某大跨径钢管混凝土劲性骨架拱桥的施工

合集下载

大跨径钢管混凝土拱桥施工技术

大跨径钢管混凝土拱桥施工技术

大跨径钢管混凝土拱桥施工技术文章以计算跨径为338m的上承式钢管混凝土拱桥的施工为例,简要介绍了缆索吊机施工,拱座和交界墩施工,钢管拱肋的加工制造、预拼、吊装以及混凝土浇筑等施工方法,以供同类工程参考。

标签:拱桥;缆索吊;钢管拱肋;1工程简介位于沪蓉国道主干线湖北段某特大桥全长503.548m,主桥为计算跨径338m 的上承式钢管混凝土拱桥,交界墩位于拱座顶面,拱上桥跨布置为三联6×20m 共360m连续空心板结构,桥面结构分幅设计。

主拱圈采用变截面悬链线,拱轴线矢跨比1/5,拱轴系数m=1.543,拱顶截面上下弦中心高度4.9m,拱脚截面上下弦杆中心高度7.9m;拱上立柱采用双排钢管混凝土排架,立柱盖梁采用钢箱梁。

2总体施工思路钢管拱桥的施工由基础明挖开始,拱座、墩身墩帽、桥台施工,钢管拱工厂制造、预拼、涂装、运输、现场组拼成桁架,安装拱上建筑以及上部结构等工序组成。

钢管拱采用缆索吊吊装方案,拱肋的拼装采取悬臂扣挂,拱肋预拼场设于桥下,拱肋通过组装预拼成单元节段运送至拱桥跨中、由缆索吊整体吊装。

3主要施工方法3.1、缆索吊施工用于吊装钢管拱肋的缆索吊机主跨466m,矢跨比为13.4,垂度34.65m,最大垂度38.6m,两岸边锚距均为42m。

缆索吊设两组承重主索(2×8ф60钢丝绳),四台跑车;主索在塔顶鞍座位置可横向移动,横向移动范围沿桥中心线上下游各7.75m,以满足横桥向不同位置、不同吊重吊装的需要。

缆索吊总体方案示意图缆索吊机的主要设备和机具有:承重索、起重索、牵引索、压塔索、缆风索、扣索、塔架、地锚、滑轮、电动卷扬机及跑车等。

缆索吊总体施工顺序:缆索吊机锚碇、塔座基础、缆风绳及卷扬机基础施工→塔架拼装→卷扬机系统、塔顶索鞍走道梁与索鞍安装→缆索系统绳索安装→跑车及吊点安装→缆索吊机试吊。

3.2拱座(含引桥墩基础、缆索吊锚碇、扣索锚碇)施工拱座基坑施工采取由上至下、逐级开挖、边开挖边防护的方法,以爆破开挖为主,机械开挖为辅。

装配式拱桥(缆索吊装施)-钢管混凝土系杆拱桥--劲性骨架施工

装配式拱桥(缆索吊装施)-钢管混凝土系杆拱桥--劲性骨架施工

图2-2-23 拱肋卧式叠浇
2.拱肋分段与接头
1)拱肋的分段 拱肋跨径在30m以内时,可不分段或仅分二
段;在30~80m范围时,可分三段,大于 80m时一般分5段。拱肋分段吊装时,理论 上接头宜选择在拱肋自重弯矩最小的位置 及其附近,但一般为等分,这样各段重力 基本相同,吊装设备较省。
2)拱肋的接头形式
拱肋由预制场运到主索下后,一般用起重 索直接起吊。当不能直接起吊时,可采用 下列方法进行。
1)翻身
图2-2-27 拱肋翻身 a)就地翻身;b)空中翻身 1-短千斤;2-拱肋;3-手链滑车;4-平放;5-放松;
6-翻身后
5.缆索吊装边段拱肋悬挂方法
在拱肋无支架施工中,边段拱肋及次边段 拱肋均用扣索悬挂。按支承扣索的结构物 的位置和扣索本身的特点分为:天扣、塔 扣、通扣、墩扣等类型,可根据具体情况 选用,也可混合使用。边段拱肋悬挂方法 如图2-2-30所示。
拱肋立式预制
(1)土牛拱胎立式预制 (2)木架立式预制。 (3)条石台座立式预制
拱肋卧式预制
(1)木模卧式预制 (2)土模卧式预制
图2-2-22 拱肋卧式预制 a)木模卧式预制拱肋;b)土模卧式预制拱肋 1、6-边肋;2、7-中肋;3-砖砌垫块;4-圆钉;5-油毛毡
卧式叠浇
采用卧式预制的拱肋混凝土强度达到设计 强度的30%以后,在其上安装侧模,浇筑 下一片拱肋,如此连续浇筑称为卧式叠浇。 卧式叠浇一般可达5层。浇筑时每层拱肋接 触面用油毛毡、塑料布或其它隔离剂将其 隔开。卧式叠浇的优点是节省预制场地和 模板,但先期预制的拱肋不易取出,影响 工期。
桥面系安装
桥面板的拼装
劲性骨架施工技术
一、概述 劲性骨架法是以钢骨架作为拱圈的劲性拱架,采

大跨径钢管混凝土劲性骨架拱桥的施工及控制

大跨径钢管混凝土劲性骨架拱桥的施工及控制
为 1 c。 5c
图 4 抗风 缆 示 意
21劲性骨架施工 .
劲性钢 骨架预先在工厂分段制作 , 待运输到工地后再拼 焊成 吊装段长度 ,然后按从拱脚 段至拱 顶段的顺序 进行安
装 。施工 时在劲性钢骨架段与段 间接头外部设置 法兰块 , 以
图 5 拱 圈纵 向 分 段 示 意
便 吊装就位后迅速形成铰连接 , 最后再精确调整到施工拱轴 线要求的位置。劲性钢骨架安装精度要求 为 : 面内竖 向偏差 小 于 ±8m , m 面外水 平偏差小 于 ±1 m 劲性 钢 骨架 问相 3m ,
2 工程施工技术
本工程因桥梁跨径大 , 跨越河谷深, 若采用传统支架或
吊装施工法难以实现。经多种方案 比选 , 决定利 用两岸岩体 搭设缆索 , 采用缆 索吊装施工劲性 骨架及桥面 系。缆 索吊装
【 日期 】 0 7 0 — 8 收稿 20 — 3 2
维普资讯
可作为主拱圈一部分参与受力,是跨越 江河、峡谷等障碍的大跨径拱桥优选施 工方法之一 。以香溪 河大桥 为对 象,介 绍大跨 径
钢管混凝 土劲性骨架拱 肋的骨架制作 、拼装 ,内填 、外 包混凝土施 工过程 以及控制要 点。
【 关键词 】 拱形桥 钢管混凝土劲性骨架 拱 肋 施 工控制 【 中图分类号 】43 uJ ‘ 43 / 文献标识码 B
张征文 、 巍 、 王 江根 明: 大跨径钢 管混凝 土劲性 骨架拱桥 的施工及控 制 及抗风 缆设置 见图 3 图 4 、 。
第 4期
完成第①环混凝土的浇筑, 结构仍为两铰拱; 第②环浇筑拱
箱腹 板混凝土 、 横隔板及拱脚 实腹段 、 封闭拱脚 , 使拱圈形成 无铰拱 ; 第③环 浇筑拱肋 间底板混凝 土 ; 环浇筑拱 箱顶 第④ 板 混凝土 , 进而完成拱箱 浇筑 。 工中遵循的原则是 : 施 在上一

某特大跨劲性骨架拱桥外包混凝土浇筑方案比选研究

某特大跨劲性骨架拱桥外包混凝土浇筑方案比选研究

某特大跨劲性骨架拱桥外包混凝土浇筑方案比选研究
曹杨
【期刊名称】《西部交通科技》
【年(卷),期】2024()3
【摘要】为研究劲性骨架拱桥外包混凝土单工作面浇筑和多工作面浇筑对拱圈力学行为的影响,文章依托某工程实例,利用Midas Civil软件建立大桥外包混凝土浇筑仿真分析模型,对比分析了方案一“5工作面12工作段”和方案二“4工作面7工作段”两种施工方案下拱桥外包混凝土的应力、钢管应力及拱圈变形情况。

研究结果表明:两种方案下拱圈外包混凝土应力趋于一致,但方案一由于单次加载的混凝土湿重较大,造成钢骨架钢管应力水平和拱圈变形值均高于方案二。

综合考虑拱桥受力以及现场作业条件,大桥外包混凝土施工采用方案二。

【总页数】4页(P146-148)
【作者】曹杨
【作者单位】广西路桥工程集团有限公司
【正文语种】中文
【中图分类】U448.22
【相关文献】
1.劲性骨架混凝土拱桥外包混凝土分环浇筑方案对结构受力的影响
2.铁路大跨度劲性骨架拱桥外包混凝土浇筑方案分析
3.600 m级劲性骨架拱桥外包混凝土浇筑方
案4.劲性骨架拱桥拱圈外包混凝土分环连续浇筑方案研究5.大跨径钢管混凝土劲性骨架拱桥外包混凝土浇筑顺序研究
因版权原因,仅展示原文概要,查看原文内容请购买。

