电化学原理-第二章-电化学热力学解析
[理学]第二章电化学热力学2
![[理学]第二章电化学热力学2](https://img.taocdn.com/s3/m/38fc3a6afe4733687f21aa0c.png)
2.1 可逆电池与可逆电极
一.可逆电池
满足下列两个条件的电池就是可逆电池
(1)电池中化学反应是可逆的,即充放电反应互为可逆过程。 (2)电池中能量的转化是可逆的,即充放电过程都在同一电压
下进行,充放电过程都在平衡状态下进行。
不满足上述条件中任一条件的电池就是不可逆电池.
2.1 可逆电池与可逆电极
2.3.相间电势
3.内电势
带电体内部一点的电位叫内电势。主要由物质本身所带电荷和表面电场
所引起的,在数值上等于把单位正电荷从无穷远处移到该相内部克服外电
场和表面电场所做的功。
直接接触的两相之间的外电位差叫做伏特电势差。
M S M S M S M S
电池可以分为可逆电池和不可逆电池,而电化学热力学计算可
适用于可逆电池体系。
2.1 可逆电池与可逆电极
电池体系有可逆电池与不可逆电池。但腐蚀原电池不是逆电池
体系。
所谓的平衡状态下的电化学体系也就是可逆状态下的电池体系。 电化学热力学的定律等只能用来描述可逆电池体系; 电池体系可以分为两个半电池,每个半电池就是一个电极体系; 电极有可逆电极与不可逆电极,每个电极有其对应电极电位;
A e
Zn
Ag+AgCl
放电反应: 0.5Zn+ AgCl =0.5Zn2++ Ag+Cl充电反应: 0.5Zn2++ Ag+Cl-=0.5Zn+ AgCl
充放电反应互为可逆,当体系通过的 电流无限小,充放电过程都在同一电势 下进行时,这个电池是可逆电池.
ZnCl2
2.1 可逆电池与可逆电极
按照电池的结构,每个电池都可分为
李狄版电化学原理-第二章__电化学热力学

电池的表示方法
250C , (-) Zn|ZnSO4(αZn2+=1) || CuSO4(αCu2+=1) |Cu (+) 1、负极写在左边,正极写在右边,溶液写在中间。溶液中有关 离子的活度或浓度,气态物质的气体分压应注明 2、两相界面用单竖线“∣”或“,”隔开,两种溶液通过盐
桥连接,用双竖线“‖”表示盐桥。
形成原因:
不同的金属相中电子的电化学位不同,电子逸出金 属相的难易程度也不同。通常以电子逸出功来衡量电 子逸出金属的难易程度。
结果:
电子逸出功低
电子逸出功高
电子逸出功高的金属带 负电,电子逸出功低的金属 带正电;形成双电层的电位 差→金属接触电位。
2.1.3、电极电位
1 电极体系(简称电极) 如果在相互接触的两个导体相中,一个是电子导电相,另一个 是离子导电相,并且在界面上有电荷转移,这个体系就称为电 极体系(简称电极)。
E = M S - R + R M R =0 E(相对电位)= = M S + R M 实际上,相对电极电位不仅包括M S ,而且包括金属接触电
位 R M 。
3 绝对电位符号的规定
规定溶液深处电位为零,金属与溶液的内电位差看成是金属 相对于溶液的电位降。 金属一侧带正电, 溶液一侧带有负 电,M S 为正值 反之,: M S 为负值。
E ΔZn φS ΔSφCu ΔCuφ Zn
电极材料不变,Cu Zn是恒定值; 若S Cu 恒定,
E = ( Zn S ) 即:绝对电位的变化值是可求出的。
E有用,对不同电极测 量, E 的大小顺序与绝对 电位的大小顺序一致。 参比电极 能作为基准的,其电极电 位保持恒定的电极。
第二章电化学腐蚀热力学要点

