏振光
. . . .
起偏器 检偏器
.
光强变化!
偏振光通过旋转的检偏器,光强发生变化
自然光
线偏振光
. . . .
起偏器
两偏振片的偏振化方向相互垂 直时光强为零!
.
检偏器
光强变化!
例题
光强为 I0 的自然光相继通过偏振片P1、P2、P3后光强为I0 /8,已知P1 P3,问:P1、P2间夹角为何?
光的偏振
1 光的偏振性 绳波: 弹簧波:
v
声波:
v
按振动行为划分有横波和纵波两种方式
横波
纵波
横波----振动方向垂直于传播方向;如水波。有偏振性 纵波----振动方向平行于传播方向;如声波。无偏振性
Maxwell电磁波理论和实验表明,光波是横波。
电 磁 波 的 振 动 方 式 光除了有干涉和衍射现象外还有偏振现象 在干涉和衍射里,光波的振动是以标量形式来处理的,
1.0 ip tg 33.7 0. 1.5
1
.... ip ..
因此反射光中只有s分量.
透射光为部分偏振光.
.. .. i .. ..
p
反射起偏和透射起偏:
自然光以布儒斯特角入射到玻璃片堆(由二十多个玻璃 片组成)上,反射光是振动面垂直于入射面的线偏振光.透射 光偏振度非常高,也可视为线偏振光,振动面平行于入射面.
u
E
左图中线段表示光振动平行于图面的线偏振 光, 点表示光振动垂直于图面.画出相同的点和线 段表示自然光,用来表示各个方向光振动几率相同.
现代光学基础课件:光学教程第5章-光的偏振
自然光 入射
线偏振 光出射
E∥光轴:
吸收很少 通过较多
E⊥光轴: 吸收较多 通过很少
1mm厚的电气石晶体可把垂直于光轴振动的光矢量全部吸收!
二、人造偏振片:
透明聚乙烯醇片,强烈吸收某一方向上的光振动,透射光成 为线偏振光。
透振方向:允许通过光矢量振动的方向。 透振方向
三、马吕斯定律 Law of Mulus 偏振片可作 起偏器:使自然光变成线偏振光
检偏器:鉴别自然光、线偏振光、部分偏振光
1、自然光通过起偏器的情形 若入射光为 I0,有出射光:
I
1 2
I0
2、设:P1 为起偏器, P2 为检偏器,通过P1 的光强为I,振幅
为A,求通过P2 的光强为Iθ
P1 和 P2 透振方向平行时: P1 和 P2 透振方向成θ角时: P1 和 P2 透振方向垂直时:
i
i
部分偏振光可视为一个平面偏振光和一个自然光的混合
部分偏振光的图示法:
··· · ·
//占优
········
⊥占优
偏振度
定义:
P0
P Imax I min I max I min
Imax:强度最大方向光强 Imin:强度最小方向光强
偏振度最小,自然光
0 P 1 部分偏振光
P 1
偏振度最大,线偏振光
▲ 自然光 natural (普通光源发光)
在垂直于光传播方向的平面内, 光振动在各个方向的几率相 同,没有那一个方向占更大优势.我们称这种光为自然光.
y
x
Ax Aix Ay Aiy
i
i
把自然光中所有方向的振动都投影到相互垂直的两个方向上,这
光学教程(第五版)
1 . 波长为 500nm 的绿光投射在间距 d 为 0.022cm 的双缝上,在距离 180cm 处的光屏
上形成干涉条纹,求两个亮条纹之间的距离 .若改用波长为 700nm 的红光投射到此双缝上 , 两个亮条纹之间的距离又为多少?算出这两种光第 2 级亮纹位置的距离. 解:由条纹间距公式
f f f , , f 1 r 1m 10 3 mm (3) 光强极大值出现在轴的位置是(即 3 5 7 ) 1 f 1 f 1 f f 2 1 m f 3 1 m f 5 1 m 3 3 5 5 7 7
6. 波长 为 λ 的点 光 源 经 波 带 片 成 一 个 像 点 , 该波 带 片 有 100 个透 明 奇 数 半 波 带 (1,3,5,……)。另外 100 个不透明偶数半波带 .比较用波带片和换上同样焦距和口径的透镜时 该像点的强度比 I:I0.
