4.8 图形的位似(一)
新北师大版九年级数学上册第四章4.8图形的位似第1课时位似图形及其性质备课素材
第四章图形的相似8图形的位似第1课时位似图形及其性质素材一新课导入设计置疑导入复习导入类比导入悬念激趣问题1:观察下列图形,每一组图形都有什么特点?图4-8-1问题2:如图4-8-1(2),在图片①上取一点A,它与另一张图片(如图片②)上相应的点A′之间的连线是否经过镜头中心点O?在图片上换其他的点试一试,还有类似的规律吗?[说明与建议] 说明:通过用幻灯片展示生活中的图片,引入本节课的学习内容——图形的位似,让学生体会本节课学习的价值,激发学生的学习兴趣,启发学生寻找图形的特点.建议:可以让学生寻找身边类似的一组图形,以便理解位似的特征,为本节课的学习做好铺垫.请同学们观察一组图片,思考下列问题:图4-8-2(1)它们是相似图形吗?(2)图形位置间有什么关系?你能寻找出一些规律吗?归纳:一般地,如果两个相似多边形任意一组对应顶点P,P′所在的直线都经过同一点O,且有OP′=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.[说明与建议] 说明:从发生在学生身边的事件入手,让学生体会数学来源于生活.通过观察图形,发现位似图形来源于相似图形,同时又特殊于相似图形.采取小组合作交流的方式,让学生充分研究,引发学生初步感知位似图形,思考位似图形的特征,激发学生的求知欲及学习兴趣.建议:在得到位似定义的时候要抓住两个关键点:一是特殊的相似,二是每一组对应点所在的直线都经过同一点.素材二教材母题挖掘113页例1如图4-8-3,已知△ABC,以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.图4-8-3【模型建立】根据位似的定义可知位似是一种特殊的相似,特殊在它任意一组对应顶点所在的直线都经过同一个点.因此,位似具有相似的所有性质.位似中心的确定就是根据它所特有的性质.【变式变形】1.如图4-8-4所示,以点P 为位似中心,把图形ABCDE 放大,使得放大前后对应线段的比为1∶2.图4-8-4[答案:略]2.你能把图4-8-5中的四边形ABCD 缩小到原来的12吗?试画出缩小后的四边形A′B′C′D′.图4-8-5[答案:能,画图略]3.如图4-8-6,五边形ABCDE 与五边形A ′B′C′D′E′是位似图形,点O 为位似中心,OD =12OD ′,则A′B′∶AB 是多少?图4-8-6[答案:2∶1]素材三 考情考向分析[命题角度1] 利用位似求点的坐标当把几何图形放在平面直角坐标系中求点的坐标时,可把问题转化为图形的位似来研究,利用位似的性质:位似图形的对应边成比例且对应点到位似中心的距离之比等于相似比,即可解决问题.例 [武汉中考] 如图4-8-7,线段AB 两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为(A )图4-8-7A .(3,3)B .(4,3)C .(3,1)D .(4,1) [命题角度2] 利用位似的性质求位似中心位似中心是位似图形上对应点所在直线的交点,因此在确定位似图形的位似中心时,通过作直线找到交点,即确定位似中心的位置.例 图4-8-8中两个四边形是位似图形,它们的位似中心是(D )图4-8-8A .点MB .点NC .点OD .点P[命题角度3] 利用位似的性质求图形面积位似是一种特殊的相似,故相似图形的一切性质都适用于位似图形.此类问题可以借助“相似多边形的面积比等于相似比的平方”来解决.例 如图4-8-9,△ABC 与△A′B′C′是位似图形,点O 是位似中心.若OA =2AA′,S △ABC =8,则S △A ′B ′C ′=__18__.图4-8-9素材四 教材习题答案 P114随堂练习已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为12.解:略.P115习题4.131.已知边长为1的正方形ABCD ,以它的两条对角线的交点为位似中心,画一个边长为2并与它位似的正方形.解:略.2.画一个任意四边形ABCD ,在它的内部任取一点O ,以点O 为位似中心,画一个四边形A ′B ′C ′D ′,使它与四边形ABCD 位似,且相似比为12.解:略.3.相似多边形都是位似多边形吗?若不是,请举反例;若是,请说明理由.解:略.4.九年级(1)班的同学们筹备一次主题班会,为了活跃气氛,他们想把下面的两个图样放大,使得放大前后对应线段的比为1∶2,然后做成各种彩纸图片.请你帮助他们画出放大后的图样.解:略.素材五图书增值练习素材六数学素养提升生活中的位似图形的应用应用之一:幻灯机幻灯机是教师常用的教具之一,它能把精致的图片投到银幕上.幻灯机的工作原理如图1,光源A就是位似中心,它发出的两条光线与幻灯片上图形的两点和银幕上图形的对应两点组成相似的△ABC和△ADE.如果给出某些量的数值,还可以计算其它量.例如给出如图2的数据,可以计算出银幕上图案的高度.应用之二:照相机照相机能够把大家美好的瞬间及时拍录下来,如图3 就是它的工作原理图.两条光线与相机透镜的交点A 就是位似中心,底片上的点B、C和对应大树上的点E、D以及点A组成的△ABC和△AED是相似三角形.例如若底片BC 的长度是3cm ,底片与相机透镜的距离是4cm ,大树高石15m ,你能求出相机透镜与大树的距离吗?(答案:20cm )应用之三:小孔成像小孔成像是光的直线传播中的典型现象.用一根蜡烛通过小孔成像的原理在暗箱里成一个倒立的像,如图4所示.小孔O 是位似中心,两条光线AD 和BC 形成了两个相似三角形△OAB 和△ODC.例 在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( )(A )3倍 (B )21(C )31 (D )不知AB 的长度,无法判断。
4.8.2图形的位似(1)
横纵坐标× 2-2 O′(0,0) O′(0,0) A′(6,0) 横纵坐标× A′(-6,0) B′(4,6) B′(-4,-6)
总结
在直角坐标系中,将一个多边形 的每个顶点的横、纵坐标都乘以同一 个数k(k≠0),所对应的图形与原 图形位似,位似中心是 原点O ,它 们的相似比是 ︱K︱ .
收拾一下桌面,备好课本、学案、草稿纸; 备好0.5mm考试用笔和红色签字笔; 严肃认真,坐姿端正,腰挺直,不翘腿;
y
横纵坐标都× 2呢? 6
4
2 –6 –4 –2 O
0
B
A
2
4
6
x
横坐标都+2 –2 纵坐标坐标都-3 –4
–6
向左平移2个单位
向下平移3个单位
4.8.2图形的位似(1)
学习目标
1.能利用位似图形的性质将一个图形放大或缩小. 2.在平面直角坐标系内,进行位似变换(放大或缩 小图形)
请同学们用6分钟时间认真完成下列 探究题.