2.3.2微观腐蚀电池
• 在金属外表上由于存在许多极微小的电极 而形成的电池称为微电池。微电池是因金 属外表的电化学的不均匀性所引起的,不 均匀性的原因是多方面的。
图2.4 腐蚀电池
图2.5铜锌接触形成腐蚀电池示意图
图2.6铸铁形成腐蚀电池示意图
• 单个金属与溶液接触时所发生的金属溶解 现象称为金属的自动溶解。这种自溶解过 程可按化学机理进展,也可按电化学机理 进展。金属在电解质溶液中的自动溶解属 于电化学机理。
图2.7金属锌在稀酸溶液中的腐蚀
2.2.4金属腐蚀的电化学历程
• 金属腐蚀反响体系是一个开放体系。在反响过程 中,体系与环境既有能量的交换又有物质的交换。
金属腐蚀反响一般都是在恒温和恒压的条件下进 展的,用体系的热力学状态函数吉布斯(Gibbs)自
由能判据来判断反响的方向和限度较为方便。吉 布斯自由能用G表示,对于等温等压并且没有非
体积功的过程,腐蚀体系的平衡态或稳定态对应
• Zn2++ 2OH- → Zn(OH)2 ↓ • 这种反响产物称为腐蚀次生产物,也称腐蚀产物。某些情
况下腐蚀产物会发生进一步的变化。例如铁在中性的水中 腐蚀时Fe2+离子转入溶液遇到OH-离子就生成Fe(OH)2, Fe(OH)2又可以被溶液中的溶解氧所氧化而形成Fe(OH)3。
• 4 Fe(OH)2+O2+H2O→ 4Fe(OH)3: • 随着条件的不同(如温度、介质的pH及溶解的氧含量等)也
• 从上面讨论的腐蚀电池的形成可以看 出,—个腐蚀电池必须包括阴极、阳极、 电解质溶液和连接阴极与阳极的电子导体 等几个组成局部,缺一不可。这几个组成 局部构成了腐蚀电池工作历程的下三个根 本过程。
第二章 电化学热力学ppt课件

Chapter 2 Electrochemical Thermodynamics
•§2.1 相间电位和电极电位 •§2.2 电化学体系 •§2.3 平衡电极电位 •§2.4 不可逆电极 •§2.5 电位-pH 图
.
重点要求 Key requirements
相间电位的概念和类型
给定电极发生还原反应(阴极)时, 该电极电位为正值; 给定电极发生氧化反应(阳极)时, 该电极电位为负值。
.
液体接界电位(扩散电位)j
Liquid junction potential——diffusion potential
➢ 定义:相互接触的两个组成不同的电解质溶液之 间存在的相间电位。
➢ 形成的原因:由于两溶液相组成或浓度不同, 溶质粒子将自发的从高浓度向低浓度的相迁移, 就是扩散的作用。正负离子运动速度不同在相 界面形成的双电层,产生一定的电位差。
A 被测体系
电位测量装后WE电 位变 化,需 RE
辅助CE 研 WE
参RE
.
三电极体系与两回路
电解池
V
R大
CE
RE 测量回路
WE
E
极化回路
经典恒流法测量电路
.
三电极
工作电极(Working Electrode 标准缩写 WE) 又称研究电极或指示电极(IE)
辅助电极(Auxiliary Electrode 标准缩写 AE ) 又称对电极(Counter Electrode CE )
➢ 外电位差: BABA ➢ 内电位差: BABA ➢ 表面电位差: BABA
➢ 电化学位差: BiA=iBiA
.
金属接触电位
Metal contact potential
热力学和电化学的原理

热力学和电化学的原理热力学和电化学是物理学的两个分支,分别研究热量和电量的转化和分配。
这两个领域互相关联,相互影响,是科学研究的重要组成部分。
本文将从热力学和电化学的原理两方面进行探讨。
一、热力学的原理热力学从宏观的角度研究热量的转化和分配规律。
它的核心概念是热力学第一定律和热力学第二定律。
热力学第一定律表明了热量可以与其他形式的能量相互转化,但总能量守恒。
即系统吸收的热量等于外界对系统所做的功与系统内部能量的变化之和。
举个例子,当我们把手插进温水中时,手会感觉到热,这是因为温水把热量传递给了手,我们的身体就把这些能量变成了热能或动能,但总能量守恒。
热力学第二定律则表明了热量的自发流动方向。
它指出热量永远不能从低温物体传递到高温物体,这是因为热量自发流动的方向是从高温物体流向低温物体,直到达到热平衡。
这个定律被称为熵增定律,表明了任何自发过程熵都增加。
理解热力学的原理可以帮助我们更好地利用和控制热量的转化和分配,从而发挥能量的最大效用。
二、电化学的原理电化学研究电荷在化学反应中的转移和分配规律。
它主要探讨电化学反应的动力学和热力学特性,包括电解和电化学腐蚀等。
在电化学反应中,电子是电荷的主要载体。
例如,当我们在用电池时,正极会释放电子,负极会吸收电子,电子在电路中传输,从而实现能量的转化和分配。
电化学反应的动力学特性可以用电位和电流强度来描述,而热力学特性则可以用电势差和熵变来描述。
电化学反应的热力学特性可以用化学反应热和物质的热力学性质来计算。
例如,当我们在制备氧气时,可以通过电解水来分离氢氧离子,生成氧气和氢气。
这个反应的热力学特性可以用热化学方程式来计算。
电化学反应的研究可以帮助我们更好地理解化学反应的机理,控制化学反应的速度和方向,以及设计和制造更高效的电池和电化学器件。
总结热力学和电化学是相互关联的两个领域,两者都涉及能量的转化和分配规律。
热力学研究热量的转化和分配,电化学研究电荷的转移和分配。
第二章电化学热力学