k kr0
将
r0 400cm, 5 10 -5 cm 代入,得
k 400 5 10 5 k 0.1414 k cm
当 k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。 (2)P 点最亮时,小孔的直径为 2 1 2 r0 0.2828cm
y y j 1 y j
r0 d
得 y1
y 2
y 22
r0 180 2 700 10 7 0.573cm d 0.022 r0 j 2 2 2 0.573 1.146cm d
r0 180 500 10 7 0.409cm 1 0.022 d r y 21 j 2 0 1 2 0.409 0.818cm d y j 2 y 22 y 21 1.146 0.818 0.328cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 光的干涉5-1 波长为589.3nm 的钠光照射在一双缝上,在距双缝200cm 的观察屏上测量20个条纹共宽3cm ,试计算双缝之间的距离。
解:由题意,条纹间距为:cm e 15.0203==∴双缝间距为:m e D d 391079.015.0103.589200--⨯≈⨯⨯==λ5-2 在杨氏干涉实验中,两小孔的距离为1.5mm ,观察屏离小孔的垂直距离为1m ,若所用光源发出波长1λ=650nm 和2λ=532nm 的两种光波,试求两光波分别形成的条纹间距以及两组条纹的第8级亮纹之间的距离。
解:对于1λ=650nm 的光波,条纹间距为:m d D e 339111043.0105.1106501---⨯≈⨯⨯⨯==λ 对于2λ=532nm 的光波,条纹间距为:m d D e 339221035.0105.1105321---⨯≈⨯⨯⨯==λ ∴两组条纹的第8级条纹之间的距离为: m e e x 3211064.0)(8-⨯=-=∆5-3 一个长40mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系,继后抽去气室中的空气,注入某种气体,发现条纹系移动了30个条纹。
已知照射光波波长为656.28nm ,空气折射率为1.000276,试求注入气体的折射率n g 。
解:气室充入空气和充气体前后,光程的变化为: D n g )000276.1(-=∆δ 而这一光程变化对应于30个波长: λδ30=∆∴λ30)1(=-D n g000768.1000276.110401028.6563039=+⨯⨯⨯=--g n5-4 在菲涅耳双面镜干涉实验中,光波长为600nm ,光源和观察屏到双面镜交线的距离分别为0.6m 和1.8m ,双面镜夹角为10-3rad ,求:(1)观察屏上的条纹间距;(2)屏上最多能看到多少亮条纹?解:如图所示,S 1S 2的距离为:αsin 2l d =∴条纹间距为:αλλsin 2)(l q l d D e +== ∵α角很小∴mmm l q l e 2.1102.1106.0210600)8.16.0(2)(339=⨯=⨯⨯⨯⨯+=+≈---αλ 屏上能产生条纹的范围,如图阴影所示mmm q qtg y 6.3108.12223=⨯⨯=≈=-αα∴最多能看到的亮条纹数为:32.16.3===e y n5-5 在如图所示的洛埃镜实验中,光源S 1到观察屏的距离为2m ,光源到洛埃镜面的垂直距离为2.5mm 。
洛埃镜长40cm ,置于光源和屏的中央。
若光波波长为500nm ,条纹间距为多少?在屏上可看见几条条纹? 解:在洛埃镜实验中,S 1和S 1在平面镜中的像S 2可看作是产生干涉的两个光源。
条纹间距为:mm d D e 2.01025.210500239=⨯⨯⨯⨯==--λ 由图可知,屏上发生干涉的区域在P 1P 2范围内mm mm mmmm OB O S BP tg BP P P 67.112005.2800101001≈⨯===θ mm mmmmmm OA O S AP tg AP P P 75.38005.21200102002=⨯===θ 由于经平面镜反射的光波有π的相位差,所以S 1和S 2可看作位相相反的相干光源。
若P 0点在干涉区内,它应该有一条暗条纹通过,并且P 1 P 0内包含的暗条纹数目:4.82.067.1011===e P P N P 2 P 0内包含的暗条纹数目为:8.182.075.3022===e P P N ∴P 1 P 2区域内可看见10个暗条纹,9个亮条纹P 01P 2E5-6 用λ=0.5nm 的绿光照射肥皂泡膜,若沿着与肥皂泡膜平面成30°角的方向观察,看到膜最亮。
假设此时干涉级次最低,并已知肥皂水的折射率为1.33,求此时膜的厚度。
当垂直观察时,应改用多大波长的光照射才能看到膜最亮? 解:在观察膜最亮时,应满足干涉加强的条件:λλθm n n h =+-=∆2sin 212202 m =0,1,2,3,……按题意,m =1,︒=301θ∴肥皂膜厚度:m n n m h 7122021024.1sin 2)21(-⨯≈--=θλ若垂直观察时看到膜最亮,设m =1,应有:22λ=nh∴nm nh 6604≈=λ5-7 在如图所示的干涉装置中,若照明光波的波长λ=640nm ,厚度h =2mm ,折射率n =1.6(6.1>H n ),问(1是暗斑?(2)由中心向外计算,第10个亮斑的半径是多少?(310个亮环处的条纹间距是多少?设望远镜物镜的焦距为25cm 。
解:(1(021==θθ)对应的光程差为: mm nh 4.626.122=⨯⨯==∆ 干涉级次为:10000106404.660=⨯=∆=-λm∴环中心是一亮斑。