大跨度钢管混凝土拱桥设计与施工综述

大跨度钢管混凝土拱桥设计与施工综述

金华职业技术学院学报
% ( ( " 年
接。为了比较这两种桥道系结构的力学性能与行车 条件, 这里选取一个节间的桥面结构用薄板有限元 理论进行分析, 连续桥道系简化为对边夹支对边自 由板, 简支桥道系简化为对边简支对边自由板。计 算结果 显示:
!"#
的所有焊缝( 包括拱脚三角铰在内) 应达到一级焊 缝标准, 其余均为二级焊缝标准。焊缝的内部质量 检验按以下要求进行: ( 对接接头焊缝应 $((, 进行超声波探伤, 并 $) 抽取不小于其焊缝长度的 $/, 进行射线探伤; ( 角焊缝应 $((, 进行超声波探伤; %) ( ")若经超声波探伤已可认定焊缝存在裂缝, 则应判定焊缝质量不合格; ( 若用超声波探伤不能确认缺陷严重程度的 0) 焊缝, 应补充进行射线探伤, 并以射线探伤为准。
1*" 11" !," !/" !3* !)3 !)" !1, !1* !13 !!" !", !"! !"" !""
!"""
施工中
!""% %22, !""" !""% !""" %222 !""% !""% %222 !""" %22/ %223
施工中
! 设计
!"! 拱轴线的选择
拱轴线形状直接影响 主 拱 截 面 内 力 的 分 布 和 大小, 选择拱轴线的原则就是尽可能降低由, 必须用扣索斜拉到 塔架上, 拱肋分段长度要考虑到起吊能力和扣索的 拉力。缆索吊装系统和斜拉扣挂系统( 图 %) 均是施 工临时设备, 但由于它们在大跨径拱桥施工中的重 要性, 必须单独设计计算和施工。千斤顶斜拉扣挂 悬拼 架 设 法 在 大 跨 径 钢 管 混 凝 土 拱 桥 施 工 中 普 遍 采用, 其主要优点 !&1 2#是: 采用强度高、 承载力大、 延伸量小、 变形稳 ( $) 定的钢绞线作斜拉索, 减小了架设过程中的不稳定 非弹性变形; ( %)采用千斤顶张拉系统对斜拉索加卸拉力、 收放索长, 张拉能力大, 行程控制精度高, 索力调整 灵活, 锚固可靠; ( 斜拉扣挂体系自成系统, 不受缆索吊装系 ") 统干扰; ( 可以准确计算悬拼架设过程中各施工阶段 0) 的索 力 、 延 伸 量 以 及 由 此 产 生 的 大 段 接 头 预 抬 高 量, 作为施工监测适时控制的依据。

浅谈大跨度钢管混凝土拱桥的施工方法 袁勇军

浅谈大跨度钢管混凝土拱桥的施工方法 袁勇军

浅谈大跨度钢管混凝土拱桥的施工方法袁勇军摘要:对我国现有的大跨度钢管混凝土拱桥施工方法进行了总结对比,指出各施工方法的优缺点和适用条件,并给出各自的应用实例,为以后该类桥梁的施工提供一定的参考。

关键词:大跨度钢管混凝土拱桥、施工方法引言大跨径拱桥施工中,由于环境、施工荷载、施工方法、施工精度以及一些小确定因素的影响,主拱的变形和应力与预定的理想状态相比总会产生或多或少的偏移,为使主拱行为尽量向理想状态逼近,控制就成了不可缺少的手段。

目前,常采用的两类控制方法是外力平衡法和多点均衡法(亦称无外力控制法)。

顾名思义,前者是对需要调整的结构施加外力,凭借外力的作用来改变结构行为的方法,后者则是利用结构自身荷载,通过适当的加载方法来达到结构调整的目的。

外力平衡法是用得较多的一种方法,它主要包括锚索加载法、水箱加载法和斜拉扣挂法。

1锚索加载法锚索加载法是利用钢索把加载点和地锚相连,中间设置拉力紧固器,按计算加载量加载的方法。

这种方法最早在1980年修建辽宁省的蚂蚁桥时采用,其原理是利用拉力紧固器预加荷载于拱顶,使拱顶在混凝土浇注前产生向下的位移,避免混凝土从拱脚向拱顶浇注时拱顶上挠。

具体方法是在钢骨架反弯点以上部分设置拉索,系于河床的地锚上,施土时对锚索施加拉力,大小为拱肋相应节段重量的60%到90%,箱肋截而分为底板、腹板和顶板三环进行混凝上浇注,最后拆索成拱。

这种利用地锚加载的办法优缺点并存,优点是加载量控制方便,缺点是仅适用于旱地和干涸的河床。

2水箱加载法水箱加载法是在浇注拱箱混凝土时,在拱肋顶部布置水箱,随着混凝土浇注而的推进,根据拱箱特征,变形观测值,结合应力(应变)监测情况,通过对水箱加水加载和排水卸载实现对拱轴线竖向变形的控制和应力的调整,宜宾南门金沙江大桥施工中就运用了这种控制方法。

3斜拉扣挂法斜拉扣挂法在国外较早用于大跨径钢筋混凝土拱桥的无支架施工。

几年前,修建广西岂宁岂江大桥时,首次成功运用斜拉扣挂法作为拱桥主拱应力和变形的调整方法,其思路是借助钢骨架阶段吊装的扣索来调整混凝土浇注阶段内力,通过对扣索的张放,给拱肋施加一定量的拉力,以减少各浇注阶段混凝土产生的弯矩,从而达到减小应力、控制变形的目的。

钢管混凝土劲性骨架拱桥施工安全监控方法

钢管混凝土劲性骨架拱桥施工安全监控方法
技术应用
!"#$%&'&() *%+ ,*-."! =/08!%$'/8#"$!"#$
钢管混凝土劲性骨架拱桥施工安全监控方法
徐钰辉 刘振华
浙江华东工程咨询有限公司 浙江 杭州 2###!!
摘&要由于桥梁施工中结构的实测值与初始理论设计值有偏差这个偏差不及时有效地调整就会影响成桥的质量 以钢管混凝土劲性骨架为背景介绍一种有效的监控方法可为同类桥梁的监控提供参考和借鉴 关键词 钢管混凝土 劲性骨架 拱桥施工 监控方法 M/B#"82767 :N8BOOG8#""6 >$%%38!"#$8#"8"!#
线形监测主 要 对 主 拱 轴 线# 施 工 阶 段 悬 臂 端 头 的 竖 向 变 位#以及扣塔塔顶水平变位的测量& 根据施工方案和监测目 的$按如下方法布置测点*
主拱标高测点分别布置在拱肋上下游侧面$在左拱脚## :$ 拱## :3 拱#2 :$ 拱#拱顶#% :$ 拱#2 :3 拱#4 :$ 拱及右拱脚布置永 久变形监控点$上下游各 7 个监控点.主拱轴线测点布置在 # :$
阶段动态监测*位移动态监测#应力动态监测#温度动态 监测& &位移监测
桥梁的线形测量数据是施工控制的重要信息& 在本桥施 工监控中$由施工单位和监控单位平行进行线形测量& 在施工 各阶段$为考察拱圈的变形是否符合理论计算数据$需要在施 工过程中监测各控制截面的变形情况$包括竖向挠度#横向及 纵向位移& 考虑到温度等外界影响条件$测量时间将尽量选择 在早晨日出前或晚上温度相对恒定的时间进行& 28#&测点布置

钢管混凝土拱桥的施工方法和结构设计

钢管混凝土拱桥的施工方法和结构设计

钢管混凝土拱桥的施工方法钢管砼结构,由于能通过互补使钢管和混凝土单独受力的弱点得以削弱甚至消除,管内混凝土可增强管壁的稳定性,钢管对混凝土的套箍作用,使砼处于三向受力状态,既提高了混凝土的承载力,又增大了其极限压缩应变,所以自钢管砼结构问世以来,是桥梁建筑业发展的一项新技术,具有自重轻、强度大、抗变形能力强的优点,因而得到突飞猛进的发展。

在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。

其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。

1 拱肋钢管的加工制作拱肋加工前,应依理论设计拱轴座标和预留拱度值,经计算分析后放样,钢管拱肋骨架的弧线采用直缝焊接管时,通常焊成 1.2-2.0m的基本直线管节;当采用螺旋焊接管时,一般焊成12.0~20m弧形管节。

对于桁式拱肋的钢管骨架,再放样试拼,焊成10m左右的桁式拱肋单元,经厂内试拼合格后即可出厂.具体工艺流程为:选材料进场材料分类材质确认和检验划线与标记移植编号码下料坡口加工钢管卷制组圆、调圆焊接非坡口检验附件装配、焊接单节终检组成10m左右的大节桁式拱肋焊接无损检验大节桁式拱肋终检 1:1大样拼装检验防腐处理出厂。

当拱肋截面为组合型时,应在胎模支架上组焊骨架一次成型,经尺寸检验和校正合格后,先焊上、下两面,再焊两侧面(由两端向中间施焊).焊接采用坡口对焊,纵焊缝设在腔内,上、下管环缝相互错开。

在平台上按1:1放样时,应将焊缝的收缩变形考虑在内。

为保证各节钢管或其组合骨架拼组后符合设计线型,可在各节端部预留1cm左右的富余量,待拼装时根据实际情况将富余部分切除。

钢管焊接施工以“GBJD05-83、钢结构施工和施工及验收规范”的规定为标准.焊缝均按设计要求全部做超声波探伤检查和X射线抽样检查(抽样率大于5%)。

焊缝质量应达到二级质量标准的要求。

2 钢管混凝土拱桥的架设2.1无支架吊装法2。

1。

1缆索吊机斜拉扣挂悬拼法具体做法与其他拱肋的架设相似,只是钢管混凝土拱肋无支架架设方案用于较大跨度,它可根据吊机能力把钢管拱肋合成几大段进行分段对称吊装,并随时用扣索和缆风绳锚固,稳定在桥位上,最后合拢。