y
6
B′
4
2
B
A\\
–6 –4 –2
O
0
A
2
4
–2 –4
B\\原坐标 ຫໍສະໝຸດ 坐标–6O(0,0) O(0,0)
A(3,0) A(3,0)
将△ OAB的横、 如果将点 纵坐标分别乘 O,A,B 2和-2,得到 的横、纵 的两个不同的 坐标都乘 三角形都是 以 -2呢? △ OAB 的 位似图形 , A′ 6 x 位似中心都 是 原点O , 相似比都 是 2 ,它 们关于原点 成 中心对称。
1.完成绩优学案第四章第8课时 《图形的位似》
知识点 平面直角坐标系中的位似
4.8 图形的位似(一)教学设计
第四章图形的相似8.图形的位似(一)山东省青岛市第三十九中学徐永文一、学生学情状况分析在学习本节课之前,学生在本章前几节的学习中已经初步掌握了相似图形的相关知识,例如比例的相关概念、相似多边形的定义、相似三角形的性质与判定以及相似比的概念等等,可以作为本节课的理论基础。
在小学六年级的数学学习中,学生已经初步接触到利用方格纸将一些简单几何图形按照一定比例放大或缩小,在初中阶段的几何学习中,学生又掌握了一些基本的几何图形作图方法,如线段的倍增、线段中点的作法等,具有了初步的实践基础。
进入九年级,学生的动脑分析问题的能力和动手实践操作的能力都有了一定程度的提高,在学习引入情境设置合理的情况下,学生会表现出很强的好奇心和探究学习的欲望。
教师应充分了解把握学生的学习情感基础,立足于学生实际情况,从他们的生活背景和已有经验出发,予以适当引导,在恰当的时候给予提示或引起思维碰撞,同时借助多媒体课件进行演示,学生将会很快进入学习状态,用心观察、积极动手、积极地参与思考和讨论,课堂教学会收到良好的效果。
二、教学任务分析本次教材的改写在本节中体现的较为明显,从而带来了教学过程和任务上的一些变化。
集中体现在以下几个方面:1、本节仍然分为两课时,但是两个课时的教学内容发生了明显的变化。
原教材中第一课时偏重于对位似图形概念及性质的理解,以及在此基础上的绘制位似图形的基本方法的掌握;第二课时则重点探讨绘制位似图形的方法的多样性。
教材改写之后,第一课时的定义及性质的逻辑严谨性得到加强;而第二课时则重点探讨平面直角坐标系中多边形的位似与坐标变换之间的联系。
2、新教材没有提及位似图形的概念,而是以位似多边形的概念取代,突出了位似多边形的理解和作法。
3、新教材在定义中直接给出“对应点与位似中心的距离之比为定值”这一条件。
在教学实践中,应该通过对这一条件的强调,加深学生对相似与位似的关系的理解,即相似多边形必须满足某种严格的位置关系才能称之为位似多边形,而教学重点就是引导学生理解这一位置关系,并且与本堂课的主题“图形的放大与缩小”联系起来,使学生理解绘制位似图形的方法的理论依据。
九年级数学上册4.8图形的位似第1课时位似图形及其性质同步练习
8 第1课时位似图形及其性质知识点 1 位似图形的认识1.下列各选项的两个图形中,不是位似图形的是( )图4-8-1图4-8-22.图4-8-2中的两个四边形是位似图形,它们的位似中心是( )A.点M B.点NC.点O D.点P知识点 2 画位似图形3.如图4-8-3所示是△ABC的位似图形的几种画法,其中正确的有( )图4-8-3A.1个B.2个C.3个D.4个4.教材例1变式题如图4-8-4,已知四边形ABCD,以点O为位似中心画四边形A′B′C′D′,使四边形A′B′C′D′与四边形ABCD位似,且相似比为1∶2.图4-8-4图4-8-55.2017·贵阳期末如图4-8-5,已知△ABC,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法中正确的个数是( )①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1∶2;④△ABC与△DEF的面积比为4∶1.A.1 B.2 C.3 D.46.如图4-8-6,△ACB与△AED是位似图形.(1)BC与DE平行吗?请说明理由;(2)如果AB=3,AD=4,AE=3.5,试求△ACB与△AED的相似比及AC的长.图4-8-67.如图4-8-7,在矩形ABCD中,对角线AC,BD相交于点O.过点O作OE⊥BC于点E,连接DE交OC于点F,过点F作FG⊥BC于点G,则△ABC与△FGC是位似图形吗?若是,请说出位似中心,并求出相似比;若不是,请说明理由.图4-8-71.C [解析] 对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,选项A ,B ,D 中的两个图形都是位似图形.选项C 中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选C.2.D3.D [解析] 由位似图形的画法可得:4个图形都是△ABC 的位似图形.故选D.4.解:答案不唯一,如图,画法如下: (1)过点O 分别作射线OA ,OB ,OC ,OD ;(2)分别在射线OA ,OB ,OC ,OD 上取点A ′,B ′,C ′,D ′,使得OA ′OA =OB ′OB =OC ′OC=OD ′OD =12; (3)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,得到所要画的四边形A ′B ′C ′D ′. 5.C [解析] 根据位似的性质得出: ①△ABC 与△DEF 是位似图形, ②△ABC 与△DEF 是相似图形.∵将△ABC 的三边缩小为原来的12得△DEF ,∴△ABC 与△DEF 的周长比为2∶1, 故③错误,根据面积比等于相似比的平方,得△ABC 与△DEF 的面积比为4∶1,故④正确. 故选C.6.解:(1)BC ∥DE .理由:∵△ACB 与△AED 是位似图形,∴△ACB ∽△AED , ∴∠B =∠D ,∴BC ∥DE . (2)∵△ACB ∽△AED ,∴AC AE =AB AD =34, ∴AC =3×3.54=218,△ACB 与△AED 的相似比为34.7.解:△ABC 与△FGC 是位似图形,位似中心是点C . ∵在矩形ABCD 中,AD ∥BC , ∴∠FAD =∠FCE ,∠FDA =∠FEC , ∴△AFD ∽△CFE ,∴AF CF =AD CE. ∵∠ABC =90°,OE ⊥BC , ∴OE ∥AB .∵OA =OC ,∴CE =12BC ,∴AD CE =BC CE =2,∴AF CF=2,∴AC CF=3,即△ABC 与△FGC 的相似比为3∶1.第2课时 相似三角形周长和面积的性质知识点 1 有关周长的计算1.已知△ABC ∽△A 1B 1C 1,且AB =4,A 1B 1=6,则△ABC 的周长和△A 1B 1C 1的周长之比是( )A .9∶4B .4∶9C .2∶3D .3∶2图4-7-102.如图4-7-10,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,则△EDF与△BCF的周长之比是( )A.1∶2 B.1∶3 C.1∶4 D.1∶53.2016·贵阳期末如果△ABC∽△DEF,其相似比为3∶1,且△ABC的周长为27,那么△DEF的周长为( )A.9 B.18 C.27 D.814.如图4-7-11,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE于点G,BG=4 2,求△FCE的周长.图4-7-11知识点 2 有关面积的计算5.2017·重庆已知△ABC∽△DEF,且相似比为1∶2,则△ABC与△DEF的面积比为( ) A.1∶4 B.4∶1 C.1∶2 D.2∶1图4-7-126.2017·永州如图4-7-12,在△ABC中,D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )A.1 B.2 C.3 D.47.教材例2变式题如图4-7-13,把△ABC沿AB边平移到△A′B′C′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的14,若AB=2,则△ABC平移的距离是________.4-7-134-7-148.如图4-7-14,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则AB的长为________.9.如图4-7-15所示,在▱ABCD中,AE∶EB=1∶2.