电化学原理-第二章-电化学热力学解析

合集下载

[理学]第二章电化学热力学2

[理学]第二章电化学热力学2

2.1 可逆电池与可逆电极
一.可逆电池
满足下列两个条件的电池就是可逆电池
(1)电池中化学反应是可逆的,即充放电反应互为可逆过程。 (2)电池中能量的转化是可逆的,即充放电过程都在同一电压
下进行,充放电过程都在平衡状态下进行。
不满足上述条件中任一条件的电池就是不可逆电池.
2.1 可逆电池与可逆电极
2.3.相间电势
3.内电势
带电体内部一点的电位叫内电势。主要由物质本身所带电荷和表面电场
所引起的,在数值上等于把单位正电荷从无穷远处移到该相内部克服外电
场和表面电场所做的功。

直接接触的两相之间的外电位差叫做伏特电势差。
M S M S M S M S
电池可以分为可逆电池和不可逆电池,而电化学热力学计算可
适用于可逆电池体系。
2.1 可逆电池与可逆电极
电池体系有可逆电池与不可逆电池。但腐蚀原电池不是逆电池
体系。
所谓的平衡状态下的电化学体系也就是可逆状态下的电池体系。 电化学热力学的定律等只能用来描述可逆电池体系; 电池体系可以分为两个半电池,每个半电池就是一个电极体系; 电极有可逆电极与不可逆电极,每个电极有其对应电极电位;
A e
Zn
Ag+AgCl
放电反应: 0.5Zn+ AgCl =0.5Zn2++ Ag+Cl充电反应: 0.5Zn2++ Ag+Cl-=0.5Zn+ AgCl
充放电反应互为可逆,当体系通过的 电流无限小,充放电过程都在同一电势 下进行时,这个电池是可逆电池.
ZnCl2
2.1 可逆电池与可逆电极
按照电池的结构,每个电池都可分为

李狄版电化学原理-第二章__电化学热力学

李狄版电化学原理-第二章__电化学热力学

电池的表示方法
250C , (-) Zn|ZnSO4(αZn2+=1) || CuSO4(αCu2+=1) |Cu (+) 1、负极写在左边,正极写在右边,溶液写在中间。溶液中有关 离子的活度或浓度,气态物质的气体分压应注明 2、两相界面用单竖线“∣”或“,”隔开,两种溶液通过盐
桥连接,用双竖线“‖”表示盐桥。
形成原因:
不同的金属相中电子的电化学位不同,电子逸出金 属相的难易程度也不同。通常以电子逸出功来衡量电 子逸出金属的难易程度。
结果:
电子逸出功低
电子逸出功高
电子逸出功高的金属带 负电,电子逸出功低的金属 带正电;形成双电层的电位 差→金属接触电位。
2.1.3、电极电位
1 电极体系(简称电极) 如果在相互接触的两个导体相中,一个是电子导电相,另一个 是离子导电相,并且在界面上有电荷转移,这个体系就称为电 极体系(简称电极)。
E = M S - R + R M R =0 E(相对电位)= = M S + R M 实际上,相对电极电位不仅包括M S ,而且包括金属接触电
位 R M 。
3 绝对电位符号的规定
规定溶液深处电位为零,金属与溶液的内电位差看成是金属 相对于溶液的电位降。 金属一侧带正电, 溶液一侧带有负 电,M S 为正值 反之,: M S 为负值。
E ΔZn φS ΔSφCu ΔCuφ Zn
电极材料不变,Cu Zn是恒定值; 若S Cu 恒定,
E = ( Zn S ) 即:绝对电位的变化值是可求出的。
E有用,对不同电极测 量, E 的大小顺序与绝对 电位的大小顺序一致。 参比电极 能作为基准的,其电极电 位保持恒定的电极。

第二章电化学腐蚀热力学要点

第二章电化学腐蚀热力学要点
• 上面介绍的是常见的三种宏观腐蚀电池。实际上 腐蚀现象往往是几种(包括下面将介绍的微电池) 类型的腐蚀电池共同作用的结果。
2.3.2微观腐蚀电池
• 在金属外表上由于存在许多极微小的电极 而形成的电池称为微电池。微电池是因金 属外表的电化学的不均匀性所引起的,不 均匀性的原因是多方面的。
图2.4 腐蚀电池
图2.5铜锌接触形成腐蚀电池示意图
图2.6铸铁形成腐蚀电池示意图
• 单个金属与溶液接触时所发生的金属溶解 现象称为金属的自动溶解。这种自溶解过 程可按化学机理进展,也可按电化学机理 进展。金属在电解质溶液中的自动溶解属 于电化学机理。
图2.7金属锌在稀酸溶液中的腐蚀
2.2.4金属腐蚀的电化学历程
• 金属腐蚀反响体系是一个开放体系。在反响过程 中,体系与环境既有能量的交换又有物质的交换。
金属腐蚀反响一般都是在恒温和恒压的条件下进 展的,用体系的热力学状态函数吉布斯(Gibbs)自
由能判据来判断反响的方向和限度较为方便。吉 布斯自由能用G表示,对于等温等压并且没有非
体积功的过程,腐蚀体系的平衡态或稳定态对应
• Zn2++ 2OH- → Zn(OH)2 ↓ • 这种反响产物称为腐蚀次生产物,也称腐蚀产物。某些情
况下腐蚀产物会发生进一步的变化。例如铁在中性的水中 腐蚀时Fe2+离子转入溶液遇到OH-离子就生成Fe(OH)2, Fe(OH)2又可以被溶液中的溶解氧所氧化而形成Fe(OH)3。
• 4 Fe(OH)2+O2+H2O→ 4Fe(OH)3: • 随着条件的不同(如温度、介质的pH及溶解的氧含量等)也
• 从上面讨论的腐蚀电池的形成可以看 出,—个腐蚀电池必须包括阴极、阳极、 电解质溶液和连接阴极与阳极的电子导体 等几个组成局部,缺一不可。这几个组成 局部构成了腐蚀电池工作历程的下三个根 本过程。