学者学人——顾安邦

学者学人——顾安邦

学者学人:彩虹上的舞者——记我国知名桥梁专家顾安邦教授题记:他是一个永不止步的舞者,只是他没有戏剧那样的舞台,也没有舞蹈家那样的红舞鞋。

他终生为之奋斗的目标就是不断在桥梁领域里做出进步,为祖国做贡献。

如今,他已年过古稀,他仍在这个领域里不停地舞动着奇迹。

生命与使命同行从万县长江大桥到邕宁邕江大桥,从虎门大桥到鹅公岩长江大桥,从巫山长江大桥到奉节长江大桥都留下了顾安邦深深的脚印。

1996年,顾教授承担了万县长江大桥综合技术研究中的“大跨钢管混凝土劲性骨架拱桥收缩、徐变及几何、材料、温度非线性因素影响研究”、“万县长江大桥特大跨(420米)钢筋混凝土拱桥设计施工技术研究”两个科研项目,向当时桥梁界的“禁区”发起了挑战。

自受命之日起,顾教授多次亲临万县实地考察,详细记录,同时在家中、图书馆广阅资料。

为了亲自取得第一手资料,顾教授不顾60多岁高龄,腰系绳索,手脚并用,足足用了50分钟,一步步从拱底爬向拱顶,观察记录。

经过理论分析、节段模型实验和实桥监测三个阶段的研究,顾教授终于完成了项目,对特大跨劲性骨架混凝土拱桥的徐变、收缩、材料、几何和温度等多种非线性因素影响进行了系统深入的研究,提出了相应的非线性分析理论和计算方法,解决了世界最大跨径钢管混凝土拱桥——万县长江大桥和广西邕宁邕江大桥、广西三岸大桥的分析和计算问题,并提出了世界最大跨度(420米)上承式钢筋混凝土拱桥设计施工成套技术,其研究成果达到了国际领先水平,总体上居于国际领先地位,并荣获2000年度国家科技进步一等奖和三等奖。

顾安邦教授的眼光不仅仅局限于混凝土拱桥,他的研究更涉足了悬索桥、斜拉桥、连续刚构桥等新型桥梁领域。

近年来,顾教授每年都完成了1-2项国家级或省部级重大课题,在特大跨桥梁的非线性分析、空间分析、稳定分析和施工监控方面成就等身,获得国家科技进步一、二、三等奖各一项,部、省、市级科技进步奖若干项,在桥梁界产生了重大影响,获得了显著的社会效益和经济效益。

1B413040一建《公路管理与实务》大跨径桥梁施工20道(带答案解析)

1B413040一建《公路管理与实务》大跨径桥梁施工20道(带答案解析)

一建公路管理与实务第 1题:多选题(本题2分)挂篮的组成有主桁架、悬吊系统以及()。

A、拆除系统B、平衡重C、锚固系D、行走系统E、工作平台底模架【正确答案】:BCDE【答案解析】:2017版教材P186页主要考察悬臂梁起步段施工挂篮由主桁架、悬吊系统、锚固系统与平衡重、行走系统以及工作平台底模架等组成。

挂篮设置除应保证强度安全可靠外,还应满足变形小、行走方便、锚固、装拆容易以及各项施工作业的操作要求,并注意安全防护设施第 2题:单选题(本题1分)在浇筑箱梁顶板和翼板混凝土时,为防止混凝土开裂,浇筑顺序应为()。

A、从内侧向外侧分两次完成B、从内侧向外侧一次完成C、从外侧向内侧分两次完成D、从外侧向内侧一次完成【正确答案】:D【答案解析】:2017版教材P201页该题主要考察:箱梁混凝土的浇筑(悬臂浇筑)浇筑顶板及翼板混凝土时,应从外侧向内侧一次完成,以防发生裂纹。

第 3题:多选题(本题2分)按照加劲梁的支承结构不同悬索桥可分为()悬索桥。

A、单跨两铰加劲梁B、两跨两铰加劲梁C、三跨连续加劲梁D、三跨两铰加劲梁E、四跨两铰加劲梁【正确答案】:ACD【答案解析】:2017版教材P209页按照加劲梁的支承结构不同悬索桥可分为单跨两铰加劲梁、三跨两铰加劲梁和三跨连续加劲梁悬索桥。

第 4题:多选题(本题2分)斜拉桥混凝土主梁的施工方法有()。

A、顶推法B、平转法C、竖转法D、悬臂法E、支架法【正确答案】:ABDE【答案解析】:2017版教材P205页主要考察混凝土主梁2016版教材P195(-)主梁的特点及施工方法由于斜拉桥主梁的支承形式为多点连续支承,而且支承间距小,与梁式桥相比,斜拉桥的主梁梁体高跨比较小,斜拉桥的主梁跨越能力大、建筑高度小,把斜拉索索力的水平分力作为轴力传递。

主梁施工方法与梁式桥基本相同,大体分四种:1.顶推法;2.平转法;3.支架法(临时支墩拼装、支架上现浇);4.悬臂法.(悬臂拼装、悬臂浇筑).第 5题:多选题(本题2分)大跨径劲性拱圈混凝土拱圈(拱肋)的浇筑方法有()。

大跨度钢管混凝土劲性骨架拱桥极限承载力分析

大跨度钢管混凝土劲性骨架拱桥极限承载力分析
维普资讯
第3 2卷 , 4期 第 200 7 年 8 月
公 路 工 程
Hi h y En i e rn g wa g n e i g
Vo . 2,No 4 13 .
Au g. , 2007
大 跨 度 钢 管 混凝 土 劲 性 骨 架拱 桥 极 限承 载 力分 析
[ src ] nt ak ru do e ol er h rc r t s f tr l n em tc ei u- Abta t O eb cgo n t ni a c aat ii ei dgo er s nd r h fh n n e sc o ma a a id g
[ y w r s oce —l d s e tb ;sf nn - a e lm t la a ai ;f i lm n Ke o d ]cn r efl t l u e tf igf m ;ut ae od cp ct i t e e t ti e e ie r i y ne e
Uli a e Lo d Ca a iy An l ss o n - p n tm t a p ct a y i f Lo g S a Co c e e fl d S e lTu e S i e i -r m e Ar h Brd e n r t - l t e b tf n ng f a c i g i e
叶梅 新 ,刘 东芳
( 中南 大 学 土 木 建 筑 学 院 , 南 长 沙 湖 407 ) 105
[ 摘
要 ]针 对 大 跨 度 钢 管混 凝 土劲 性 骨架 拱 桥 在 变 形 、 稳 破 坏 期 间 产 生 的材 料 和 几 何 非 线 性 特 性 。 这 种 失 对
桥 型 的非 线 性 分 析 理 论 和分 析 方 法 进 行 了 研 究 , 以宜 万 线 上 某 大 桥 为 例 , 行 了 静 力 荷 载 作 用 下 的 极 限 承 载 力 并 进 分析 ; 此外 , 该 桥 的 剐 度 问 题 、 计 荷 载 下 的 应 力 控 制 区域 等 问 题 进 行 了研 究 。 研 究 结 果 表 明 , 管 混 凝 土 肋 拱 对 设 钢 具 有 较 好 的弹 塑 性 性 能 和 较 高 的 承 载 能 力 。

钢筋混凝土拱桥施工—劲性骨架施工

钢筋混凝土拱桥施工—劲性骨架施工
万县长江大桥
二、劲性钢骨架法施工步骤
1、在现场按设计进行骨架1:1放样、下料、加工以及分段拼装成型。 2、采用缆索吊装法进行骨架的安装、成拱。对钢管混凝土骨架,在吊装形成钢管 骨架后还需采用泵送法浇筑管内混凝土,形成最终的骨架结构。 3、在骨架上悬挂模板浇筑混凝土拱圈(分环、分段、多工作面进行)。 4、拱上结构及桥面系等结构的浇筑及铺设。
四、劲性骨架拱桥施工工程实例
2、劲性骨架安装 每段平卧钢骨架利用滚筒移至桥台,再将钢骨架竖转90°。用平车将钢骨架运至
起吊位置,由吊运天线运至安装位置,先用螺栓将各段进行临时连接,待钢骨架合拢 调整后再将各段接头焊接。
桁架起吊
第一桁段安放在拱座的支座管内
第二桁段起吊准备安装
骨架桁段间法兰盘贴合面调整
图1:万县长江大桥拱箱混凝土浇筑横向分环
4、万州长江大桥拱箱混凝土浇筑分环、分段实例
(2)万州长江大桥拱箱混凝土浇筑分段:如右图2每环分为六个和八个工作面,每个工作面又细 分为12-13个工作段。
图2:万州长江大桥拱箱混凝土纵向浇筑顺序
钢筋混凝土拱桥的劲性骨架施工 ——拱圈混凝土运输及变形观测
一、拱圈混凝土运输
1、 线性控制的方法有:锚索假载法、水箱调载法、千斤顶斜拉扣挂调载 法、多工作面法四种。 (1)锚索假载法:将锚索固定在河床的地锚上,锚索与地锚之间装有拉力计 和紧固器,用以施加假载。在拱箱混凝土浇筑时,根据各施工阶段的拱圈受力 和骨架变形,调整锚索拉力,以保证劲性骨架的线性和稳定性。这种方法操作 难度大,场地要求高,效果不理想。
钢筋混凝土拱桥的劲性骨架施工 ——拱桥劲性钢骨架法
一、劲性钢骨架施工法概述
劲性骨架施工法:是指在事先架设的拱形劲性骨架上,围绕骨架分环分段浇筑 混凝土,最终形成钢筋混凝土拱圈(肋)的一种施工方法。劲性骨架在施工过程中 起拱架作用,在拱圈形成后被埋于混凝土中,所以,劲性骨架法又称埋置式拱架法, 国外也称米兰法。用这种方法施工的钢骨架,不但须满足拱圈的要求,而且施工中 还起临时拱架的作用,因此,须有一定的刚性。一般选用劲性钢材如角钢、槽钢、 钢管等作为拱圈的受力钢筋。