(1)求△AEF与△CDF的周长的比;(2)若S△AEF=6 cm2,求S△CDF.图4-7-1510.若两个相似三角形的面积之比为1∶4,则它们的周长之比为( )A.1∶2 B.1∶4 C.1∶5 D.1∶1611.如图4-7-16,DE是△ABC的中位线,延长DE至点F,使EF=DE,连接CF,则S ∶S四边形BCED的值为( )△CEFA.1∶3 B.2∶3 C.1∶4 D.2∶54-7-164-7-1712.2017·贵阳期末(教材综合与实践——制作视力表的应用)我们在制作视力表时发现,每个“E”形图的长和宽相等(即每个“E”形图近似于正方形),如图4-7-17,小明在制作视力表时,测得l1=14 cm,l2=7 cm,他选择了一张面积为4 cm2的正方形卡纸,刚好可以剪得第②个小“E”形图.那么下面四张正方形卡纸中,能够刚好剪得第①个大“E”形图的是( )A.面积为8 cm2的卡纸B.面积为16 cm2的卡纸C.面积为32 cm2的卡纸D.面积为64 cm2的卡纸13.如图4-7-18,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.图4-7-1814.如图4-7-19所示,M是△ABC内一点,过点M分别作三条直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49,求△ABC 的面积.图4-7-1915.某社区拟筹资金2000元,计划在一块上、下底长分别是10 m、20 m的梯形空地上种植花草.如图4-7-20,他们想在△AMD和△CMB地带种植单价为10元/m2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△CMB地带种植同样的太阳花,资金是否够用,并说明理由.图4-7-2016.如图4-7-21,在△ABC中,AB=5,BC=3,CA=4,PQ∥AB,点P在CA上(与点A,C不重合),点Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长.(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若存在,请求出PQ 的长;若不存在,请简要说明理由.图4-7-211.C 2.A3.A [解析] ∵△ABC ∽△DEF ,其相似比为3∶1,∴△ABC 的周长△DEF 的周长=31,∴△DEF 的周长=13×27=9.故选A.4.解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,∴∠BAE =∠F ,∠EAD =∠AEB . ∵AE 平分∠BAD , ∴∠BAE =∠EAD , ∴∠BAE =∠AEB , ∴BE =AB =6, ∴CE =BC -BE =3.∵∠AEB =∠FEC ,∠BAE =∠F , ∴△ABE ∽△FCE , ∴△ABE 的周长△FCE 的周长=BECE=2.∵BG ⊥AE ,∴AE =2AG =2 AB 2-BG 2=4, ∴△ABE 的周长=AB +BE +AE =16, ∴△FCE 的周长=12×△ABE 的周长=8.5.A6.C [解析] ∵∠ACD =∠B ,∠A =∠A , ∴△ACD ∽△ABC ,∴S △ACD S △ABC =(AD AC )2=14.∵S △ACD =1,∴S △ABC =4,∴S △BCD =S △ABC -S △ACD =3.7.1 [解析] 如图,∵把△ABC 沿AB 边平移到△A ′B ′C ′的位置,∴AC ∥A ′C ′,∴△ABC ∽△A ′BD .∵S △ABC ∶S △A ′BD =4,∴AB ∶A ′B =2.∵AB =2,∴A ′B =1,∴AA ′=2-1=1. 8.3 [解析] ∵∠AED =∠B ,∠A 是公共角, ∴△ADE ∽△ACB ,∴S △ADE S △ACB =(AE AB)2. ∵△ADE 的面积为4,四边形BCED 的面积为5,∴△ABC 的面积为9. ∵AE =2,∴49=(2AB )2,解得AB =3.9.解:(1)∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠FAE =∠FCD , ∴△AEF ∽△CDF . ∵AE ∶EB =1∶2, ∴AE ∶AB =AE ∶CD =1∶3,∴△AEF 与△CDF 的周长的比为1∶3. (2)由(1)知,△AEF ∽△CDF ,相似比为1∶3, ∴它们的面积比为1∶9. ∵S △AEF =6 cm 2, ∴S △CDF =54 cm 2. 10.A 11.A12.B [解析] ∵每个“E ”形图近似于正方形,∴P 2D 2∥P 1D 1,∴∠PP 2D 2=∠PP 1D 1,∠P 2D 2P =∠P 1D 1P , ∴△PP 2D 2∽△PP 1D 1. ∵l 1=14 cm ,l 2=7 cm , ∴P 2D 2∶P 1D 1=1∶2.∵第②个小“E ”形图是面积为4 cm 2的正方形卡纸, ∴第①个大“E ”形图的面积=4×4=16(cm 2). 故选B.13.解:(1)证明:∵DC =AC ,CF 是∠ACB 的平分线,∴CF 是△ACD 的中线, ∴F 是AD 的中点. 又∵E 是AB 的中点, ∴EF ∥BD ,即EF ∥BC . (2)由(1)知,EF ∥BD , ∴△AEF ∽△ABD ,∴S △AEF S △ABD =⎝ ⎛⎭⎪⎫AE AB 2. 又∵AE =12AB ,S △AEF =S △ABD -S 四边形BDFE =S △ABD -6, ∴S △ABD -6S △ABD =⎝ ⎛⎭⎪⎫122,∴S △ABD =8.14.解:根据题意,容易得到△1∽△2∽△3∽△ABC .因为△1、△2、△3的面积分别是4,9和49,所以它们之间的相似比为2∶3∶7,即BC 边被分成的三段从左到右的比为2∶7∶3,则△1与△ABC 的相似比为2∶12=1∶6,所以它们的面积比为1∶36,求得△ABC 的面积是144.15.解:不够用.理由如下: 在梯形ABCD 中,∵AD ∥BC , ∴△AMD ∽△CMB , ∴S △AMD S △CMB =(AD BC)2. ∵AD =10 m ,BC =20 m , ∴S △AMD S △CMB =(1020)2=14. ∵S △AMD =500÷10=50(m 2). ∴S △CMB =50×4=200(m 2). 还需要资金200×10=2000(元),而剩余资金为2000-500=1500(元)<2000元, ∴资金不够用.16.解:(1)∵PQ ∥AB ,∴△PQC ∽△ABC . ∵S △PQC =S 四边形PABQ , ∴S △PQC ∶S △ABC =1∶2, ∴CP CA =12=22, ∴CP =22·CA =2 2. (2)∵△PQC ∽△ABC , ∴CP CA =CQ CB =PQ AB ,即CP 4=CQ3,∴CQ =34CP .同理:PQ =54CP ,∴C △PQC =CP +PQ +CQ =CP +54CP +34CP =3CP ,C 四边形PABQ=PA +AB +BQ +PQ =4-CP +AB +3-CQ +PQ =4-CP +5+3-34CP +54CP =12-12CP .由C △PQC =C 四边形PABQ ,得3CP =12-12CP ,∴72CP =12,∴CP =247.(3)存在.∵CA =4,AB =5,BC =3, ∴△ABC 中AB 边上的高为125.①如图(a)所示,当∠MPQ =90°且PM =PQ 时,∵△CPQ ∽△CAB ,∴PQ AB =△CPQ 中PQ 上的高△CAB 中AB 上的高, ∴PQ 5=125-PQ 125,∴PQ =6037; ②当∠PQM =90°时与①相同;③如图(b)所示,当∠PMQ =90°且PM =MQ 时,过点M 作ME ⊥PQ ,则ME =12PQ ,∴△CPQ 中PQ 上的高为125-ME =125-12PQ .∵PQ AB =△CPQ 中PQ 上的高△CAB 中AB 上的高,∴PQ 5=125-12PQ 125,∴PQ =12049. 综上可知,存在点M ,使得△PQM 为等腰直角三角形,此时PQ 的长为6037或12049.。
九年级数学上册 4.8.1 图形的位似教案 北师大版(2021年整理)