第二章 电化学热力学ppt课件

第二章 电化学热力学ppt课件
第2章 电化学热力学
Chapter 2 Electrochemical Thermodynamics
•§2.1 相间电位和电极电位 •§2.2 电化学体系 •§2.3 平衡电极电位 •§2.4 不可逆电极 •§2.5 电位-pH 图
.
重点要求 Key requirements
相间电位的概念和类型
给定电极发生还原反应(阴极)时, 该电极电位为正值; 给定电极发生氧化反应(阳极)时, 该电极电位为负值。
.
液体接界电位(扩散电位)j
Liquid junction potential——diffusion potential
➢ 定义:相互接触的两个组成不同的电解质溶液之 间存在的相间电位。
➢ 形成的原因:由于两溶液相组成或浓度不同, 溶质粒子将自发的从高浓度向低浓度的相迁移, 就是扩散的作用。正负离子运动速度不同在相 界面形成的双电层,产生一定的电位差。
A 被测体系
电位测量装后WE电 位变 化,需 RE
辅助CE 研 WE
参RE
.
三电极体系与两回路
电解池
V
R大
CE
RE 测量回路
WE
E
极化回路
经典恒流法测量电路
.
三电极
工作电极(Working Electrode 标准缩写 WE) 又称研究电极或指示电极(IE)
辅助电极(Auxiliary Electrode 标准缩写 AE ) 又称对电极(Counter Electrode CE )
➢ 外电位差: BABA ➢ 内电位差: BABA ➢ 表面电位差: BABA
➢ 电化学位差: BiA=iBiA
.
金属接触电位
Metal contact potential