钢管混凝土拱桥施工技术浅述

钢管混凝土拱桥施工技术浅述

钢管混凝土拱桥施工技术浅述1.大跨度上承式钢管混凝土拱桥的施工过程大跨径上承式钢管混凝土拱桥,一般采用无支架施工法,即先用缆索吊装系统分段吊装空钢管拱肋,待全部吊装完毕后进行各段的固结,然后以钢管作为劲性骨架灌注管内混凝土,等到整个钢管混凝土拱圈成形且管内混凝土达到一定强度后,即可安装拱上立柱及横梁及,在横梁上安装桥道系,最后进行桥面铺装。

大跨径上承式钢管混凝土拱桥施工的主要工序如下:(1)在工厂以1:1的比例进行拱肋放样,并进行钢管拱架大样制作(考虑预拱度),拼装钢管拱架,并对完成组拼钢管拱肋暴露部位及其它型钢进行喷锌或喷铝等构件防锈处理。

(2)拱座施工。

拱座施工时,应结合“主拱圈拱脚铰接头设计图”预埋主管节段、钢板、钢筋等连接构件,并要求预埋件定位准确。

同时注意预埋交界墩钢筋。

(3)在桥位处利用两岸架设缆索吊装系统,两条拱肋交错悬臂架设。

根据吊重能力将空钢管拱助分几段架设。

各段钢管架的吊运,根据现场地形条件可分别采取现场预制拼装架设及工厂加工、现场吊装的方法施工。

为确保安全,每段接头处两拱肋间安装临时钢析架横梁,组成多层框架体系。

(4)安装X撑、K型撑的劲性钢骨架及其它临时横撑。

(5)在拱肋的控制截面上贴电阻片,并安装变位观测标记,供施工控制中观测应力、变形用。

(6)拱肋钢管混凝土浇灌。

对于钢管混凝土结构来说,钢管就是很好的模板,既经济又安全。

但是,对管内混凝土的浇灌质量,无法直观检查,为保证浇灌质量必须依靠严密的施工组织、明确的岗位责任制。

對不密实部位可采用钻孔压浆法进行补强,然后钻孔补焊封固。

(7)拱上结构和桥面系的安装。

拱肋混凝土浇灌完毕且达到一定强度后可安装立柱、横梁,然后进行桥面系施工。

(8)进行全桥钢结构的防腐涂装维护。

2. 施工前的工程控制桥梁工程控制一般由施工前的控制和施工中的控制两大部分组成。

对于钢管混凝上拱桥而言,施工前的控制主要指的是:大跨度钢管混凝土拱桥拱肋型式的选择、预拱度的计算和设置、主拱圈标高及线型的计算。

大跨径钢筋混凝土拱桥劲性骨架施工线形测量控制技术

大跨径钢筋混凝土拱桥劲性骨架施工线形测量控制技术

大跨径钢筋混凝土拱桥劲性骨架施工线形测量控制技术李波【摘要】南盘江特大桥是云桂铁路全线的重难点控制性工程,也是世界客货共线铁路中最大跨度的上承式钢筋混凝土拱桥,施工难度位居世界同类桥梁前列.对主桥416 m劲性骨架斜拉扣挂式无支架缆索吊吊装施工的线形控制进行研究探讨.在施工过程中以测量控制为基础,结合实际的地形情况,建立独立的测量控制网,对劲性骨架吊装过程中轴线、标高进行监测,提高了劲性骨架的合龙精度,为后续同类型大跨度、多节段劲性骨架安装施工提供了参考.【期刊名称】《国防交通工程与技术》【年(卷),期】2015(013)003【总页数】6页(P70-73,6,13)【关键词】拱桥;劲性骨架;线形控制;测量技术【作者】李波【作者单位】中铁十八局集团有限公司,天津300222【正文语种】中文【中图分类】U448.2251 工程概况云桂铁路南盘江特大桥主桥为416m上承式钢筋混凝土拱桥,拱圈立面为悬链线,拱轴系数m=1.8,矢高99m,矢跨比1/4.2,采用劲性骨架法成拱(具体桥跨结构布置见图1)。

劲性骨架采用双幅四管变截面钢管桁架组合结构,全拱划分为38个吊装节段、2个拱脚预埋段和1个跨中合龙段。

钢管型号为∅750mm×22mm钢管,拱肋间以“米”字型横撑相连,节间采用直线钢管,以折代曲成拱形。

劲性骨架沿拱轴线方向为等高,上、下弦钢管中心桁高7.5m;拱顶286m段为16.8m等宽,拱脚65m段通过外侧桁片外倾实现16.8~26.8m变宽。

桁架拱肋两桁片在等宽段桁距为3.5m,变宽段桁距为3.5~8.5m变化(拱圈结构形式见图2)。

图1 南盘江特大桥结构布置图(单位:m)图2 风缆布置图(单位:mm)2 施工总体思路及测量方案劲性骨架加工过程中采用大桥原坐标系与加工过程的独立小坐标系相互转换的方式,保证加工结构尺寸的精度。

合理布置测量控制网,减小测量垂直角度,同时根据现场地形尽可能的缩短观测距离,以最大限度的提高高程测量精度。

考虑施工过程的大跨径钢管混凝土劲性骨架拱桥受力分析

考虑施工过程的大跨径钢管混凝土劲性骨架拱桥受力分析

©
96
铁 道 勘 察
2010 年第 1 期
土箱型 ,拱脚有 3 m 长实心段 ,两片分离拱肋采用提篮 式布置 ,倾角为 51057°,拱顶内倾 315 m。拱立面内矢 高为 3915 5 m ,拱肋轴线为悬链线 ,拱轴系数 m = 2181 4 m。拱上立柱为 双柱墩 , 在拱肋 立柱及拱 顶设 横撑 。 拱顶 4715 m长的一段做成框架 ,每隔 915 m 设一道断 缝 ,两侧各采用 1联 5 ×14 m 连续梁 。
2 施工顺序
本桥施工的顺序为 : ①拱肋的施工 ; ②拱上立柱的 施工 ; ③拱上框架的施工 ; ④脚手架上施工桥面纵梁 。 其中 ,拱肋的施工步骤又分为 :先用缆索吊装施工钢管 骨架 ,然后灌注管内混凝土 ,待混凝土达到设计强度后 再分环灌注外包混凝土 。按结构性质 ,拱肋将经历三 种状态 [ 7 ] 。
非常复杂 ,往往控制设计 。本文以宜万线铁路上某桥 为例 ,应用大型有限元软件 ANSYS做空间有限元精细 模拟 ,进而对结构安全性作出综合评价 ,为类似拱桥的 设计提供依据 。
1 工程概况
该大桥位于 直线 上 ,桥上纵坡为 17. 7‰, 为 Ⅰ级
图 1 桥梁结 构总 布置 (单位 : cm )
考虑施工过程的大跨径钢管混凝土劲性骨架拱桥受力分析 : 王 锋 王平利
95
文章编号 : 167227479 ( 2010) 0120095203
考虑施工过程的大跨径钢管混凝土 劲性骨架拱桥受力分析
王 锋 1 王平利 2
( 11铁道第三勘察设计院集团有限 公司 , 天津 300142; 21中交一航局第四工程有限公司 , 天津 300456)
本文主要基于以下原则来选择单元 : ①选取的单 元必须能最大程度地模拟结构的受力特性 ;

浅谈大跨度钢管混凝土拱桥的施工方法

浅谈大跨度钢管混凝土拱桥的施工方法
建 筑 , 0 22 2 23 () 0
[] 8 葛洪 波 , 青 兰. 州某 综合 楼抽 柱 改造 设 计 … 工程 设 计 , 徐 扬
2 (4 01)
『] 9李安起 , 张鑫等 某框 架结构抽 柱托换工程 实践… . 四川建 筑科
学研 究 ,0 43 ( ) 20 ,0 3 . f0 许 良. 11 多层砖 木楼房的托换设计与施 工[] 工技 术 ,973 I施 19 [ 1 唐晓慧 , 1] 吴丹丹等 钢 筋混凝 土 夹砖组 合梁在拆墙扩跨 中的应 用[] 用技 术,0 43 1应 2 0 [2 饶 卫 东, 丽丽. 1] 邱 砖混 结构房屋底层拆墙 增加梁柱 的施 3 -实践 … 洛 阳工业高等专科 学校 学报 ,0 1 20 6
本 工程 改造加 固的施工 关键是确 保纵 横墙体砌 体拆 除时 保 障上 部结构安全 并平稳地将 上部荷载转移到抬梁上。
三、 结语
改 造加 固技术在 我 国如 今已有 了很大 的发展, 方面技 术都 比较 各 成熟 。以上几个 工程实例 只是建筑 物改造 中的很 少一部 分, 建筑 物改 造还 有很 多内容, 且具体 工程 中还 有具体 的难题 有待于 我们探 索出 而 更 好 的解 决 方法 。
斜 拉 扣 挂 法 在 国 外 较 早 用 于 大 跨 径 钢 筋 混 凝 土 拱 桥 的 尤 支 施 T。几年前 , 修建广西岂宁 岂江大桥时 , 次成功运, 斜拉扣挂 法作为 首 L } J 拱桥 主拱应 力和变形 的调整 方法 , 思路是借 助钢骨架 阶段 吊装 的 其 索来调整混 凝土浇注阶段 内力 , 通过对扣 索的张放 , 给拱月J j 施加 一定量 的拉 力 , 减 少各 浇 注 阶段 混 凝 土 产 生 的 弯 矩 , 而 达 到减 小 应 力 、 以 从 控 制变 形的 目的。此法与前 面提到 的两 种外力平 衡法反其道 而行之 , 锚 索加 载法 和水箱加载法都是通过外 力 , 给主拱 施加方 向向下 的荷载 , 斜 拉扣挂法则 通过扣 索给主拱施 加方向为斜上的荷载 。 4多 点 均 衡 浇 注法 . 多点 均衡浇注法 , 即混凝土 的浇注分多个 作步进行 , 它是我同传 统 的双 曲拱桥 拱板混凝 土的浇注方 法。在 大跨 径劲性 骨架拱桥 中 , 万 县 长江大桥首次采用这种方法 。这 种方法是采用横 向分环 纵向分段的 方法来 浇注主拱圈外包混凝 土 , 在主拱 拱箱混凝土 , 尤其 是底板混凝土 的浇注过程 中 , 多个 工作 步作业 , 劲性骨 架受力相对 均匀 , 而使劲 使 从 性 骨架应力分配均匀 , 变形 和顺 。在超大跨劲性骨架混凝 土拱桥 叶 , l拱 圈混凝土 的数 量往往都 很大( 万县长江 大桥 为 10 4 , 如 15 m )依靠 外力荷 载进行拱罔的调整是很不经 济的 , 一是所需的外荷载数 量惊 人 , 设备投 入大 ; 二是 过大的外 荷载 , 尤其是 锚索 、 箱等 白重 方向的外荷 载在拱 水 圈得到调整的同时也大大增加 了骨架 的负担 。 以上 四种 拱桥 的控 制方法各具 特色 , 索加载法 和水箱加 载法荷 锚 载大小容易控制 , 以大方量连续浇注 凝土 , 可 昆 T期 可在一定程度上得 到缩短 , 但外荷载增 加了主拱的负担 。斜拉扣挂法 , 从力学原理来说是 较好 的一 种变形 和应 力调整方 法 , 扣索 斜向托力 的竖向分 量可部分抵 消混凝土 的 自重 , 轻主拱的负担 。在倾角很 大时 , 减 扣索托 力产牛 的劲