九年级数学上册4.8.1 图形的位似教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册4.8.1 图形的位似教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册4.8.1 图形的位似教案(新版)北师大版的全部内容。
课题:4。
8。
1 图形的位似教学目标:1.了解位似多边形的有关概念,会判断简单的位似图形及位似中心. 2.能够利用位似将一个图形放大或缩小,并能解决一些简单的实际问题.3.经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习的实用性,体会学习数学的快乐. 教学重、难点:重点:位似多边形的相关定义、性质的理解,绘制位似多边形方法的掌握. 难点:位似多边形的判断,从位似中心的不同方向绘制位似多边形. 课前准备:制作多媒体课件,图钉、橡皮筋、铅笔等. 教学过程:一、创设情境,导入新课导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的是形状、大小都相同的全等形(多媒体出示图1);有的是形状相同,大小不同的相似图形(多媒体出示图2);有的不但是相似图形,而且所处的位置也特殊(多媒体出示图3),这样的两个图形是位似图形.你知道如何画位似图形吗?你知道位似图形有哪些性质吗?本节课就让我们一起来探究位似图形的性质与画法.【板书课题:4.8图形的位似(1)】处理方式:教师播放媒体课件,学生观察生活中的存在的全等形、相似形、位似形,体会数学来源于生活,在相似形的基础上感知位似图形.设计意图:通过用多媒体课件展示生活的的图片,引入本章的学习内容:位似图形.初步图1图2图3感知位似图形,引发学生思考位似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知 活动1:美图赏析(多媒体出示)请同学们欣赏这幅海报,它是由一组形状相同的图片组成.在图片①和图片②上任取一组对应点A ,A ',试问A ,A '的连线是否经过镜头中心O ?OAA O '的值与哪两条线段的比相等?在图片上换其他的点还有类似的规律吗?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)在图片①和图片②上任取一组对应点A ,A ',它们的连线是否经过镜头中心O ?(2)OAA O '的值与哪两条线段的比相等?设计意图:通过以上问题引导学生感悟出:图片①和图片②上任意一组对应点的连线都经过镜头中心O ,而且对应点A ,A '到镜头中心O 的距离比等于两个图形的相似比.便于引出位似图形的概念.活动2:动手连一连(多媒体出示)如图,是两个相似比为k 的相似五边形,设直线A A ' 与B B '相交于点O ,那么直线C C '、D D '、?OA OB OC OD OE ,,,,有什么关系?AO②A '①处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)直线CC'、DD'、EE'是否也都经过点O?(2)OA OB OC OD OEOA OB OC OD OE''''',,,,有什么关系?(多媒体演示三角形相似)设计意图:通过以上问题引导学生感悟出:直线CC'、DD'、EE'都经过点O,而且每一对应点到O的距离比等于两个图形的相似比.活动3:出示位似图形的概念(多媒体出示)一般地,如果两个相似多边形任意一组对应点P,P'所在的直线都经过同一点O,且有PO'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.处理方式:教师利用多媒体出示位似多边形及位似中心的概念.强调相关要点,明确k就是这两个位似多边形的相似比.设计意图:了解位似多边形及位似中心的概念,感悟位似图形的性质.活动4:位似图形的性质(多媒体出示)请观察下列两组图形,回答问题:每组图形中两个图形是否是位似图形?若是位似图形,请找出位似中心,对应边有什么特处理方式:学生先观察、连线、测量、计算,小组内交流,教师启发引导:①如何判断两②③个图形是否位似?如果两个图形位似,位似中心与两个图形;②每组对应点到位似中心的距离之比与对应边的比有什么关系?学生交流展示①、②位似,且相似比等于对应点到位似中心的距离之比,③相似但不位似;位似中心可能在对应点的同侧,也可能在它们之间.教师板书:位似图形的对应点的连线经过位似中心,且到位似中心的距离之比等于相似比;位似中心可能在对应点的同侧,也可能在它们之间;对应线段平行或在同一条直线上.设计意图:通过观察图形、猜想、测量、计算、验证结论,提高学生分析、归纳能力,体会分类的思想,进而掌握位似的性质,位运用位似放大或缩小图形做好铺垫.三、例题解析,应用新知例1 如图,已知△ABC ,DEF , 使它与△ABC 位似,且相似比为2.处理方式:给学生留时间,让学生先独立思考,并尝试到黑板展示,其余同学在练习本上完成,并进行相互点评,学生之间对比,教师提问作图依据及利用多媒体课件规范解题步骤,最后启发引导在O 点的另一侧作图,强调知识的应用及逆向思维.解:如图,⑴画射线OA ,OB ,OC ;⑵在射线OA ,OB ,OC 上分别取点D ,E ,F ,使OD =2OA ,OE =2OB ,OF =2OC ;⑶顺次连接D ,E ,F ,得△DEF ;则△DEF 与△ABC 位似,且相似比为2.设计意图:通过例题提供应用位似的性质的一个具体情境,加深学生位似图形的理解,掌握作图技巧,提高作图能力.让学生体会用所学的知识来解决问题的意识.导语:所作△DEF 与△ABC 位似,且相似比为2,即△ABC 被放大.利用位似的知识你能将任意图形进行放大或缩小吗?O · C B AFEDOCBA满足条件的△DEF 可以在点O 的另一侧吗?F 'E 'D '处理方式:教师演示并利用多媒体课件展示具体步骤,1.将两根长短相同的橡皮筋系在一起,联结处形成一个结点. 2.选取一个图形,在图形外取一点.3.将系在一起的橡皮筋的一端固定在定点,把一只铅笔固定在橡皮筋的另一端. 4.拉动铅笔,使两根橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形.请同学们来完成“做一做”:用橡皮筋放大图形.对学生进行分组,学生根据操作步骤合作完成对已知图形的放大.设计意图:通过动手操作,拓展学生的思路,结合放大或缩小不规则图形的方法,让学生通过操作、思考,讨论,加深对前面知识的理解,感悟各种不同方法之间的内在联系,体会位似在生活中的应用.四、巩固训练,落实新知1.已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为12.2.如图,请把下面的五角星图样放大,使得放大前后的相似比为1∶2.要把图形放大其他的倍数应怎么办?要缩CO ·AB3.请观察:以下每组图中的两个多边形是位似多边形吗?若是,请指出位似中心.处理方式:给学生留足时间,让学生先独立完成,选代表到黑板展示,同学间相互点评.设计意图:通过练习让学生理解位似图形,能应用位似知识解决相似图形中的相关问题.五、回顾反思,提炼升华通过这节课的学习,你学习了哪些知识?你有什么收获?你有什么发现、探索? 先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:⒈位似多边形的相关概念、性质,及放大、缩小图形的方法.⒉位似多边形一定是相似多边形,但相似多边形不一定位似.⒊图形变换包括:全等变换:平移、旋转、对称;位似变换.设计意图:使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)⒈如果两个相似多边形任意一组对应顶点P ,P '所在的 ,那么这样的两个相似多边形叫做位似多边形,这个点叫做 .⒉如图,通过小孔点O 蜡烛在竖直的屏幕上形成倒立的实像,像的长度BD =2cm ,OA =20cm ,OB =5cm ,则蜡烛的长度为 .⒊已知,如图,A B ''∥AB ,B C ''∥BC ,且OA ':A A '=4:3,则△ABC 与 是位似图形,位似比为 ;△OAB 与 是位似图形,位似比为 .处理方式:,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本 115页 习题4。
4.8 图形的位似(一)
课堂小结
本堂课你学到了什么?请你与同 学们交流一下?