热力学和电化学的原理

热力学和电化学的原理

热力学和电化学的原理热力学和电化学是物理学的两个分支,分别研究热量和电量的转化和分配。

这两个领域互相关联,相互影响,是科学研究的重要组成部分。

本文将从热力学和电化学的原理两方面进行探讨。

一、热力学的原理热力学从宏观的角度研究热量的转化和分配规律。

它的核心概念是热力学第一定律和热力学第二定律。

热力学第一定律表明了热量可以与其他形式的能量相互转化,但总能量守恒。

即系统吸收的热量等于外界对系统所做的功与系统内部能量的变化之和。

举个例子,当我们把手插进温水中时,手会感觉到热,这是因为温水把热量传递给了手,我们的身体就把这些能量变成了热能或动能,但总能量守恒。

热力学第二定律则表明了热量的自发流动方向。

它指出热量永远不能从低温物体传递到高温物体,这是因为热量自发流动的方向是从高温物体流向低温物体,直到达到热平衡。

这个定律被称为熵增定律,表明了任何自发过程熵都增加。

理解热力学的原理可以帮助我们更好地利用和控制热量的转化和分配,从而发挥能量的最大效用。

二、电化学的原理电化学研究电荷在化学反应中的转移和分配规律。

它主要探讨电化学反应的动力学和热力学特性,包括电解和电化学腐蚀等。

在电化学反应中,电子是电荷的主要载体。

例如,当我们在用电池时,正极会释放电子,负极会吸收电子,电子在电路中传输,从而实现能量的转化和分配。

电化学反应的动力学特性可以用电位和电流强度来描述,而热力学特性则可以用电势差和熵变来描述。

电化学反应的热力学特性可以用化学反应热和物质的热力学性质来计算。

例如,当我们在制备氧气时,可以通过电解水来分离氢氧离子,生成氧气和氢气。

这个反应的热力学特性可以用热化学方程式来计算。

电化学反应的研究可以帮助我们更好地理解化学反应的机理,控制化学反应的速度和方向,以及设计和制造更高效的电池和电化学器件。

总结热力学和电化学是相互关联的两个领域,两者都涉及能量的转化和分配规律。

热力学研究热量的转化和分配,电化学研究电荷的转移和分配。

第二章电化学热力学

第二章电化学热力学

根据电位差公式,可得:
则有: 可把与参比电极有关的第二项看成是参比电极的相对电 位,把与被测电极有关的第一项看成是被测电极的相对 电位,上式可简化为: 如果规定参比电极的相对电位为零,则: 而且有:
2.2.3 绝对电位的符号规定
根据绝对电位的定义,通把溶液深处看作是距离金属溶 液界面无穷远处,认为溶液深处的电位为零,把金属与 溶液的内电位差看成是金属相对于溶液的电位降。
2.1.2 出现相间电势的原因 界面层中带电粒子或偶极子的非均匀分布,导致一侧有过剩的 正电荷,另一侧有过剩的负电荷,形成双电层。 (1)剩余电荷层:由于带电粒子(电子或离子)在两相间转移, 导致两相中都出现了剩余电荷,这些剩余电荷或多或少地集中 在界面两侧,就形成了双电层; ( 2)吸附双电层:带有不同符号电荷的粒子(阳离子和阴离子) 在表面层中的吸附量不同,因而在界面层与溶液本体中出现了 符号相反的电荷; (3)偶极子层:偶极分子在界面层中的定向排列; (4)金属表面电位:金属表面因各种 短程力作用而形成的表 面电位差。
相间:两相界面上不同于基体性质的过度层。
相间电位:两相接触时,在两相界面层中存在 的电位差。
产生电位差的原因:荷电粒子(含偶极子) 的非均匀分布 。
2.1.1 相间电势差
两相接触时,由于种种 原因,在两相之间的界 面上,就会产生电势差: (1)金属接触电势 (2)金属-溶液间电势 (电极电势) (3)液体接界电势 (扩散电势) (-) Cu(s) Zn(s)ZnSO4(aq) , CuSO4(aq) Cu(s)Cu(s) (+) 金属-金属 溶液-溶液 金属-溶液
2.1.5 粒子的逸出功(Wi) 将该粒子从实物相内部逸出至表面近处真空中所需要作的 功.逸出功的数值和实物相以及脱出粒子的化学本质有关。 粒子逸出功: 电子逸出功:

(二)电化学热力学与可逆电池电动势

(二)电化学热力学与可逆电池电动势

(二) 电化学热力学与可逆电池电动势将锌板浸入硫酸锌溶液,将铜板浸入硫酸铜溶液,中间用多孔陶瓷隔开,就构成了丹尼尔(Daniell )电池。

该电池中发生的反应Zn + Cu 2+ −→ Zn 2+ + Cu 是一个典型的氧化还原反应(redox reaction ),当其在电池中发生时,则可在正负极间形成约1.5 V 的电势差,并对外输出电能。

化学反应与电化学反应两者为什么不同?如何将一个反应设计成电池而使之对外输出电功?电极间的电势差是如何形成的?输出的电功与体系化学能变化之间有何关系?这些问题都要由电化学来回答。

所谓电化学(electrochemistry)就是研究化学现象与电现象之间的关系,以及电能与化学能之间相互转化规律的科学。

电化学反应需在电化学装置中才能发生。

将化学能转化为电能的装置称为原电池(galvanic cell),将电能转化成电能的装置称为电解池(electrolytic cell)。

无论原电池还是电解池通常的均由2个电极和对应的电解质溶液构成。

电极的命名有2种,即正负极和阴阳极。

其中,电势高的一极称为正极,电势低的为负极;发生氧化反应的一极是阳极,而发生还原反应的是负极。

例如,图7.15中,Zn 电极电势低,为负极,发生氧化反应Zn −→ Zn 2+ +2e -,是阳极;而Cu 电极电势高,是正极,发生还原反应Cu 2+ +2e -−→ Cu ,所以是阴极。

对于原电池和电解池,电极名称的对应关系如表7.7 所示。

表7.7 原电池和电解池的电极名称对应关系原电池 电解池 电势 高低 高 低 正极负极 正极 负极 反应 还原氧化 氧化 还原 阴极 阳极 阳极 阴极§7.6 可逆电池的设计1.原电池设计的原理通常的氧化还原反应在电池中发生时,会拆成单纯的氧化反应(oxidation reaction )和还原反应(reduction reaction )在两个电极上分别发生,如上例:负 极:Zn −→ Zn 2+ + e 2-正 极:Cu 2+ + e 2-−→ Cu总反应:Zn + Cu 2+ −→ Zn 2+ + Cu在电极上发生的反应称为电极反应(electrode reaction ),也称半反应(half reaction),因为它们仅是完整氧化还原反应的一半。

第2章电化学热力学PPT课件

第2章电化学热力学PPT课件
⑶溶液中的极性分子在 界面溶液一侧定向排列, 形成偶极子层。
⑷金属表面因各种短 程力作用而形成的表 面电位差,例如金属 表面偶极化的原子在 界面金属一侧的定向 排列所形成的双电层。
第1页/共103页
+++-
偶极子层
+++-
金属表面电位
3、 带电粒子在两相之间出现转移的原因:
⑴不带电粒子在两相之间出现转移的原因 同一粒子在不同相中所具有的能量状态是不同的。当两相接触时,该粒子就会自发地
j /mV
浓度
/mol/dm3
/mV j
0.2
19.95
1.75
5.15
0.5
12.55
2.50
3.14
1.0
8.4
3.5
1.1
第27页/共103页
2.2 电化学体系
2.2.1原电池(自发电池) Galvanic cell
1、原电池定义 最简单的原电池——丹尼尔 电池 。
原电池定义为:凡是能将化学能直接转变为电能的电化学装置叫做原电池或自发电池。
从能态高的相向能态低的相转移。假如是不带电的粒子,那么,它在两相间转移所引起的 自由能变化就是它在两相中的化学位之差。即
GiAB iB iA
GiAB 0
iB iA
⑵带电粒子在两相之间出现转移的原因 对带电粒子来说,在两相转移时,除了化学能的变化外,还有随电荷转移所引起的电
能变化。建立相间平衡的能量条件就必须考虑带电粒子的电能。
克服试验电荷与组成M相的物质之间的短程力作用(化学作用)所作的化学功:
第4页/共103页
假如进入M相的不是单位正电荷,而是1摩尔的带电粒子,那所做的化学功等于该粒