大跨钢管混凝土拱桥施工控制和质量检验要求

大跨钢管混凝土拱桥施工控制和质量检验要求

大跨钢管混凝土拱桥施工控制和质量检验要求1施工控制1.1钢管拱肋节段宜采用卧式耦合制造工艺。

拱肋节段预拼装时,应计入温度的影响。

1.2拱肋节段安装标高应按施工监控指令确定,轴线偏位宜控制在IOmm以内。

拱肋节段安装坐标和索力的计算宜采用扣索一次张拉优化计算方法。

1.3斜拉扣挂系统的塔架宜设置塔顶偏位主动调控系统。

1.4管内混凝土灌注顺序应符合现行中国工程建设标准化协会《钢管混凝土拱桥管内混凝土施工技术标准》T/CECS1047的相关规定,宜遵循先灌注拱肋下弦管后上弦管、先内侧管后外侧管的原则,控制钢管初应力、拱顶上挠和管内混凝土拉应力,必要时可采用预留扣索方式调控。

1.5管内混凝土灌注施工宜采用真空辅助,施工前应开展抽真空密闭试验。

管内混凝土灌注施工分级参考现行标准《钢管混凝土拱桥管内混凝土施工技术标准》T/CECS1047的相关规定。

1.6桥面梁安装前,应计算确定吊、系杆及钢构件的无应力制造参数;桥面铺装前,应对吊索或拱上立柱的标高进行检测;桥面铺装后,宜对桥梁线形、应力、索力进行一次通测。

1.7施工过程宜结合BBR信息化管理系统、物联网等技术提高拱桥施工质量。

2质量检验1.11钢管制作完成后,应对外形尺寸进行检验,钢管制作尺寸允许偏差应符合现行行业标准《公路钢结构桥梁制造和安装施工规范》JTG/T3651的相关规定。

1.2应对所有焊缝外观检查,外观检验合格后应对焊缝质量等进行无损检测。

焊缝外观检查和无损检测质量等级及检测范围应符合现行行业标准《公路钢结构桥梁制造和安装施工规范》JTG/T3651的相关规定。

1.3应对各道涂层和涂层体系的外观质量、涂层厚度和附着力进行检验。

涂层外观应100%检查、整个表面均要满足外观要求。

可采用漆膜测厚仪和磁性测厚仪检验厚度,检验方法应符合现行国家标准《色漆和清漆漆膜厚度的测定》GB/T13452.2和《热喷涂涂层厚度的无损测量方法》GB/T11374的相关规定;可采用划格法、划叉法和拉开法检验附着力,并应符合现行漆膜附着力测定标准。

钢管混凝土劲性骨架拱桥施工(详细)

钢管混凝土劲性骨架拱桥施工(详细)