根据电位差公式,可得:
则有: 可把与参比电极有关的第二项看成是参比电极的相对电 位,把与被测电极有关的第一项看成是被测电极的相对 电位,上式可简化为: 如果规定参比电极的相对电位为零,则: 而且有:
2.2.3 绝对电位的符号规定
根据绝对电位的定义,通把溶液深处看作是距离金属溶 液界面无穷远处,认为溶液深处的电位为零,把金属与 溶液的内电位差看成是金属相对于溶液的电位降。
2.1.2 出现相间电势的原因 界面层中带电粒子或偶极子的非均匀分布,导致一侧有过剩的 正电荷,另一侧有过剩的负电荷,形成双电层。 (1)剩余电荷层:由于带电粒子(电子或离子)在两相间转移, 导致两相中都出现了剩余电荷,这些剩余电荷或多或少地集中 在界面两侧,就形成了双电层; ( 2)吸附双电层:带有不同符号电荷的粒子(阳离子和阴离子) 在表面层中的吸附量不同,因而在界面层与溶液本体中出现了 符号相反的电荷; (3)偶极子层:偶极分子在界面层中的定向排列; (4)金属表面电位:金属表面因各种 短程力作用而形成的表 面电位差。
相间:两相界面上不同于基体性质的过度层。
相间电位:两相接触时,在两相界面层中存在 的电位差。
产生电位差的原因:荷电粒子(含偶极子) 的非均匀分布 。
2.1.1 相间电势差
两相接触时,由于种种 原因,在两相之间的界 面上,就会产生电势差: (1)金属接触电势 (2)金属-溶液间电势 (电极电势) (3)液体接界电势 (扩散电势) (-) Cu(s) Zn(s)ZnSO4(aq) , CuSO4(aq) Cu(s)Cu(s) (+) 金属-金属 溶液-溶液 金属-溶液
2.1.5 粒子的逸出功(Wi) 将该粒子从实物相内部逸出至表面近处真空中所需要作的 功.逸出功的数值和实物相以及脱出粒子的化学本质有关。 粒子逸出功: 电子逸出功:
(二)电化学热力学与可逆电池电动势

(二) 电化学热力学与可逆电池电动势将锌板浸入硫酸锌溶液,将铜板浸入硫酸铜溶液,中间用多孔陶瓷隔开,就构成了丹尼尔(Daniell )电池。
该电池中发生的反应Zn + Cu 2+ −→ Zn 2+ + Cu 是一个典型的氧化还原反应(redox reaction ),当其在电池中发生时,则可在正负极间形成约1.5 V 的电势差,并对外输出电能。
化学反应与电化学反应两者为什么不同?如何将一个反应设计成电池而使之对外输出电功?电极间的电势差是如何形成的?输出的电功与体系化学能变化之间有何关系?这些问题都要由电化学来回答。
所谓电化学(electrochemistry)就是研究化学现象与电现象之间的关系,以及电能与化学能之间相互转化规律的科学。
电化学反应需在电化学装置中才能发生。
将化学能转化为电能的装置称为原电池(galvanic cell),将电能转化成电能的装置称为电解池(electrolytic cell)。
无论原电池还是电解池通常的均由2个电极和对应的电解质溶液构成。
电极的命名有2种,即正负极和阴阳极。
其中,电势高的一极称为正极,电势低的为负极;发生氧化反应的一极是阳极,而发生还原反应的是负极。
例如,图7.15中,Zn 电极电势低,为负极,发生氧化反应Zn −→ Zn 2+ +2e -,是阳极;而Cu 电极电势高,是正极,发生还原反应Cu 2+ +2e -−→ Cu ,所以是阴极。
对于原电池和电解池,电极名称的对应关系如表7.7 所示。
表7.7 原电池和电解池的电极名称对应关系原电池 电解池 电势 高低 高 低 正极负极 正极 负极 反应 还原氧化 氧化 还原 阴极 阳极 阳极 阴极§7.6 可逆电池的设计1.原电池设计的原理通常的氧化还原反应在电池中发生时,会拆成单纯的氧化反应(oxidation reaction )和还原反应(reduction reaction )在两个电极上分别发生,如上例:负 极:Zn −→ Zn 2+ + e 2-正 极:Cu 2+ + e 2-−→ Cu总反应:Zn + Cu 2+ −→ Zn 2+ + Cu在电极上发生的反应称为电极反应(electrode reaction ),也称半反应(half reaction),因为它们仅是完整氧化还原反应的一半。
第2章电化学热力学PPT课件