《电化学原理第二章》PPT课件

《电化学原理第二章》PPT课件

溶液(1)
§2.2 电化学体系
电化学体系有三类 1.原电池:电化学反应自发进行并能对外做功,自发将电流送到外电 路中做功。 2.电解池:与外电源组成回路,强迫电流在电化学体系中通过并促使 电化学反应发生。 3.腐蚀电池:电化学反应自发进行,但不对外做功,仅起金属破坏作 用。
16:23:07
一、 原电池
例2: 2Ag + Hg2Cl2 2Hg + AgCl
阳极:Ag + Cl- - e → AgCl 阴极:Hg2Cl2 + 2e → 2Hg + 2Cl原电池表示为: Ag∣AgCl(s), Cl-(α1)‖Cl-(α2), Hg2Cl2(s)∣Hg(
16:23:07
例3:
H2 (P1) + Cl2 (P2)
阳极
16:23:07
E
电池电动势:
E = c - a+液接 = 右 - 左+液接
阴极
例1: Zn + CuSO4(α2) ZnSO4(α1)+Cu
阳极 Zn – 2e → Zn2+ 阴极 Cu2+ + 2e → Cu 原电池表示: Zn∣ZnSO4(α1)‖CuSO4(α2)∣Cu
16:23:07
16:23:07
二、金属接触电位
相互接触的两金属相之间的外电位差称为金属接触电位。 不同金属对电子亲和力不同,故在不同金属相中电子的电化学位不相等,电子逸出难易不同。 电子逸出功:金属电子离开金属逸出真空中所需要的最低能量来衡量电子逸出金属的难易程度,这一能量 叫电子逸出功。 其电子逸出功不同,相互逸入的电子数目将不等,故在界面形成双电子层结构。电子逸出功高的相带负 电,电子逸出功低的相带正电。两相间双电子层的电位差即为金属接触电位。

电化学原理-第二章-电化学热力学

电化学原理-第二章-电化学热力学

1.
单位正电荷情况:任一相的表面层中,由于界面上的短程
力场(范德瓦耳斯力、共价键力等)引起原子或分子偶极化并 定向排列,使表面层成为一层偶极子层。单位正电荷穿越
该偶极子层所作的电功称为M相的表面电位χ。所以将一个
单位正电荷从无穷远处移入M相所作的电功是外电位ψ与表 面电位χ之和,即:


式中,ф称为M相的内电位。

金属晶格中自由电子对锌离子的静电引力。它既起着阻止
表面的锌离子脱离晶格而溶解到溶液中去的作用,又促使 界面附近溶液中的水化锌离子脱水化而沉积到金属表面来。 极性水分子对锌离于的水化作用。它既促使金属表而的锌 离子进入溶液,又起着阻止界面附近溶液中的水化锌离子

脱水化面沉积的作用。
在金属/溶液界面上首先发生锌离子的溶解还是沉
电化学原理
第二章 电化学热力学
1. 2. 3. 4. 5.
相间电位和电极电位 电化学体系 平衡电极电位 不可逆电极 电位-pH图
2.1、相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
一、相间电位
相间电位是指两相接触时.在两相界面层中存在
(2)内电位差,又称伽尔伐尼(Galvani)电位差。定 义为 。直接接触或通过温度相同的良好 B A 电子导电性材料连接的两相间的内电位差可以表 示为 B A 。只有在这种情况下。

B A
B A
由不同物质相组成的两相间的内电位差是不能直接 测得的。
(3)电化学位差,定义为 i i。
金属表面的特点:
锌离子脱离晶格,必须克服晶格间的结合力--金属键力。 在金属表面的锌离子,由于键力不饱和,有吸引其他正离 子以保持与内部锌离子相同的平衡状态的趋势;同时,又 比内部离子更易于脱离晶格。

(整理)第二章 电化学反应热力学

(整理)第二章  电化学反应热力学

第二章 电化学反应热力学第一节 电化学体系一、两类电化学装置镀镍是重要电化学工业之一,其装置 示意图如图2.1所示镀镍溶液(主要成分为 NiS04,还有缓冲剂、添加剂等)电解槽或电解池:把两个电极与直流电源连结,使电流通过体系的装置原电池或化学电源:在两电极与外电路中的负载接通后自发地将电能送到外电路的装置。