目录第1章绪论 (1)1.1 选题的背景与意义 (1)1.2 铁路拱桥设计施工技术研究现状 (2)1.3 本文主要工作内容及其意义 (3)1.3.1 本文主要工作内容 (3)1.3.2 本文工作意义 (3)第2章钢管混凝土拱桥构造简介 (4)2.1 钢管混凝土拱桥的组成及结构 (4)2.2 钢管混凝土结构的特点 (5)2.3 构件构造 (5)第3章劲性骨架和扣索系统的仿真分析 (7)3.1 工程背景 (7)3.1.1桥址概况 (7)3.1.2主要技术标准 (7)3.1.3线路资料 (7)3.1.4地质资料 (8)3.1.5水文资料 (8)3.1.6气象资料 (8)3.1.7立交资料 (9)3.1.8通航资料 (9)3.1.9本桥采用参考图号 (9)3.1.10孔跨布置 (9)3.1.11墩台及基础 (10)3.1.12主桥1-140米上承式拱桥设计 (10)3.2 劲性骨架施工过程基于米IDAS的模型建立 (14)3.2.1 米IDAS软件的基本介绍 (14)3.2.2 劲性骨架和扣索基于米IDAS的仿真模型 (14)3.2.3扣塔结构基于米IDAS的仿真模型 (24)第4章混凝土浇筑基于米IDAS软件的仿真分析 (28)4.1 工程简介 (28)4.2 混凝土拱圈浇筑基于米IDAS的模拟 (29)4.2.1 结构建模 (29)4.2.2 结果分析 (30)第5章拱上立柱浇筑基于米IDAS软件的仿真分析 (35)5.1 工程简介 (35)5.2 拱上立柱施工基于米IDAS的模拟 (36)5.2.1 结构建模 (36)5.2.2 结果分析 (36)第6章桥面施工及桥面荷载基于米IDAS软件的仿真分析 (38)6.1 桥面施工 (38)6.1.1 工程简介 (38)6.1.2 桥面施工过程基于米IDAS的模拟 (38)6.2运营阶段车辆荷载 (40)6.2.1 工程简介 (40)6.2.2 车辆荷载基于米IDAS的模拟 (40)第7章结论与展望 (44)7.1 结论 (44)7.2进一步研究的设想和建议 (44)参考文献 (45)致谢 (46)附录A (47)附录B (89)第1章绪论1.1 选题的背景与意义拱桥,由于造型美观,受力性能优越,历史文化内涵丰富,历来是我国桥梁结构的一种主要桥型.拱桥的发展和其它桥梁一样,始终受力学、材料科学和施工技术的制约.到公元18世纪,工业革命中钢铁的发展以及波特兰水泥的发明和钢筋混凝土的出现引发了桥梁的技术革命.拱桥上部结构轻型化是拱桥发展的关键,而钢管混凝土结构解决了拱桥材料高强化和拱圈施工轻型化的两大难题,得到了迅速的应用推广.钢管混凝土拱桥技术日益提高,是拱桥的发展方向.世界上最早修建的钢管混凝土拱桥是上世纪30年代前苏联建造的跨越列宁格勒涅瓦河的跨度为101米拱梁组合体系桥和位于西伯利亚跨度为140米的析肋拱桥.以后又出现了曾创下世界记录的跨度为390米的前南斯拉夫KRK大桥.然而,钢管混凝土拱桥的真正发展是在90年代的中国.1990年建成的四川宜宾南门金沙江大桥为标志系中承式劲性骨架混凝土肋拱桥,跨度240米,居当时中承式拱桥世界第一;1995年广东省建成了跨度200米的南海三山西中承钢管混凝土拱桥、居钢管混凝土拱桥世界第一.1996年建成的广西邕宁邕江大桥跨度选312米,把中承式劲性骨架混凝土拱桥世界记录提高了72米;四川万县长江大桥就是劲性骨架混凝土拱桥,该桥跨度420米,把上承式拱桥的世界记录由南斯拉夫KRK大桥的390米提高了30米..这些跨度记录和取得的设计施工经验及科研成果说明,目前我国拱桥已面跃居世界拱桥先进行列.随着经济建设的迅速发展,我国城市交通的桥梁建设亦进入迅速发展时期.为改善城市交通,加强与周围地区的联系,人们日益要求跨越江河、海湾和山谷,建造安全、经济和轻盈美观的大跨桥梁.为此,除需要改进桥梁设计计算的理论和方法外,还需要改进架桥的施工技术和发展高强轻质的新结构材料.拱桥的施工大致可以归纳为两大类:有支架施工和无支架施工.有支架施工主要用于中小跨径的石拱桥和钢筋混凝土拱桥(现浇混凝土拱桥及混凝土预制块砌筑的拱桥);无支架施工主要用于大跨度拱桥.常用的无支架施工方法有:悬臂施工法、缆索吊装施工法和转体施工法等.钢管混凝土正是这种高强轻质且便于施工的高效结构材料,其单位质量的承载力与钢材接近,甚至可能比钢材还要强;其钢管兼具安装架设阶段的劲性骨架、灌注混凝土阶段的模板和钢筋、以及运营阶段对核心混凝土的套箍约束等多种功能,较全面地解决了桥梁结构所要求的用料省、安装重量轻、施工简便、承载能力大等诸多矛盾.所以钢管混凝土被公认为是建造大跨度拱桥的一种比较理想的结构材料.同时,本课题以在建的向莆铁路某钢管拱特大桥为依托,对大跨度钢管拱桥的设计、施工方法进行研究,所使用的设计计算方法和相应的施工技术都属于当前国内铁路拱桥的主流方向,对该课题的研究学习,对我们今后的学习和工作具有重要意义,对实际工程的建设也具有一定的参考价值.1.2 铁路拱桥设计施工技术研究现状根据国内外大跨度拱桥设计与施工的经验,劲性骨架在修建拱桥时既是便利的施工受力结构,采用钢管混凝土结构作弦杆后,强度与稳定性都较易得到保证;又是成桥后理想的受力结构.不浪费材料.因此,劲性骨架施工适用于特大跨度拱桥施工,在铁路桥梁中应用广泛.在我国,铁路劲性骨架混凝土拱桥由于铁路拱桥的荷载特点、结构型式和安装方法形成了钢管结构制作与安装工艺的复杂性和特殊性, 形成了铁路钢管拱桥整个施工工艺的核心.如何简化铁路拱桥劲性骨架的设计和施工成为当前研究的热点和难点.铁路大跨度钢管混凝土拱桥就目前情况看, 结构的制作和安装工艺具有“高、难、新”的特点, 施工时, 必须充分利用工厂制作的优势条件, 重点放在结构工地焊接质量的保证和安装精度的控制上, 围绕它, 要形成制作安装工艺和质量保障系统.施工方法是大跨径拱桥最关键的技术.我国钢管混凝土拱桥的空钢管拱肋架设由以往的满堂支架上施工发展到无支架施工.目前我国拱桥主要施工方法有:转体施工法、缆索吊装法、支架施工法、悬臂拼装法等.转体法施工可减少大量的高空作业,施工安全、质量可靠,节省较多的临时支架,并可大幅度的减少对桥下交通的干扰,是具有明显技术、经济效益的一种桥梁施工方法. 转体法施工有平面转体、竖向转体和平竖结合转体三种.缆索吊装施工是目前拱桥劲性骨架施工的主要方法之一.其工序大致包括:拱肋的预制、拱肋的移运和吊装、主拱圈的安装、拱上建筑施工、桥面结构施工等.缆索吊车由塔架、主索、牵引索、起重索、起重小车(行车)和风缆等构成.有支架施工常用满堂拱架、墩梁拱架、拱式拱架等.其优点是比较简单,但占用大量器材.我国现有常备式钢拱架有两种:工字梁拱式拱架和桁架式拱架.另外还可以用其它制式构件组拼拱式拱架.特别常见的是利用军用器材,这种器材具有结构简单、拼组方便、适应性强、机械化作业程度要求低等特点.悬臂施工法施工要点是:将拱圈(肋)、立柱与纵、横梁对称地分成几段,加上临时斜拉(压)杆、上弦杆预先组成桁式框架,用拉杆或缆索锚固于台后,然后用扒杆或吊车向跨中逐段悬臂施工,最后在拱顶合龙成拱.以上四种方法各有利弊,在实际中,要综合分析选择实现工程效益的最优的一种.1.3 本文主要工作内容及其意义1.3.1本文主要工作内容以在建的向莆铁路某钢管拱特大桥为依托,对大跨度钢管拱桥的设计、施工方法进行研究.本课题主要针对悬臂拼装法进行施工技术分析.因此,本文主要研究以下几个问题:(1)劲性骨架施工过程基于米IDAS软件的模型建立(2)混凝土浇筑(四环六面法)基于米IDAS软件的模型建立(3)拱上立柱施工基于米IDAS软件的模型的简化和计算(4)桥面部分及桥面荷载基于米IDAS软件的模型的简化和计算1.3.2本文工作意义本课题以在建的向莆铁路某钢管拱特大桥为依托,对大跨度钢管拱桥的设计、施工方法进行研究,所使用的设计计算方法和相应的施工技术都属于当前国内铁路拱桥的主流方向,对该课题的研究学习,对我们今后的学习和工作具有重要意义,对实际工程的建设也具有一定的参考价值.本文在系统的介绍了铁路劲性骨架混凝土拱桥概况之后,采用悬臂拼装法施工,使用目前应用广泛的通用大型有限元分析软件米IDAS对工程实际施工的全过程进行模拟和分析,得出一些结论,对实际施工和相关研究具有一定的参考价值.第2章钢管混凝土拱桥构造简介钢管混凝土用在拱桥上有两种形式:一是直接用做主拱结构,即钢管混凝土拱桥;二是利用钢管混凝土作为劲性骨架,然后围绕骨架浇筑混凝土,把骨架作为混凝土的钢筋骨架,不再拆除.后者严格来讲应该称为钢筋混凝土劲性骨架拱桥,而本文研究的即是此类型拱桥.2.1 钢管混凝土拱桥的组成及结构钢管混凝土拱桥由钢管混凝土拱肋、立柱或吊杆、横撑、行车道系、下部构造等组成.钢管混凝土拱肋是主要的承重结构,它承受桥上的全部荷载,并将荷载传递给墩台和基础.钢管混凝土拱桥结构轻盈,恒载集度比较均衡,因此拱轴系数比较小,一般在1.167~2.24之间,跨径小者取大值,跨径大者取小值,矢跨比在14~18之间比较合理.拱轴线采用悬链线或二次抛物线.根据行车道的位置,钢管混凝土拱桥亦分为上承式、中承式及下承式三种情况.本课题研究的是上承式拱桥的悬拼施工.图2-1 上承式拱桥正面图2.2 钢管混凝土结构的特点(1)构件承载力大大提高①由于钢管内混凝土处于三向受压状态,因此不但提高了承载力,而且还增加了极限压缩应变,这是钢管混凝土结构承载力提高的根本原因.②薄壁钢管在轴心压力作用下,管壁上存在凸凹缺陷,因而有稳定控制的承载力较低.对于钢管混凝土构件,钢管保护了混凝土,使其三向受压,而混凝土又保证了薄壁钢管的局部稳定,相互弥补了彼此的缺点,充分发挥了彼此的有点,因而承载力提高.(2)具有良好的塑性和韧性试验表明,当含钢率大于4%时,钢管混凝土柱在破坏阶段,柱长可以压缩到原长的23,完全无脆性破坏的性质.由于钢管中混凝土已由脆性破坏转为塑性破坏因而整个构件呈现弹性工作、塑性破坏的特征.(3)结构自重和造价均较低与钢结构相比钢管混凝土柱可节约钢材50%左右,造价亦可降低.与钢筋混凝土柱相比,节约混凝土约80%,减轻自重约70%,而耗钢量和造价基本相等.(4)施工简单,缩短工期①与钢结构柱相比,零部件少,焊缝短,构造简单.②与钢筋混凝土柱不同,钢管混凝土柱的钢管即为模板,免除了支模、绑扎钢筋和拆模等工序.节约材料并可有效缩短工期.(5)防腐、防火性能好①由于管内有混凝土存在,钢管的可锈蚀面积减少50%,仅需作外部防锈.可采用刷漆、镀锌或镀铝等方法进行防锈处理,防腐工艺简单.②由于管内混凝土能吸收大量热能,钢管混凝土的耐火能力远高于钢结构.(6)结构造型美观2.3 构件构造(1)拱圈(肋)钢管混凝土拱桥多为无铰拱,主拱圈采用钢管混凝土结构或劲性骨架.拱圈的线形常用圆弧线、抛物线、悬链线三中,后两者应用的多一些.本课题研究的拱圈的线型为悬链线.一般认为悬链线是实腹拱桥的合理拱轴线.而钢管混凝土拱桥常是空腹式拱桥,一般采用悬链线形使拱轴线与恒载压力线在拱顶、四分点及拱脚五个截面重合.计算亦表明采用悬链线拱轴对空腹拱拱圈的受力是有利的.因此悬链线是钢管混凝土拱桥采用最普遍的拱轴线形.(2)横撑横撑主要设置在拱顶、拱脚、拱肋与桥面系交接处,横撑的主要作用是将各片钢管混凝土拱肋连接成整体,以确保结构稳定.钢管混凝土拱肋的横撑多采用钢管桁架,钢管可以是空心的,也可以内填混凝土而做成钢管混凝土横撑.横撑在拱脚段多做成桁式K撑或X撑,以获得更好的稳定性,在桥面系以上则多采用直撑、K撑或H形撑.(3)吊杆中、下承式钢管混凝土拱桥的吊杆一般采用柔性吊杆.锚固在拱肋上的吊杆锚具,为避免直接暴露在大气中,常设置在拱肋弦杆或缀板处.吊杆可采用平行钢绞线或平行钢丝束,外套无缝钢管或热挤聚乙烯防护层.上下锚头可采用OV米锚、冷铸墩头锚等,然后用高强度混凝土封锚.通常将张拉端设置在缀板处或钢管弦杆内,下端为固定锚,以方便拆卸更换.锚头要求防护严密,不能暴露在空气中以防止锈蚀.以便于以后更换吊杆,可以做成双吊杆.第3章 劲性骨架和扣索系统的 仿真分析3.1 工程背景3.1.1桥址概况本桥位于福建省尤溪县内,属于沿海内陆地区,本桥于DK400+805.7~DK400+915.5处跨越尤溪,河道与线路夹角约为90°,于DK400+934.2~DK400+939.1处跨越一条5米宽的 碎石路,与线路夹角为67°.桥址处地貌属剥蚀低山区,地势陡峭,自然坡度 35-55°.低山区间为“V ”型山间谷地,河谷深切,现为水库,河床宽约50-100米,两岸大 部份在段基岩出露,仅沿乡间公路右侧分布有少量修路筑填的 块石土.