作业布置
课本习题 知识技能1、2
请观察:以上每组图中的两个多边形是 图(2)(3)(5)中对应点在位似中 位似多边形吗?位似中心在哪里? 心的同一侧,图(1)(4)(6)中对 你能把它们分类吗?你的依据是什么? 应点在位似中心的两侧。两种方法都能 起到把图形放大或缩小的效果。
动手实践
已知△ABC,以点O为位似中心画 △DEF,使它与△ABC位似,并且 相似比为2。 先任意取一个点 若 D 与 A 是对应点, 作为位似中心 O 。 若D 在射线 OA 上 A D在哪儿? D D 点还可以取在哪 距离 O点多远? F 儿?
B
O E C F E
D
△DEF即为所求
D
动手实践
你能运用刚才的方法作一个新三角形, 使其各条边长为△ABC的各条边长的 一半吗?自己动手试一试。
A
B
C
巩固练习
一、判断正误: 1、位似多边形一定是相似多边形。 2、相似多边形一定是位似多边形。 3、两个位似多边形每一对对应点到 位似中心的距离之比为2︰3,则两个 多边形的面积之比为4︰9。 4、两个位似多边形的对应边互相平 行或在同一直线上。
第四章 图形的相似
第8节 图形的位似(一)
知识呈现
Hale Waihona Puke 每一组对应点的连线 以上五幅图片是形状相同的图形,取图 都经过镜头中心点P 中相对应的两点A、B,它们的连线经 过镜头中心P吗?换其他的对应点试一 试,还有类似规律吗?
知识呈现 请问此时红色四边形
与绿色四边形的相似 如果两个相似 比是多少?你会证明 多边形每组对 吗?你有什么发现? 应点所在的直 线都经过同一 个点O,且每 组对应点与O 点的距离之比都等于一个 定值k,例如OA′=k·OA(k≠0),那么 这样的两个多边形叫做位似多边形,点 O叫做位似中心。k就是两个相似多边 形的相似比。
4、8、图形的位似(1)
注意: 1.两个图形相似。 2.每组对应点所在的直线都经过同一点。
下列图形中哪些是位似图形?如果是找出它们各自的位似中心。 O (1) O
(2)
O
(3) (4)
归纳:位似中心位置可以是任意位置
在下列图形中的(1)中任取一对对应点,度量这两个点到位似 中心的距离,它们的比与位似比有什么关系?在图(2)和图(4) 中再试一试,还有类似的规律吗? O
相似图形的特例
你发现了什么? 下面的一组图片是形状相同的图形,在图片①上取一点A,它与 另一图片(如图片②)上的相应点B之间的连线是否经过镜头P 的中心?在图片上换其它的点试一试,还有类似的结论吗? E ① F ② ③ ④ ⑤ P
A
B
归纳:相似多边形对应点的连线相交于一点
观察下列图形回答问题。
做一做
比
一
比
看
谁
能
行
7.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心, D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比 是( B ) A .1 ︰2 B .1 ︰4 C .1 ︰5 D .1 ︰6 E 8.如图.位似图形由三角尺与其灯光照射下的中心投影组 成,相似比为2:5,且三角尺的一边长为8cm,则投彩三 B 角形的对应边长为( B ) A.8cm B.20cm C.3.2cm D.10cm 9.两个图形中,对应点到位似中心的相等长的比 为3︰2,则这两个图形的位似比是( A )
什么是相似多边形? 各角对应相等、各边对应成比例的两个多边形叫做相似多边形。 什么是相似比? 相似多边形对应边的比叫做相似比。 什么是相似三角形? 对应角相等、对应边成比例的两个三角形叫做相似三角形。 我们已经有哪些判别两三角形相似的方法? (1)相似三角形的定义 (2)两角对应相等的两个三角形相似。 (3)两边对应成比例且夹角相等的两个三角形相似 (4)三边对应成比例的两个三角形相似 相似三角形的性质是什么? 相似三角形对应高的比,对应中线的比,对应角平 分线的比都等于相似比.
北师大版数学九年级上册图形的位似(共28张)
E
B
· CC′、DD′ 、EE′是否也都经 O
过点O?
C
D
D
C
OA , OB , OC , OD , OE 有什么关系? A
OA OB OC OD OEOA Oຫໍສະໝຸດ OC ODA EB
E
B
· OA OB OC OD O OE AB
C
D
D
C
k.
OE AB
合作探究
A
位似图形的概念
一般地,如果两个类
突破重难点
1.对于平面图形上的任意两点P,Q,如果经 过某种变换得到新图形上的对应点P′, Q′,保持PQ=P′Q′,我们把这种变换称 为“等距变换”,下列变换中不一定是等 距变换的是( D ) A.平移 B.旋转 C.轴对称 D.位似
2.如图,在平面直角坐标中,正方形ABCD与正方 形BEFG是以原点O为位似中心的位似图形,且类 似比为 1 ,点A,B,E在x轴上,若正方形
3
BEFG的边长为6,则C点坐标为( A ) A.(3,2) B.(3,1) C.(2,2) D.(4,2)
3.已知△ABC是正三角形,正方形EFPN的顶点E、F在 边AB上,顶点N在边AC上. (1)如图,在正三角形ABC及其内部,以点A为位 似中心,画出正方形EFPN的位似正方形 E′F′P′N′,且使正方形E′F′P′N′的面积 最大(不写画法,但要保留画图痕迹); (2)若正三角形ABC的边长为 3+2 3 ,则(1)中 画出的正方形E′F′P′N′的边长为______3__.
2.选取一个图形,在图形外取一点.
3.将系在一起的橡皮筋的一端固定在定点,把 一只铅笔固定在橡皮筋的另一端.
4.拉动铅笔,使两根橡皮筋的结点沿所选图形 的边缘运动,当结点在已知图形上运动一圈 时,铅笔就画出了一个新的图形.
4.8图形的位似
讲
授
在射线OA,OB,OC上分别取点D,E,F,使
新
OD=2OA,OE=2OB,OF=2OC;
课
顺次连接D,E,F,则△ DEF与△ABC位似,相似
比为2.
满足条件的 △DEF可以在点
O的另一侧吗?
知识点 3 位似图形的画法
画位似图形的步骤:
第一步:确定位似中心O(位似中心可以在图形外部,也可以
在图形内部,还可以在图形的边上,还可以在某一个顶点上);
注意:①这里的相似比指的是新图形与原图形的对应边 的比.②一般情况下,若没有限定条件,此种类型的题目 要注意多种可能.