上述两类电化学装置,也称为电化学体系。

原电沲与电解池的两个电极之间存在着电位差,电位较高的电极称为正极,电位较低的电极称为负极。

在自发电池中,电流(习惯上指正电荷)自正极经外电路流向负极。

电解池的正、负极分别与外电源的正、负极相连。

事实上,在外电路传送的电荷都是电子,电子流动方向与习惯上认为的电流方向相反。

人为规定使正电荷由电极进入溶液的电极称为阳极,使正电荷由溶液进入电极的电极称为阴极,在阳极上进行氧化反应,在阴极上进行还原反应。

在电解时,正极是阳极,负极是阴极。

在原电池中负极是阳极,正极是阴极。

用正、负极名称是按电位高低来区分,用阴、阳极名称是按电极进行还原或氧化反应来区分。

也有用氧化极、还原极来称呼电极的,前者即阳极、后者为阴极。

电流通过电化学体系,必须有两类导体:电子导体和离子导体,以及在这两类导体的界面上进行电化学反应。

因此,电化学的研究对象应当包括三部分:电子导体、离子导体、两类导体的界面及其上发生的一切变化。

电子导体属于物理研究的范围,在电化学中一般只引用它们所得的结论。

离子导体包括电解质溶液、熔融盐和固体电解质。

经典电化学的主要内容:电解质溶液理论。

近代电化学的主要内容: 两类导体的界面性质及界面上所发生的变化,涉及图 2.1 镀镍装置示意图化学热力学和化学动力学的许多问题。

电化学包括的基本内容为电解质溶液理论,电化学平衡和电极对程动力学能量的转换: 电解池,把电能转变为化学能;化学电源,使化学能转变为电能。

电化学主要是研究化学能和电能之间相互转化以及和这过程有关的定律和规则的科学。

电化学原理知识点

电化学原理知识点

电化学原理知识点电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数:活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I:离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G,单位为S ( 1S =1/Ω)。

第二章是电化学热力学界面:不同于基体的两相界面上的过渡层。

相间电位:两相接触时存在于界面层的电位差。

产生电位差的原因是带电粒子(包括偶极子)分布不均匀。

形成相间电位的可能情况:1。

残余电荷层:带电粒子在两相间的转移或外部电源对界面两侧的充电;2.吸附双电层:界面层中阴离子和阳离子的吸附量不同,使界面和相体带等量相反的电荷;3.偶极层:极性分子在界面溶液侧定向排列;4.金属表面电势:各种短程力在金属表面形成的表面电势差。

电化学原理

电化学原理

第 一 章 绪论
§1.1电化学科学的研究对象 §1.2电化学科学的发展简史 §1.3电化学科学涉及的领域 §1.4电化学科学的应用
§1.1 电化学科学的研究对象
• 研究对象: 电子导电回路 电解池回路 原电池回路
1、电子导电回路
• 自由电子跨越相界面 定向运动,不发生化 学变化。
• 第一类导体: 依靠自由电子导电 金属、合金、石墨
阴极上因为还原反应使电子贫乏,电位高,是 正极。
电流从正极流向负极。
电化学中:
发生氧化反应的电极称阳极
负极
正极
发生还原反应的电极称阴极
电极电位较高的电极是正极
电极电位较低的电极是负极
4、电化学科学的研究对象
电子导电相(物理学研究范畴) 离子导电相(经典电化学研究的领域) 界面效应(现代电化学研究内容)
二、电化学发展缓慢(20世纪上半叶) 电化学家企图用热力学方法解决一切电化学
问题,遭到失败。
三、电化学动力学发展( 20世纪40年代)
弗鲁姆金等 析氢过程动力学
和双电层结构研究取得进展
格来亨
用滴汞电极研究两类导体界面
电化学动力学:研究电极反应速度及其影响因素
四、理论和实验技术突破性进展( 20世纪60年代) 理论方面:非稳态传质过程动力学 表面转化步骤 复杂电极过程 实验技术方面:界面交流阻抗法 暂态测试方法 线性电位扫描法 旋转圆盘电极系统
对于溶液中的离子,其电化当量即该离子的摩尔质量 与其电荷数的比值,如1电化当量的Ag+=108g;1电化 当量的Al3+=27/3g。
§1.2 电化学科学的发展简史
一、电化学热力学发展(1799~1905)
1799 物理学家伏打发明第一个化学电源 1800 尼克松发明电解水 1833 法拉第定律发现 1870 亥姆荷茨提出双电层概念 1889 能斯特提出电极电位公式 1905 塔菲尔提出塔菲尔公式

李狄-电化学原理-第二章-电化学热力学

李狄-电化学原理-第二章-电化学热力学

第二节

电化学体系


一. 三种电化学体系: 原电池(Galvanic cell):凡是能将化学 能直接转变为电能的电化学装置叫做原 电池或自发电池; 电解池(Electrolytic cell):将电能转 化为化学能的电化学体系叫电解电池或 电解池; 腐蚀电池(Corrosion cell):只能导致 金属材料破坏而不能对外界做有用功的 短路原电池。

相对(电极)电位:研究电极与参比电 极组成的原电池电动势称为该电极的相 对(电极)电位 ,用 表示。 符号规定: 0 研究电极在原电池中发生还原反应: 0 研究电极在原电池中发生氧化反应:


氢标电位

定义:标准氢电极作 参比电极时测得的电 极相对电位 。如:
Pt|H2,H+||Ag2+|Ag

i
或 0

带电粒子:
W2
W1

W2
W1

将单位正电荷从无穷远处移至实物相内部所做的功

将单位正电荷e从无穷远处移至离良导体球 体M10-4~10-5cm处,电荷与球体之间只有长 程力(库仑力)作用:
W1


从10-4~10-5cm处越过表面层到达M相内: W2 界面短程力做电功: 克服物相M与试验电荷之间短程力所作的化 学功:W化
0.799V
液体接界电位与盐桥

液体接界电位:相互接触的两个组成不 同或浓度不同的电解质溶液之间存在的 相间电位。
产生的原因:各种离子具有不同的迁移 速率而引起。
由于离子扩散速度不同造成的液体接界电位