桥台台侧山体陡峻,植被发育,主要为树木与丛林,桥位处尤溪水面较开阔,河道顺直,水流缓慢.3.1.2主要技术标准铁路等级:Ⅰ级正线数目:双线设计速度 :200千米/h正线线间距:4.6米设计活载:中活载3.1.3线路资料线路平面:本桥平面位于直线上,线间距4.6米.纵断面:图3-1 纵断面图057 轨面标高里程DK398+170 DK411+9503.1.4地质资料(1)工程地质条件基本承载力与岩土施工工程分级:(0) Q4米l填土,稍湿,Ⅰ(1) Q4al+pl卵石土,松散,=350kPa,Ⅱ(2) Q dl+el含砾粉质黏土,硬塑,=180kPa,Ⅱ(3)2 J 3n2凝灰熔岩,强风化(W3),=500 kPa,Ⅳ(3)3 J 3n2凝灰熔岩,弱风化(W2),=1000 kPa,Ⅴ(3)3-1 F 断裂破碎带,弱风化(W2),=500 kPa,Ⅳ(3)3-2 F 断裂影响带,弱风化(W2),=800 kPa,Ⅳ(2)地质构造据钻孔探资料和地表工程地质测绘,莆田台分布有三条次生断层,产状为198°∠74°,断层带内见硅化碎裂岩.(3)水文地质特征及评价桥址区附近地表水、地下水对混凝土不具侵蚀性.(4)不良地质及特殊岩土尤溪大桥桥址区场地地貌单元较简单,根据工程地质机动钻探资料、物理勘探及现场调查测绘分析,测区右侧边坡岩层产状倾向尤溪河,为不利结构面.莆田桥台存在处地质构造,除此外未发现滑坡、泥石流等不良地质现象.(5)地震效应根据《中国地震动参数区划图》(GB18036-2001),桥址区抗震设防烈度属6度区,地震动峰值加速度为0.05g.3.1.5水文资料尤溪,水流流向由右至左,与线路夹角90°,桥址处汇水面积F=3691千米2,Q=5940米3/s,H1% =143.31米,设计流速V1%=3.2米/s.1%3.1.6气象资料尤溪县地处低纬,靠近北回归线,太阳辐射尚多,热量资源丰富,雨量比较充沛,季风气候明显.大部分地区夏长冬短,春秋相当,属中亚热带大陆性兼海洋性东南季风气候.但由于境内山峦起伏、地形复杂,构成复杂多变的气候类型,气象要素垂直差异明显,最高气温40.5℃,最低气温-7.6℃,年平均气温19—23℃之间.降水在一年中的时空分布不均,呈双峰型,干湿季分明,一般年份全年可分为四个阶段:春雨、梅雨、夏雨、秋冬雨.降水强度:日降水强度随海拔增高而递增.各级降水次数中以小雨为最多,占总雨日数的70%,中雨占19%,大雨占8%,暴雨占3%.平均每年4次暴雨.降雪与积雪:降雪日数较少,雪量不大 .低海拔地区一般间隔1~2年甚至3年才难得下1~2天雪,积雪就更是少见;高山地区冬季积雪次数较多.风向风速:风向随时冬、夏季风的更迭有明显的改变.地面的风向既受季风环流支配,又受地形影响.全年以静风为主,占71%,其次为东北偏北风,占7%,再次为西北风,占3%.风速一般都很小 ,年平均0.6米/s,各月间的风速变幅亦小 ,最大值与最小值之差仅0.2米/s,以2~4月和7月稍大 ,10~11月份较小 .3.1.7立交资料本桥于DK400+934.2~DK400+939.1处跨越一条5米宽的碎石路,与线路夹角为67°,需局部改移.3.1.8通航资料本桥于DK400+805.7~DK400+915.5处跨越尤溪,河道与线路夹角约为90°,尤溪为Ⅵ级航道,设计采用1-140米上承式拱桥跨越.3.1.9本桥采用参考图号时速200公里客货共线铁路预制后张法简支T梁通桥(2005)2201客货共线铁路常用跨度简支T梁支座安装图通桥(2007)8160铁路桥梁CKPZ-Q球形支座安装图肆桥设(2008)8560 双线钢筋混凝土矩形空心桥台肆桥设(2005)4040混凝土梁避车台通桥(2005)80303.1.10孔跨布置孔跨布置:1-24米简支T梁+1-140米拱桥+1-32米简支T梁中心里程:DK400+870.14桥全长:222.2米桥梁设计范围:DK400+759.04~DK400+981.213.1.11墩台及基础本桥桥台采用双线矩形空心台,桥墩及拱上立柱均采用矩形实体桥墩,①、②桥墩与拱脚共用扩大基础.3.1.12主桥1-140米上承式拱桥设计(1)设计采用规范《新建时速200公里客货共线铁路设计暂行规定》(TB10002.1-2005)《铁路桥涵设计基本规范》(TB10002.1-2005)《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB10002.3-2005)《铁路桥涵混凝土和砌体结构设计规范》(TB10002.4-2005)《铁路桥涵地基和基础设计规范》(TB10002.5-2005)《铁路混凝土结构耐久性设计暂行规定》 (铁建设函(2005)157号) 《新建铁路桥上无缝线路设计暂行规定 (铁建设函(2003)205号) 《铁路桥梁钢结构设计规范》(TB10002.2-2005)《铁路工程抗震设计规范》(GB 50111-2006)《钢管混凝土结构设计与施工规程》(CECS28:90)关于发布《铁路混凝土结构耐久性暂行规定》等两项铁路工程建设标准局部修订条文的通知(铁建设【2007】140号)(2)主要设计荷载恒载:结构自重、二期恒载、混凝土收缩徐变.活载:①静活载:列车竖向活载采用中—活载,双线折减系数90%.②动力系数:冲击系数1+μ=1+1.2× 6/(30+13) =1.167.基础不均匀沉降:拱圈基础水平变位0.010米,竖直变位0.005米;拱上连续梁与拱圈、拱上立柱联合计算,以考虑拱圈基础变位及结构变形对其内力、变形的影响.列车制动力:列车荷载制动力取全梁满载(单线)的10%计.列车横向摇摆力:按100kN计算.长钢轨力:按《新建铁路桥上无缝线路设计暂行规定》办理.风荷载:根据“全国基本风压分布图”,本地区基本风压=1000Pa.结构温度变化:①体系升降温根据当地气候条件采用升温15℃,降温15℃.②非均匀升、降温:拱圈采用升降温±10℃,拱上纵梁顶板升降温5℃.列车脱轨荷载:按《新建时速200公里客货共线铁路设计暂行规定》第5.2.2条办理.地震力:按《铁路工程抗震设计规范》相关条款办理.(3)结构构造①拱肋拱肋为劲性骨架钢筋混凝土X形拱,拱顶处拱肋中心距为5.6米,拱脚处拱肋中心距为11.4米,拱顶内倾2.9米,其倾角为5.37°,拱肋计算跨径140米,计算矢跨比1/4.516,拱肋平面矢高30.864米,拱轴线采用悬链线,拱轴系数米=2.514.拱肋截面除拱脚以上4.25米为实体外余均采用变高箱形截面,顶底板厚0.5米,腹板厚0.4米,拱顶截面高3.2米、宽2.3米,拱脚截面高5.4米、宽2.3米,其截面高度符合立特变化, 顶、底板与侧板间设0.8x0.4米梗肋,拱脚以上4.25~13.75米范围内顶底板加厚至1米;拱肋钢骨架由8根φ402×14米米钢管和节点板、角钢焊接成劲性骨架,缆索吊装合龙后,钢管内灌注C55微膨胀混凝土作为拱肋混凝土施工支架,施工完毕拱肋混凝土后与其一起形成劲性骨架钢筋混凝土结构.全桥拱肋共布置11道横撑,横撑由钢管及角钢焊接而成,并外包混凝土.②拱上立柱拱上立柱采用双斜柱式,其截面为 1.5(纵向)x1.35米(横向).两立柱布置在倾斜的拱肋平面内,两柱间设带空洞的薄板和横撑.拱顶处梁底至拱肋间距较小,将支承垫石直接设在拱肋上.采用C50混凝土.考虑后续施工拱肋的变位,立柱支承垫石顶面需设预超高值.③拱座墩拱座墩顶帽一侧为连续梁,一侧为简支T梁.考虑简支T梁架梁及维护的要求,其顶帽横向宽度采用10.6米.墩身纵横向坡度均为1:40.④纵梁桥面纵梁采用4联(3×13)米钢筋混凝土箱形截面连续梁,梁高1.6米,顶板宽9.56米,底板宽6.56米,顶板厚0.372米,底板厚0.3米,腹板厚0.5米;纵梁采用满布支架现浇C45混凝土的施工方式,由两拱脚向拱顶对称浇注,施工前将支座安装到位.⑤桥面系及桥梁检查设备桥面系采用有砟桥面,桥面宽9.56米,设双侧人行道和钢栏杆,人行道宽度0.8米;避车台设在拱座墩、2、4、6、8、10号立柱处,两侧均设.拱上立柱设围栏、吊篮、检查梯等检查设备;拱肋顶面设检查护栏,每片拱肋各设一套活动检查设备.(4)主要建筑材料①混凝土拱肋采用C55混凝土,f c=37.0米Pa,f ct=3.30米Pa.拱肋钢骨架管内采用C55微膨胀混凝土, f c=37.0米Pa,f ct=3.30米Pa.纵梁及墩柱顶帽、垫石采用C45混凝土,f c=30米Pa,f ct=2.9米Pa.墩身采用C40混凝土,f c=27.0米Pa,f ct=2.7米Pa.拱座采用C35混凝土,f c=20.0米Pa,f ct=2.20米Pa;桥台支承垫石采用C50混凝土,f c=33.5米Pa,f ct=3.1米Pa.桥台台顶、顶帽采用C40混凝土,f c=27.0米Pa,f ct=2.7米Pa.桥台台身采用C35混凝土,f c=23.5米Pa,f ct=2.5米Pa.②钢材拱肋钢骨架弦管及横撑弦管采用Q345qD,[σw]=210米Pa;普通钢筋HRB335钢筋抗拉标准强度f sk=335米Pa,HPB235钢筋抗拉标准强度f sk=235米Pa,弹性模量均为E=2.1×105 米Pa.③钢结构焊接材料手工焊接材料:使用E5015、E5016、E5018焊条埋弧自动焊材料:使用HJ402-H08E焊剂、焊丝.(5)结构计算结构纵向计算时,拱上连续梁与拱圈、拱上立柱联合计算,考虑拱圈基础变位及结构变形对纵梁内力、变形的影响.纵向计算分3个计算模型:①拱肋混凝土施工完成前,钢管骨架模拟成桁架,为钢桁架模型.②钢管骨架混凝土达到设计强度 ,浇筑拱肋混凝土,为钢-混合结构模型.③拱肋混凝土施工完后,运营阶段,按混凝土梁单元模型.根据施工实际加载历程,对结构内力、应力和位移进行叠加.拱肋、纵梁、墩柱按钢筋混凝土构件设计,对其分别检算其应力.(6)施工顺序本桥若采用转体施工安装拱肋钢骨架,基础边坡开挖过大;经比较,本桥拟采用悬臂拼装法施工拱肋钢骨架,然后压注钢管混凝土、分环施工拱肋混凝土、现浇拱上立柱、支架上现浇桥面纵梁.施工顺序如下:①采用悬臂拼装法施工钢骨架采用山东富友有限公司生产的FTZ7030型塔式起重机吊装拱肋钢骨架,最大吊重16t,为安装方便,首先将两片拱肋钢骨架与永久横撑的钢骨架在桥头分段焊接好后,一起吊装.钢骨架合拢温度采用15℃~20℃.②由拱脚向拱顶对称灌注C50微膨胀混凝土选择合适的地泵,由拱脚向拱顶对称灌注C50混凝土,要求在混凝土初凝前灌完一根钢管,并采取措施保证钢管混凝土填充密实.混凝土应具有良好的泵送性能和微膨胀性,抵消混凝土收缩.③钢管混凝土灌注、养生完毕后,在钢骨架上安装摸板,绑扎钢筋,浇注拱肋混凝土.拱桥拱肋外包混凝土采用“四环六面”法施工.“四环”即是将拱肋截面沿拱轴分作底板、下倒角、侧板、上倒角和顶板四环,每次施工一环.下一环施工须待上一环混凝土养护一个龄期后进行.“六面”即是将每一环沿拱轴分作六段(即六个工作面),段与段之间留间隔槽,浇注混凝土时,六个工作面同时施工(由拱脚向拱顶),完成该环混凝土的浇注.④施工拱上立柱⑤脚手架现浇桥面纵梁(7)施工注意事项①拱座、基础基坑尽量避免超挖,超挖部分须回填混凝土,以增强拱座、基础的抗推能力.基底须置于基本承载力[]≥1000kPa的W2基岩内,基坑清理干净.基坑开挖到位后,需有监理、配施桥、地人员现场检查确认后,方可进行后续工作.②拱座大体积混凝土浇注时需采取措施,避免混凝土出现裂缝.③拱座预埋骨架位置需准确,以保证拱肋骨架对接.④拱座预埋铰座板平整,倾角、位置需准确,以保证拱肋骨架准确到位.⑤混凝土接触面应凿毛、冲洗干净,保证新老混凝土可靠结合.⑥拱肋分环浇注的混凝土层面应设接茬钢筋.⑦骨架、钢筋以及其他预埋件,在浇注混凝土前应仔细检查是否齐全、到位,并作好防锈、除油、除锈工作.栏杆、检查设备及箱形拱肋内的剪刀撑外露的钢构件需采用两道LW-1水性无机富锌底漆、两道氟碳面漆防护. `⑧拱肋从钢骨架吊装、混凝土分环浇注,到架梁、二期恒载上桥的全部施工过程中应加强对拱轴线变位(垂直位移、水平位移)观测,上报设计,以便设计人员掌握拱肋施工过程中的受力情况,及时指导施工.(8) 环境保护与水土保持措施本桥施工场地主要在山坡上,拱座基础开挖弃土结合桥头隧道弃渣堆放,其开挖边坡采用挂网喷混凝土护坡.施工临时用地在施工完成前恢复到自然状态,交还地方使用.。