1. 【中考·辽阳】如图,在边长为1的小正方形组成的网
随
堂
格中,建立平面直角坐标系,△ABO与△A′B′O′是
检
以点P为位似中心的位似图形,它们的顶点均在格
测
点(网格线的交点)上,则点P的坐标为( )
A.(0,0)
B.(0,1)
C.(-3,2)
D.(3,-2)
【中考·烟台】如图,在平面直角坐标系中 ,正方形
随 堂
ABCD与正方形BEFG是以原点O为位似中心的位似图形,
检 测
且相似比为
1 3
,点A,B,E在x轴上,若正方形BEFG的
边长为6,则C点坐标为( A )
A.(3,2)
B.(3,1)
C.(2,2)
第二步:画出图形各顶点与位似中心O的连线;
第三步:按相似比取点; 第四步:顺次连接各点,所得的图形就是所求的图形.
知识点 3 位似图形的画法
注意: (1)位似中心的选取要使画图方便且符合要求,一般以多 边形的一个顶点为位似中心画图最简便. (2)画位似图形时,要弄清相似比,即分清是已知图形与 新图形的相似比,还是新图形与已知图形的相似比. (3)一般情况下,画已知图形的位似图形的结果不唯一.
4.8 图形的位似(分层练习)(解析版)
第四章图形的相似4.8 图形的位似精选练习一、单选题1.(2022·全国·九年级专题练习)如图,在直角坐标系xOy中,矩形EFGO的两边OE,OG在坐标轴上,以y轴上的某一点P为位似中心,作矩形ABCD,使其与矩形EFGO位似,若点B,F的坐标分别为(4,4),(-2,1),则位似中心P的坐标为()A.(0,1.5)B.(0,2)C.(0,2.5)D.(0,3)故选:B .【点睛】此题主要考查了位似中心的概念和位似图形的性质等知识,熟练掌握位似中心的概念和位似图形的性质是解题的关键.2.(2022·江苏·西附初中八年级期末)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形A B C D ¢¢¢¢是位似图形,点O 是位似中心,点A ¢是线段OA 的中点,那么以下结论正确的是( )A .四边形ABCD 与四边形ABCD ¢¢¢¢的相似比为1:1B .四边形ABCD 与四边形A BCD ¢¢¢¢的相似比为1:2C .四边形ABCD 与四边形A B C D ¢¢¢¢的周长比为3:1D .四边形ABCD 与四边形A B C D ¢¢¢¢的面积比为4:1【答案】D【分析】根据题意可判断OA ¢:1OA =:2,即得出A B ¢¢:1AB =:2,从而可判断四边形ABCD 与四边形A B C D ¢¢¢¢的相似比为2:1,由相似比即可求出其周长比和面积比,即可选择.【详解】Q 四边形ABCD 与四边形A B C D ¢¢¢¢是位似图形,点O 是位似中心,点A ¢是线段OA 的中点,∴OA ¢:1OA =:2,∴A B ¢¢:1AB =:2,\四边形ABCD 与四边形A B C D ¢¢¢¢的相似比为2:1,周长的比为2:1,面积比为4:1.故选D .【点睛】本题考查由位似图形求相似比,周长比和面积比.掌握位似图形的定义和性质是解题关键.3.(2022·重庆实验外国语学校八年级阶段练习)如图,在平面点角坐标系中V AOB 与V COD 是位似图形,以原点O 为位似中心,若2AC OA =,B 点坐标为(4,2),则点D 的坐标为( )A .( 8,4)B .(8,6)C .(12,4)D .(12,6)4.(2022·全国·九年级专题练习)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ′,B ′.若AB =6,则A ′B ′的长为( )A .8B .9C .10D .156AB =Q ,9A B ¢¢\=,故选:B .【点睛】本题考查的是位似图形,解题的关键是掌握位似图形的位似比是对应边的比.5.(2022·全国·九年级课时练习)如图,△ABC 与△DEF 是位似图形,且顶点都在格点上,则位似中心的坐标是( )A .(8,2)B .(9,1)C .(9,0)D .(10,0)【答案】C 【分析】延长EB 、DA 交于点P ,根据位似图形的对应点的连线相交于一点解答即可.【详解】解:延长EB 、DA 交于点P ,则点P 即为位似中心,位似中心的坐标为(9,0),故选:C .【点睛】本题考查的是位似变换的定义,如果两个图形不仅是相似图形,而且对应点的连线相交于一点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.6.(2022·山东威海·八年级期末)如图,矩形OABC 与矩形ODEF 是位似图形,点P 是位似中心.若点B 的坐标为(2,3),点E 的横坐标为1-,则点P 的坐标为( )A .(2,0)-B .(0,2)-C .3,02æö-ç÷D .30,2æö-ç÷二、填空题7.(2022·广东·佛山市三水区三水中学附属初中九年级开学考试)如图,在平面直角坐标系中,以原点O 为位似中心,将ABO V 扩大到原来的2倍,得到A B O ¢¢△,若点A 的坐标是()1,2,则点A ¢的坐标是______.【答案】()2,4--【分析】根据以原点O 为位似中心,将ABO V 扩大到原来的2倍,结合图形,可知将对应点的坐标应乘以2-,即可得出点A ¢的坐标.【详解】解:根据以原点O 为位似中心扩大到原来的2倍 ,A B O ¢¢△在第三象限,即对应点的坐标应乘以2-,∵点A 的坐标是()1,2,∴点A ¢的坐标是()2,4--,故答案为:()2,4--.【点睛】此题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k 或k -是解题关键.8.(2022·浙江·九年级单元测试)如图,ABC V 与△A B C ¢¢¢是位似图形,且顶点都在格点上,则位似中心的坐标是________.【答案】(9,0)【分析】根据位似中心的概念解答即可.【详解】解:连接A A ¢和B B ¢并延长相交于点D ,则点D 即为位似中心,作图如下:点D 的坐标为(9,0),即位似中心的坐标为(9,0),故答案为:(9,0).【点睛】本题考查的是位似变换的概念,解题的关键是掌握各对应点所在直线的交点即为位似中心.9.(2022·甘肃·平凉市第十中学九年级阶段练习)如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形'''A B CD E ,已知10cm OA =,'20cm OA =,则五边形ABCDE 的周长与五边形''''A B CD E 的周长比是______.【答案】1:2【分析】根据已知可得五边形ABCDE 的周长与五边形'''A B CD E 的位似比,然后由相似多边形的性质可证得:五边形ABCDE 的周长与五边形'''A B CD E 的周长比.【详解】Q 以点O 为位似中心,将五边形ABCDE 放大后得到五边形'''''A B C D E ,10OA cm =,'20OA cm =,\五边形ABCDE 的周长与五边形'''''A B C D E 的位似比为:10:201=:2,\五边形ABCDE 的周长与五边形'''''A B C D E 的周长比是:1:2.故答案为1:2.【点睛】此题考查了位似图形的性质,掌握相似多边形的周长比等于相似比是解题关键.10.(2022·吉林省第二实验学校九年级阶段练习)如图,ABC V 与111A B C △位似,位似中心是点O ,则1:1:2OA OA =,ABC V 的面积为3,则111A B C △的面积是___________.三、解答题11.(2022·全国·九年级专题练习)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到111A B C △,请画出111A B C △;(2)以坐标原点O 为位似中心,在x 轴下方,画出△ABC 的位似图形222A B C △,使它与△ABC 的位似比为2:1.【答案】(1)见解析(2)见解析【分析】(1)直接利用旋转的性质得出对应点的位置,画出图形即可;(2)直接利用位似图形的性质得出对应点的位置,画出图形即可.(1)解:如图,111A B C △即为所求.;(2)解:如图,222A B C △即为所求.【点睛】本题考查了位似变换与旋转变换,正确得出对应点的位置是解题的关键.12.(2022·山东烟台·八年级期末)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (1,1),B (2,2),C (3,0).