盐桥:饱和KCl溶液中加入3%琼脂。
由于K+、Cl-的扩散速度接近,液体接 界电位可以保持恒定。

第2章1腐蚀的电化学基础电化学腐蚀热力学ppt课件

第2章1腐蚀的电化学基础电化学腐蚀热力学ppt课件
O2 + H2O + 4e → 4OH电子由阳极区提供,产生的OH-使pH值升高,酚酞显示出粉红色。 在浓差的推动下,Fe2+和OH—相互扩散,在水滴中部出现棕黄色的铁锈。
4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3↓
第二章 腐蚀的电化学基础电化学腐蚀热力学
§2.1 腐蚀原电池
蓝色、阳极
氧化反应; 正极(Anode): 电势高,电子流入,发生
还原反应。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
例2. 原电池 锌锰干电池结构
NH4Cl, ZnCl2和MnO2 浆状物 正极:石墨 (带铜帽) 负极:锌(外壳)
棕色、铁锈
蓝色、阳极 红色、阴极
第二章 腐蚀的电化学基础电化学腐蚀热力学
§2.1 腐蚀原电池
使用的指示剂的浓度应尽可能低,否则会干扰上述的电极过程。
2Fe - 4e → Fe2+ 阴极过程:4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3↓
例如,过多的K3[Fe(CN)6],可能发生Fe(CN)63-的还原,消耗 电子,提供阴极过程,而K3[Fe(CN)6]2的沉淀在阳极区,也可能使氧更 难于进入,加速阳极过程。因此K3[Fe(CN)6]的浓度应尽可能低,最好 只显示兰色而无沉淀。
溶解 氧化反应、阳极
氢气析出 还原反应、阴极
将Zn和Cu放入稀硫酸中并用导线相互连接,
就构成Zn-Cu原电池。于是在Zn电极上发生Zn
的溶解,而在Cu电极上析出氢气,两电极间有
电流流动。在电池作用中发生金属氧化反应的

电化学腐蚀热力学

电化学腐蚀热力学
外电流的表征: 当 ,则外电流为 当 ,则外电流为
过电位
01
定义:把某一极化电流密度下的电极电位与其平衡电位之差称为该电极反应的过电位。
腐蚀原电池定义:只能导致金属材料破坏而不能对外界作有用功的短路的原电池。
含杂质Cu的Zn板在盐酸中的演化实验
在混合电位下有如下规律:
01
02
多电极反应耦合系统
当一个孤立电极上有N>2个电极反应同时进行,且外电流等于0,这些电极反应组成了多电极反应耦合系统。 规律:
2-4 金属电化学腐蚀倾向的判据
金属及其化合物的热力学能量变化示意图
自由能判据 GT,P=0,平衡 GT,P<0,自发 GT,P>0,不可能发生
虚线(b)表示O2(分压 =10135Pa)和H2O的平衡关系,即:O2 +4H+ +4e → 2H2O
0 0 0 0
Fe3+
腐蚀
Fe2O3
钝态
Fe3O4
腐蚀 HFeO2-
稳定Fe
铁——水体系简化电位——PH平衡图 三种区域的划分
第二章 金属电化学热力学
2
1
5
本章重要知识点:
☼电极电位
☼腐蚀原电池、混合电位、交换电流密度、过电位
4
☼金属腐蚀倾向的热力学判据
3
☼平衡电极电位与非平衡电极电位
6
☼电位-pH图
问题的提出
电化学腐蚀是如何产生的?
腐蚀产生的条件是什么?为什么有些情况下产生腐蚀,而另外一些则不会?

1
2
3
4
5
6
非平衡电极电位
01
当金属电极上同时存在两个或两个以上不同物质参与的电化学反应时,电极上不可能出现物质交换和电荷交换均达到平衡的情况,这种情况下的电极电位称为非平衡电极电位,或不可逆电极电位。

大学化学第二章电势和电池热力学课件

大学化学第二章电势和电池热力学课件

E S nF ( T ) p
E ( T ) p E ( T ) p
电池的温度系数
>0 电池放电时从环吸收热量 =0 电池放电时与环境无热交换 <0 电池放电时向环境放出热量
RT lnK = -∆G θ = nFE θ E HG TS
nF
T

T
R
体系对外所做的最大非体积功等于体系自由能的减少
TS 0 lim QC 43kJ
R
-G = W非 = nFE
可逆电池热效应
(3) 实际的可逆性
因为所有真实过程都有一定的速度,所以 它们不可能具有严格的热力学上的可逆性。然 而,实际上它们可以以这样一种方式进行,以 至于在所期望的某一准确度下,一些热力学方 程式可以适用。在这种情况下,可以称这些过 程为可逆过程
可逆电池 = 化学可逆 + 热力学可逆
等温可逆
等压可逆 等容可逆
2、可逆性和吉布斯(Gibbs)自由能
体系自由能的减少等于体系对外所做的 最大非体积功。
可逆时体系对外所做的非体积功最大
-G = W非 = W电 = nFE 实例 反应 Zn + 2 AgCl → Zn2+ + 2Ag + 2 Cl- 以三种不同方式进行
充电: 阳极
阴极:
PbSO4 2H2O PbO2 4H SO42 2e PbSO4 2e Pb SO42
Zn│H+ , SO42-│Pt
电池放电时
负极: Zn → Zn2+ + 2 e
正极: 2 H+ + 2 e → H2 电池反应是: Zn + 2H+ → H2 + Zn2+ 电池充电时 负极: 2 H2O → O2 + 4H+ + 4e(在铂电极上)