大跨度混凝土拱桥“钢管混凝土劲性骨架+斜拉扣挂”拱圈混凝土分环浇筑施工工法

大跨度混凝土拱桥“钢管混凝土劲性骨架+斜拉扣挂”拱圈混凝土分环浇筑施工工法

大跨度混凝土拱桥“钢管混凝土劲性骨架+斜拉扣挂”拱圈混凝土分环浇筑施工工法大跨度混凝土拱桥“钢管混凝土劲性骨架+斜拉扣挂”拱圈混凝土分环浇筑施工工法一、前言大跨度混凝土拱桥在桥梁工程中起到了重要的作用,其结构设计与施工工艺都需要综合考虑多种因素。

本文将介绍一种名为“钢管混凝土劲性骨架+斜拉扣挂”的施工工法,用于大跨度混凝土拱桥的施工。

二、工法特点该工法通过采用钢管混凝土劲性骨架和斜拉扣挂技术,实现了大跨度混凝土拱桥的分环浇筑施工。

其特点如下:1. 结构稳定:钢管混凝土劲性骨架提供了高强度和刚性支撑,使得拱桥在施工过程中能够保持整体结构的稳定。

2. 施工效率高:通过分环浇筑的方式,可以同时进行多个区域的混凝土浇注,提高施工效率。

3. 跨越能力强:采用斜拉扣挂技术,提供了对拱桥边缘和中心受力点的支撑,进一步增强了拱桥的承载能力和稳定性。

三、适应范围该工法适用于大跨度混凝土拱桥的施工,特别适用于长跨度、复杂地形条件下的拱桥项目。

四、工艺原理该工法主要通过钢管混凝土劲性骨架和斜拉扣挂技术来实现拱桥的施工。

钢管混凝土劲性骨架作为拱桥的支撑骨架,提供了结构的稳定性和刚性。

斜拉扣挂技术则通过张拉扣挂的钢索将拱桥的边缘和中心受力点连接起来,形成一个整体结构。

五、施工工艺1. 基础处理:根据设计要求进行桥墩和桥台的基础施工,确保其稳定和承载能力。

2. 劲性骨架搭设:在桥墩和桥台上搭设钢管混凝土劲性骨架,确保其准确度和稳定性。

3. 斜拉扣挂张拉:在劲性骨架上设置斜拉扣挂点,并进行张拉调整,使扣挂的钢索形成合适的张力。

4. 分环浇筑:根据设计要求,将混凝土按照分段的方式进行浇筑,确保每个分段的质量和密实度。

5. 拱圈收模:等待混凝土达到设计强度后,拆除模板,进行拱圈的质量检验和调整。

6. 后续工序:完成拱圈的测量和调整后,进行后续工序,如桥面铺装、栏杆安装等。

六、劳动组织根据施工工艺的要求,需要合理组织施工人员的分工和协作,确保施工进度和质量。

浅析大跨度钢管混凝土拱桥施工技术

浅析大跨度钢管混凝土拱桥施工技术

浅析大跨度钢管混凝土拱桥施工技术工程技术朱子厚(武警交通直属工程部,北京市102206)萨晶南1翥管混凝尘应用于拱桥,‘代袁着拱桥建设的对材料的高强度曩-求、拱圜无羔架施工&名≤≥花等凌囊≥畿“翼嘉羹;屯结J;勾芜薹j匕,聋?‘拟的优势,因而被越来越广泛的采用。

ij饫键词】钢管混泥土拱桥;大跨废;箍工技术。

,..,.,毪t.j,-一’1钢管混凝土拱桥施工具体方法1.1平转法平转施工法是将拱圈分为两个半拱,分别在两岸偏离桥位的位置,利用山体、岸坡或引桥的桥墩设置膺架,拼装拱肋和拱上立柱,形成半拱,然后水平转体就位,再拼装合龙成,如图1所示。

平转施工法的优点是可以充分利用两岸的山体和岸坡的地形条件,拱肋痦架不高,吊装,拼焊容易,焊接质量有保证;缺点是磨心球铰加工要求高。

平转施工法对修建处于交通运输繁忙的城市立交桥和铁路跨线桥,其优势比较明显。

平转法的转动体系主要有转动支承系统、转动牵引系统和平衡系统组成。

转动支承系统是平转法施工的关键设备,由上转盘和下转盘构成上转盘支承转动结构,下转盘与基础相联。

通过E转盘相对于下转盘的转动,达到转体的目的。

田1平转法施工示意图1.2鳖转法竖转施工法与平转施工法相似,是先在拱顶附近将主拱圈一分为二,并以拱趾为旋转中心,将设计拱轴线垂直向下旋转一定角度,将拱顶合龙端置于地面或浮船上,这样即可在较低的膺架上拼装两个半拱。

待两个半拱拼装完成后,由两幅墩顶扒杆分别将其拉起,在空中对接合龙。

竖转施工法的优点有拱肋的拼装膺架较低,节省材料,吊装容易:只有一个接头,合龙容易,精度高;缺点是要求桥下有一定的拼装场地。

所以适用与i司吭要求不高、水深较浅等条件下的拱圈施工。

竖转体系—般由牵引系统、索塔、拉索组成。

竖转的拉索索力在脱架时最大,因为此时拉索的水平角最小,产生的竖向分力也最小,而且拱肋要实现从多跨支承到铰支承和扣点处索支承的过渡,脱架时要完成结构自身的变形与受力的转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档