(1)以原点O 为位似中心,在y 轴的右侧画出将△ABC 放大为原来的2倍得到的△A 1B 1C 1,请写出点B 的对应点B 1的坐标;(2)画出将△ABC 向左平移1个单位,再向上平移2个单位后得到的△A 2B 2C 2,写出点C 的对应点C 2的坐标;(3)请在图中标出△A 1B 1C 1与△A 2B 2C 2的位似中心M ,并写出点M 的坐标.【答案】(1)图见解析,(4,4)(2)图见解析,(2,2)(3)图见解析,(﹣2,4)【分析】(1)把A ,B ,C 的横纵坐标都乘以2得到111,,A B C 的坐标,然后描点即可.(2)利用,点平移的坐标特征写出222,,A B C 的坐标,然后描点即可.(3)对应点连线的交点M 即为所求作.(1)如图△A 1B 1C 1即为所求作的三角形,点B 1的坐标(4,4).(2)如图,△A 2B 2C 2即为所求作的三角形点C 2的坐标(2,2).(3)如图所示:点M 即为所求作.M (﹣2,4).【点睛】本题考查了作图一位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,也考查了平移变换.一、填空题1.(2022·全国·九年级课时练习)如图,在平面直角坐标系中,以原点O 为位似中心,将△AOB 缩小为原来的12,得到△COD ,若点A 的坐标为(4,2),则AC 的中点E 的坐标是 _____.2.(2022·全国·九年级单元测试)如图所示,在平面直角坐标系中,已知点A (-4,2),B (-2,-2).以坐标原点O 为位似中心把△AOB 缩小得到△A 1OB 1,△A 1OB 1与△AOB 的位似比为12,则点A 的对应点A 1的坐标为_______.3.(2021·湖北·武汉二中广雅中学九年级阶段练习)在平面直角坐标系中,已知点()2,1A -,()3,2B --,以原点O 为位似中心,相似比为12,把ABO V 缩小,则点A 的对应点A ¢的坐标是______.【答案】11,2æö-ç÷或1(1,2-##1(1,)2-或1(1,2-4.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,等边ABC V 与等边BDE V 是以原点为位似中心的位似图形,且相似比为13,点A 、B 、D 在x 轴上,若等边BDE V 的边长为12,则点C 的坐标为_________.∵等边△ABC 与等边△BDE 是以原点为位似中心的位似图形,∴BC ∥DE ,∴△OBC ∽△ODE ,∴BC OB DE OD=,∵△ABC 与△BDE 的相似比为13,等边△BDE 5.(2022·全国·九年级课时练习)如图,已知ABCD Y 的面积为24,以B 为位似中心,作ABCD Y 的位似图形EBFG Y ,位似图形与原图形的位似比为23,连接AG 、DG .则ADG V 的面积为________.故答案为:4.【点睛】本题考查了位似图形的性质,平行四边形的性质与判定,掌握这些性质是解题的关键.二、解答题6.(2022·全国·九年级专题练习)如图,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,画出一个三角形,使它与△ABO的位似比为1.2【点睛】本题考查了位似的概念.位似比为对应点到位似中心的距离比.解题关键是根据位似比找到对应7.(2022·山东·聊城江北水城旅游度假区北大培文学校九年级阶段练习)已知:如图,△ABC三个顶点的坐标分别为A(0,-3)、B(3,-2)、C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的111A B C △;(2)以点C 为位似中心,在网格中画出222A B C △,使222A B C △与△ABC 位似,且222A B C △与△ABC 的位似比为2:1,并直接写出点2C 的坐标.【答案】(1)见解析(2)图见解析,2C 坐标为(2,-4)【分析】(1)直接利用平移的性质得出对应点位置即可得出答案;(2)直接利用位似图形的性质以C 为位似中心,将边长扩大为原来的2倍即可.(1)如图所示:111A B C △即为所求;(2)如图所示:222A B C △即为所求,2C 坐标为:(2,-4).【点睛】本题考查了平移的性质,位似的性质,能根据性质的特点进行画图是解此题的关键.8.(2021·黑龙江绥化·期末)按要求完成下面各题:(1)三角形AOB 顶点B 的位置用数对表示是 .(2)画出三角形AOB 绕点O 逆时针旋转90°后的图形.(3)按2∶1的比画出三角形AOB 放大后的图形.【答案】(1)(2,4)(2)见详解(3)见详解【分析】(1)根据网格即可得三角形AOB 顶点B 的位置;(2)根据旋转的性质即可画出三角形AOB 绕点O 逆时针旋转90°后的图形;(3)根据2:1的比即可画出三角形AOB 放大后的图形.(1)解:三角形AOB 顶点B 的位置用数对表示是(2,4);故答案为:(2,4);(2)如图三角形A OB ¢¢即为所求;(3)²²²即为所求.如图,三角形A O B【点睛】本题考查了作图﹣旋转变换,解决本题的关键是掌握旋转的性质.。
4.8 图形的位似(一)教学设计
第四章图形的相似8.图形的位似(一)一、学生学情状况分析在学习本节课之前,学生在本章前几节的学习中已经初步掌握了相似图形的相关知识,例如比例的相关概念、相似多边形的定义、相似三角形的性质与判定以及相似比的概念等等,能够作为本节课的理论基础。
在小学六年级的数学学习中,学生已经初步接触到利用方格纸将一些简单几何图形按照一定比例放大或缩小,在初中阶段的几何学习中,学生又掌握了一些基本的几何图形作图方法,如线段的倍增、线段中点的作法等,具有了初步的实践基础。
进入九年级,学生的动脑分析问题的水平和动手实践操作的水平都有了一定水准的提升,在学习引入情境设置合理的情况下,学生会表现出很强的好奇心和探究学习的欲望。
教师应充分了解把握学生的学习情感基础,立足于学生实际情况,从他们的生活背景和已有经验出发,予以适当引导,在恰当的时候给予提示或引起思维碰撞,同时借助多媒体课件实行演示,学生将会很快进入学习状态,用心观察、积极动手、积极地参与思考和讨论,课堂教学会收到良好的效果。
二、教学任务分析本次教材的改写在本节中体现的较为明显,从而带来了教学过程和任务上的一些变化。
集中体现在以下几个方面:1、本节仍然分为两课时,但是两个课时的教学内容发生了明显的变化。
原教材中第一课时偏重于对位似图形概念及性质的理解,以及在此基础上的绘制位似图形的基本方法的掌握;第二课时则重点探讨绘制位似图形的方法的多样性。
教材改写之后,第一课时的定义及性质的逻辑严谨性得到增强;而第二课时则重点探讨平面直角坐标系中多边形的位似与坐标变换之间的联系。
2、新教材没有提及位似图形的概念,而是以位似多边形的概念取代,突出了位似多边形的理解和作法。
3、新教材在定义中直接给出“对应点与位似中心的距离之比为定值”这个条件。
在教学实践中,应该通过对这个条件的强调,加深学生对相似与位似的关系的理解,即相似多边形必须满足某种严格的位置关系才能称之为位似多边形,而教学重点就是引导学生理解这个位置关系,并且与本堂课的主题“图形的放大与缩小”联系起来,使学生理解绘制位似图形的方法的理论依据。
北师大版九年级上册数学第四章8图形的位似说课课件
教学目标设计:
1
2
理解 位 似
多边形的有关 概念, 能 利 用 位似将一个图 形放大或缩小
经历通过
位似将图形放 大或缩小过程 ,发展演绎推 理能力。
3
体验数学来 源于生活又服 务于生活,体 会类似图形的 美,提高学生 的审美乐趣。
教法学法设计:
针对本节课的特点,我准备采用“动手实 践”、“主动探究”、“合作交流”为主线的 教学模式,视察、分析、谈论相结合的方法。 在教学中采用“问题启示”、“媒体演示”、 “组织合作”、“设置练习”等教学方法。从 而加快学生形成完整的认知结构,提高他们应 用知识解决问题的能力。学生的学习不单纯地 依赖模仿与记忆,展开“独立思考”“动手操 作”“合作交流”“巩固练习”,等学习方法, 促进学生从“学会”转变为“会学”。
不得不采用测量长度的方法来验证。而 给出这一条件后,学生完全可以自主对这 一性质加以证明。教学实践中应利用这一 变化加强数学教学的逻辑严谨性。 而利用 作位似图形的方法,将一个图形放大或者 缩小,本质上是位似图形性质的应用,它 是一个集动手与动脑一体的活动,也是本 课的技能目标。
教学重点:位似多边形的相关定义、性质的理解,绘制
感受到数学就在身边,又能激起他们对数学的好奇心和求知欲。
活动一:课前准备的图片
问题2:视察下列图形有怎样地特点?