第二章 电化学腐蚀热力学

第二章  电化学腐蚀热力学



确定腐蚀电池的意义: 明确腐蚀电池及其对应的电极过程是研究各种腐蚀类型和腐蚀形 态的基础;
四、电位—pH图
金属的电化学腐蚀绝大多数是金属同水溶液相接触时
发生的腐蚀过程。水溶液中除了其它离子外,总是存在H+ 和
OH-离子。这两种离子含量的多少由溶液的pH值表示。金属在 水溶液中的稳定性不但与它的电极电位有关,还与水溶液的 pH值有关。
RT ln aM n nF
其中E0为标准状态下的平衡电极电位,可查表得到
不同的金属在不同溶液中的离子化倾向 不同。当达到平衡时,金属在溶液中建立起平 衡电极电位。若以标准氢电极为参比电极(规 定其电位为零),则电极电位的大小(即可看 作为原电池的电动势)和自由能变化值一样, 可以表示腐蚀的自发倾向,二者具有以下关系:
(2)气体电极 金属在含有气体和气体离子的溶液中构成的电极 称为气体电极。如氢电极(2H++2e = H2)、氧电极( O2十 2H2O +4e = 4OH-)等。将铂片浸入氢离子浓度为1mol/L 的硫酸溶液中, 然后在25℃不断地通入1个大气压的纯氢气流 就构成了标准氢电极,它又可表示为H+│H2(Pt)。
金属在充气的流动海水中的腐蚀电位
三、腐蚀电池
1、腐蚀电池的工作过程 Zn + H2SO4 = ZnSO4 + H2 腐蚀电池的定义:只能导致金属材料破坏而不 能对外界作功的短路原电池。 2、腐蚀电池的特点 ★腐蚀电池的阳极反应是金属的氧化反应,结果造 成金属材料的破坏。 ★腐蚀电池的阴、阳极短路(即短路的原电池), 电池产生的电流全部消耗在内部,转变为热, 不对外做功。 ★腐蚀电池中的反应是以最大限度的不可逆方式进 行。
ESHE =0.2415十ESCE

第2章-电化学热力学

第2章-电化学热力学

第2章电化学热力学2.1 相间电位和电极电位2.1.1 相间电位两相接触时,荷电粒子〔含偶极子〕在界面层中的非均匀分布使两相界面层中存在电位差,这种电位差称为相间电位。

引起相间电位的可能有以下四种情形:(a)带电粒子在两相间的转移或利用外电源向界面两侧充电使两相中出现剩余电荷,形成“双电层〞。

(b)阴、阳离子在界面层中吸附量不同,使界面与相本体中出现等值反号电荷.在界面的溶液一侧形成吸附双电层。

(c)溶液中极性分子在界面溶液一侧定向排列,形成偶极子层。

(d)金属表面因各种短程力作用而形成的表面电位差。

在电化学体系,离子双电层是相间电位的主要来源,同一种粒子在不同相中所具有的能量状态是不同的,当两相接触时,该粒子就会自发地从高能态相向低能态相转移。

对于不带电的粒子i相间稳态分布的条件是△G i A→B=μi B−μi A=0即该粒子在两相中的化学位相等,μi B−μi A对于带电粒子来说,在两相间转移时,除了引起化学能的变化外,还有随电荷转移所引起的电能变化。

假设孤立相M是一个由良导体组成的球体,因而球体所带的电荷全部均匀分布在球面上。

(1)将单位正电荷e从无穷远处移至离良导体球M 104~10-5cm处时所做的功W1,电荷与球体之间只有长程力〔库仑力〕作用,称为M相(球体)的外电位,用ψ表示,有:W1=ψ(2)从10-4 ~ 10-5cm处越过表面层到达M相内界面短程力做电功称为M的表面电位χ:W2=χ(3)克服物相M与试验电荷之间短程力所作的化学功:W=μ化对于单位正电荷情况:任一相的表面层中,由于界面上的短程力场(X德瓦耳斯力、共价键力等)引起原子或分子偶极化并定向排列,使表面层成为一层偶极子层。

单位正电荷穿越该偶极子层所作的电功称为M相的表面电位χ。

所以将一个单位正电荷从无穷远处移入M相所作的电功是外电位ψ与表面电位χ之和,即Φ=ψ+χФ称为M相的内电位。

如果进入M相的不是单位正电荷,而是1摩尔的带电粒子,则其化学功等于该粒子在M相中的化学位μ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G
标表示粒子。
AB i

B i
A i
式中:ΔG表示自由能变化;μ表示化学位。上标表示相,下
显然,建立起相间平衡,即i粒子在相间建
立稳定分布的条件应当是
G
AB i
0
A i
也即该粒子在两相中的化学位相等,即

B i
驱动力2---电化学位之差

对带电粒子来说,在两相间转移时,除了引起化 学能的变化外,还有随电荷转移所引起的电能变 化。
2. 带电粒ቤተ መጻሕፍቲ ባይዱ情况:克服试验电荷与组成M相的物质之间的短程 力作用(化学作用)所作的化学功。

如果进入M相的不是单位正电荷,而是1摩尔的带电粒子, 那么所作的化学功等于该粒子在M相中的化学位μi。若该粒 子荷电量为ne0,则1摩尔粒子所作的电功为nF ф 。F为法拉 第常量。因此,将1摩尔带电粒子移入M相所引起的全部能 量变化为:
1 nF i
式中, i 称为i粒子在M相中的电化学位。显然
i i nF
以上讨论是一个孤立相的情况.对于两个互相接触的
相来说,带电离子在相间转移时,建立相间平衡的条
件就是带电粒子在两相中的电化学位相等。即:

B i
A i
(2.5)

同样道理,对离子的吸附、偶极子的定向排列等 情形,在建立相间平衡之后,这些粒子在界面层 和该相内部的电化学位也是相等的。

离子双电层是相间电位的主要来源。所以,我们 首先讨论第一种情况所引起的相间电位。

为什么会在两相之间出现带电粒子的转移呢?
驱动力1---化学位之差
同一种粒子在不同相中具有的能量状态是不同的。当两相接
触时,该粒子就会自发地从能态高的相向能态低的相转移。
假如是不带电的粒子,那么,它在两相间转移所引起的自由 能变化就是它在两相中的化学位之差,即

这一相间双电层的电位差就是金属接触电位。
2.1、相间电位和电极电位

真空中任何一点的电位等于一个单位正电荷从无穷远处移 至该处所作的功。所以,试验电荷移至距球面10-4~10-5cm 处所作的功W1等于球体所带净电荷在该处引起的全部电 位。这一电位称为M相(球体)的外电位,用ψ表示。

然后考虑试验电荷越过表面层进入M相所引起的 能量变化。

由于讨论的是实物相M,因此这一过程要涉及两方面的能 量变化:
带电粒子或偶极子在界面层中的非均匀分布。造成这种
非均匀分布的原因可能有以下几种:
1. 两相中出现剩余电荷。这些剩余电荷不同程度地集中在
界面两例,形成所谓的“双电层”。
产生原因:带电粒子在两相间的转移或利用外电源向 界面两侧充电。 例如,在金属相溶液界面间形成如图2.1(a)所示的“离 子双电层”。
B A
同样也不能直接测量
下面,我们分别介绍几种在金属腐蚀和防护领域中常见 的相间电位。
2.1、相间电位和电极电位
一、相间电位
二、金属接触电位
三、电极电位
四、绝对电位和相对电位 五、液体接界电位
二、金属接触电位
定义:相互接触的两个金属相之间的外电位差称为金属接界
电位。

由于不同金属对电子的亲和能不同,因此在不同的金 属相中电子的化学位不相等,电子逸出金属相的难易 程度也就不相同。

当带电粒子在两相间的转移过程达到平衡后,就在相界面
区形成一种稳定的非均匀分布,从而在界面区建立起稳定
的双电层(见图2.1)。双电层的电位差就是相间电位。

相间电位也可相应地定义为以下几类:
外电位差
内电位差
电化学位差
(1)外电位差,又称伏打(Volta)电位差,定义 为 B A。直接接触的两相之间的外电位差又 称为接触电位差,用符号 B A 表示。它是可以 直接测量的参数。

通常,以电子离开金属逸入真空中所需要的最低能量
来衡量电子逸出金属的难易程度,这一能量叫电子逸
出功。

产生原因:当两种金属相互接触时,由于电子逸出功不等,
相互逸入的电子数目将不相等,因此,在界面层形成了双
电层结构:
在电子逸出功高的金属相一侧电子过剩,带负电; 在电子逸出功低的金属相一侧电子缺乏,带正电。
2.
荷电粒子(如阳离子和阴离子)在界面层中的吸附量不同,
造成界面层与相本体中出现等值反号的电荷,如图
2.1(b) 。
3.
在界面的溶液一例吸附溶液中的极性分子在界面溶液一 侧定向排列,而形成偶极子层。如图2.1(c)所示。
4.
表面电位差。例如面偶极化的原子在界面金属一侧的定
向排列所形成的双电层,如图2.1(d)所示。
第二章 电化学热力学
1.
2.
相间电位和电极电位
平衡电极电位
3.
4.
不可逆电极
电位-pH图
2.1、相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
一、相间电位

相间电位是指两相接触时,在两相界面层中存在的 电位差。
两相之间出现电位差的原因

1.
单位正电荷情况:任一相的表面层中,由于界面上的短程
力场(范德华力、共价键力等)引起原子或分子偶极化并定向 排列,使表面层成为一层偶极子层。单位正电荷穿越该偶
极子层所作的电功称为M相的表面电位χ。所以将一个单位
正电荷从无穷远处移入M相所作的电功是外电位ψ与表面电 位χ之和,即:


式中,ф称为M相的内电位。
(2)内电位差,又称伽尔伐尼(Galvani)电位差。定 义为
B A。直接接触或通过温度相同的良好
电子导电性材料连接的两相间的内电位差可以表 示为 B A 。只有在这种情况下。

B A
B A
由不同物质相组成的两相间的内电位差是不能直接 测得的。
(3)电化学位差,定义为 i i。

建立相间平衡的能量条件中就必须考虑带电粒子
的电能。 因此,我们先来讨论一下一个孤立相中电荷发生 变化时能量的变化,再进一步寻找带电粒子在两 相间建立稳定分布的条件。


作为最简单的例子,假设孤立相M是一个由良导体 组成的球体,因而球体所带的电荷全部均匀分布在 球面上(见图2.2)。

当单位正电荷在无穷远处时,它同M相的静电作用力为零。 当它从无穷远处移至距球面约10-4~10-5cm时,可认为试验 电荷与球体间只有库仑力(长程力)起作用,而短程力尚未 开始作用。
相关文档
最新文档