(2)当中心是亮斑时,由中心向外计算,第10 rad h nN 0716.0210640106.1610≈⨯⨯⨯==-λθ∴半径为:mm mm f r 9.172500716.01010=⨯==θ (3)第十个亮环处条纹的角间距为:rad mmmmh n 361010575.320716.02106406.12--⨯≈⨯⨯⨯⨯==∆θλθ∴间距为:mm f e 894.010575.32503≈⨯⨯=∆=-θ5-8 如图,单色光源S 照射平行平板G ,经反射后通过透镜L 在其焦平面E 上产生等倾干涉条纹,光源不直接照射透镜,光波长λ=600nm ,板厚d =2mm ,折射率n =1.5,为了在给定系统下看到干涉环,照射在板上的谱线最大允许宽度是多少? 解:设干涉环中心的干涉级次为0m ,则:λλ0022m nd =+=∆∴21100002120+=+=λndm 将m 改写成:ε+=10m m ,则1m 是最靠近中心的亮条纹的干涉级次,100001=m为了能看到干涉环,最大允许谱线宽度λ∆应满足: λλλ)1()(11+=∆+m m ∴最大允许的谱线宽度为:nm m 06.01==∆λλ5-9 如图,G 1是待检物体,G 2是一标定长度的标准物,T 是放在两物体上的透明玻璃板。
假设在波长λ=550nm 的单色光垂直照射下,玻璃板和物体之间的锲形空气层产生间距为1.8mm 的条纹,两物体之间的距离为80mm ,问两物体的长度之差为多少?解:当垂直入射时,条纹间隔为:αλsin 2n e =∵在该题中是空气层的楔角,且α角很小∴αλ2≈e ∴rad e 3610153.08.12105502--⨯=⨯⨯==λα ∴两物体的长度之差为:mm mm R Rtg h 331024.1210153.080--⨯=⨯⨯=≈=∆αα5-10 如图所示的尖劈形薄膜,右端厚度d 为0.0417mm ,折射率n =1.5,波长为0.589μm 的光以30°角入射到表面上,求在这个面上产生的条纹数。
若以两块玻璃片形成的空气劈尖代替,产生多少条纹?解:经劈尖上下两表面反射的光发生干涉,其光程差近似为: θ'=∆cos 2nh其中θ'是在上表面的折射角,h 表示平均厚度。
由折射定理:33.030sin sin =︒='nθ 计算得:943.0cos ='θ 在上表面产生的条纹数,即在劈尖最右端的暗纹或亮纹级数。
此时h =d =0.0417mm产生暗纹条件: λλθ)21(2c o s2+=+'m nd m =0,1,2,3,…… ∴20010589.0943.0100417.05.12cos 263=⨯⨯⨯⨯⨯='=--λθnd m劈尖棱线处是暗条纹,因此表面上有201条暗条纹,200条亮条纹 当用两块玻璃片形成的空气劈尖代替时,866.030cos cos =︒='θ 在劈尖最右端的暗纹级数为:6.12210589.0866.0100417.012cos 263=⨯⨯⨯⨯⨯='=--λθnd m因此表面上有123条暗条纹,122条亮条纹5-11 集成光学中的楔形薄膜耦合器如图所示。
楔形端从A 到B 厚度逐渐减小到零。
为测定薄膜的厚度,用波长λ=632.8nm 的He -Ne 激光垂直照明,观察到楔形端共出现11条暗纹,且A 处对应一条暗纹。
已知薄膜对632.8nm 激光的折射率为2.21,求薄膜的厚度。
解:薄膜的折射率大于玻璃,因此入射光在楔形薄膜上表面反射有相位突变。
产生暗条纹满足条件: λλ)21(22+=+=∆m nh m =0,1,2,3,…… 在薄膜B 处,h =0,2λ=∆,所以B 处对应一暗纹。
∴第11条暗纹在薄膜A 处 ∴λλ)2111(22+=+nh ∴A 处薄膜的厚度为:mm n h 0014.021.22108.632102106≈⨯⨯⨯==-λ5-12 如图,在一块平面玻璃板上,放置一曲率半径R 很大的平凸镜,以观察牛顿环条纹。
(1)证明条纹间隔e 满足:NR e λ21=,式中N 是由中心向外计算的条纹数;(2)若分别测得相距k 个条纹的两个环的半径为N r 和k N r +,证明:λk r r R Nk N 22-=+证明:(1)透镜凸表面和玻璃板平面间的空气层中心O 的厚度为零,可知牛顿环中心为一暗斑。
设由中心向外计算,第N 个暗环的半径为N r ,则由图中几何关系可知:22222)(h Rh h R R r N -=--=∵h R >> ∴Rh r N 22=又∵N 个条纹对应的空气层厚度差为: 2λNh =∴λNR r N =2 对上式微分,得:dN R dr r N λ=2当1=dN 时,e dr = ∴条纹间距为:NR r R e N λλ212==(2)由上面推得得结果: λNR r N =2λR k N r k N )(2+=+ ∴λR N k N r r N k N )(22-+=-+ ∴ λk r r R Nk N 22-=+5-13 在观察牛顿环时,用1λ=580nm 的第五个亮环与用2λ的第七个亮环重合,求波长2λ为多少?解:设由中心向外计算,第N 个亮环的半径为N r ,则:Rh r N 22=亮环满足的光程差条件为:λλN h =+22 ∴λ)21(-=N h ∴λR N r N )21(2-=由题意,用1λ=580nm 的第五个亮环与用2λ的第七个亮环重合∴21)217()215(λλR R -=-∴nm 54.40113912==λλ5-14 曲率半径为R 1的凸透镜和曲率半径为R 2的凹透镜相接触如图所示。
在钠黄光λ=589.3nm 垂直照射下,观察到两透镜之间的空气层形成10个暗环。