预设学生答案:1,两图形类似。2,对应边平行
【设计意图】:设计问题2的目的是:让学生独立思考通过已学 知识和肉眼视察得易于发现的结论,给学生以自信。
创设情境 揭示定义
活动二:动手画一画,解决以下问题:
第四章 图形的类似
第8节 图形的位似(1)
说课流程:
4.8 课时1 位似图形的概念 课件 (共16张PPT) 数学北师版九年级上册
B`
每一组对应点的连线都经过镜头中心点O
下面两个多边形相似,将两个图形的顶点相连,观察发现连接的直线相交于点O. 有什么关系?
如果两个相似多边形每组对应点所在的直线都经过同一个点O,且每组对应点与O 点的距离之比都等于一个定值k,例如OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心, k 就是这两个相似多边形的相似比。
利用位似可以把一个图形放大或缩小
3.拉动铅笔,使结点沿图形的边缘移动一周,这样铅笔就画出一个新的图形。试试看,它们相似吗?
1.图中两个四边形是位似图形,它们的位似中心是( ) A. 点M B. 点N C. 点O D. 点P
3.下列说法中:①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE 与五边形A ′B ′C ′D ′E ′位似,则在五边形中连线组成的△ABC与△A ′B ′C ′也是位似的.正确的个数是( ) A. 1 B. 2 C. 3 D. 4
解:画射线OA,OB,OC;在射线OA,OB,OC上分别取点D,E,F,使OD = 2OA,OE = 2OB,OF = 2OC;顺序连接D,E,F,使△DEF与△ABC位似,相似比为2.
想一想:你还有其他的画法吗?
A
B
C
F
E
D
O
A
B
C
画法二:△ABC与△DEF异侧.
解:画射线OA、OB、OC;沿着射线OA、OB、OC反方向上分别取点D、E、F,OD = 2OA,OE = 2OB,OF = 2OC;顺次连结D、E、F,使△DEF与△ABC位似,相似比为2.
4.已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巩固练习
二、判断一下两组多边形是否是位似 多边形。
拓展延伸
用以下方法可以近似地 把一个不规则图形放大: 1.将两根等长的橡皮 系在一起,连接处形 成一个结点。 2.选一个图形,再选一 个定点,将橡皮筋的一 端固定在定点处,把铅笔固定在另一端。
拓展延伸
3.拉动铅笔,使结点沿 图形的边缘移动一周, 这样铅笔就画出一个新 的图形。试试看,它们 相似吗? 这样所得图形与原图 形的相似比是多少? 要放大其他的倍数应 该怎么做?如果要把 图形缩小呢?
动手实践
已知△ABC,求作△DEF,使它与 △ABC位似,并且相似比为2。 先任意取一个点 若 D 与 A 是对应点, 作为位似中心 O 。 若D 在射线 OA 上 D在哪儿? D D 点还可以取在哪 距离 O点多远? F 儿?
B
O E C F
D A
E
△DEF即为所求
D
动手实践
你能运用刚才的方法作一个新三角形, 使其各条边长为△ABC的各条边长的 一半吗?自己动手试一试。并向同学 们展示一下你的作法。
演示动画
课堂小结
本堂课你学到了什么?请你与同 学们交流一下?
作业布置
课本习题 知识技能1、2
第四章 图形的相似
第8节 图形的位似(一)
问题导入
九年级(1)班的同学们准备召一次 班会,他们想把下面的图样放大,使放 问题的关键在于要改 大前后对应线段的比为 1 ︰ 3 ,然后制成 变图形的大小,但不 彩纸活跃气氛,请你帮助他们找到放大 能改变图形的形状。 图样的方法。
下面我们就一起来学 习一种把图形放大或 缩小的方法
A
B
C
问题回放
下面请你回顾一下本节课开篇时的问 题,请你与同学探讨一下如何帮助九 年级(1)班的同学完成图样的放大。
巩固练习
一、判断正误: 1、位似多边形一定是相似多边形。 2、相似多边形一定是位似多边形。 我们通过几何画板 3、两个位似多边形每一对对应点到 制作的图形解答一 位似中心的距离之比为2︰3,则两个 下这个问题 多边形的面积之比为4︰9。 4、两个位似多边形的对应边互相平 行或在同一直线上。 演示图形
知识呈现
要放大或缩小一 个多边形,只要 调整对应点与位 似中心的距离, 使其比值等于放 缩的比例。 位似多边形上任意一对对应点到位似 中心的距离之比k等于相似比。
请观察:以上每组图中的两个多边形是 图(2)(3)(5)中对应点在位似中 位似多边形吗?位似中心在哪里? 心的同一侧,图(1)(4)(6)中对 你能把它们分类吗?你的依据是什么? 应点在位似中心的两侧。两种方法都能 起到把图形放大或缩小的效果。
知识呈现
每一组对应点的连线 以上五幅图片是形状相同的图形,取图 都经过镜头中心点P 中相对应的两点A、B,它们的连线经 过镜头中心P吗?换其他的对应点试一 试,还有类似规律吗?
知识呈现 请问此时红色四边形
与绿色四边形的相似 如果两个相似 比是多少?你会证明 多边形每组对 吗?你有什么发现? 应点所在的直 线都经过同一 个点O,且每 组对应点与O 点的距离之比都等于一个 定值k,例如OA′=k· OA(k≠0),那么 这样的两个多边形叫做位似多边形,点 O叫做位似中心。