⑷金属表面因各种短 程力作用而形成的表 面电位差,例如金属 表面偶极化的原子在 界面金属一侧的定向 排列所形成的双电层。
第1页/共103页
+++-
偶极子层
+++-
金属表面电位
3、 带电粒子在两相之间出现转移的原因:
⑴不带电粒子在两相之间出现转移的原因 同一粒子在不同相中所具有的能量状态是不同的。当两相接触时,该粒子就会自发地
j /mV
浓度
/mol/dm3
/mV j
0.2
19.95
1.75
5.15
0.5
12.55
2.50
3.14
1.0
8.4
3.5
1.1
第27页/共103页
2.2 电化学体系
2.2.1原电池(自发电池) Galvanic cell
1、原电池定义 最简单的原电池——丹尼尔 电池 。
原电池定义为:凡是能将化学能直接转变为电能的电化学装置叫做原电池或自发电池。
从能态高的相向能态低的相转移。假如是不带电的粒子,那么,它在两相间转移所引起的 自由能变化就是它在两相中的化学位之差。即
GiAB iB iA
GiAB 0
iB iA
⑵带电粒子在两相之间出现转移的原因 对带电粒子来说,在两相转移时,除了化学能的变化外,还有随电荷转移所引起的电
能变化。建立相间平衡的能量条件就必须考虑带电粒子的电能。
克服试验电荷与组成M相的物质之间的短程力作用(化学作用)所作的化学功:
第4页/共103页
假如进入M相的不是单位正电荷,而是1摩尔的带电粒子,那所做的化学功等于该粒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G
标表示粒子。
AB i
B i
A i
式中:ΔG表示自由能变化;μ表示化学位。上标表示相,下
显然,建立起相间平衡,即i粒子在相间建
立稳定分布的条件应当是
G
AB i
0
A i
也即该粒子在两相中的化学位相等,即
B i
驱动力2---电化学位之差
对带电粒子来说,在两相间转移时,除了引起化 学能的变化外,还有随电荷转移所引起的电能变 化。
2. 带电粒ቤተ መጻሕፍቲ ባይዱ情况:克服试验电荷与组成M相的物质之间的短程 力作用(化学作用)所作的化学功。
如果进入M相的不是单位正电荷,而是1摩尔的带电粒子, 那么所作的化学功等于该粒子在M相中的化学位μi。若该粒 子荷电量为ne0,则1摩尔粒子所作的电功为nF ф 。F为法拉 第常量。因此,将1摩尔带电粒子移入M相所引起的全部能 量变化为:
1 nF i
式中, i 称为i粒子在M相中的电化学位。显然
i i nF
以上讨论是一个孤立相的情况.对于两个互相接触的
相来说,带电离子在相间转移时,建立相间平衡的条
件就是带电粒子在两相中的电化学位相等。即:
B i
A i
(2.5)
同样道理,对离子的吸附、偶极子的定向排列等 情形,在建立相间平衡之后,这些粒子在界面层 和该相内部的电化学位也是相等的。
离子双电层是相间电位的主要来源。所以,我们 首先讨论第一种情况所引起的相间电位。
为什么会在两相之间出现带电粒子的转移呢?
驱动力1---化学位之差
同一种粒子在不同相中具有的能量状态是不同的。当两相接
触时,该粒子就会自发地从能态高的相向能态低的相转移。
假如是不带电的粒子,那么,它在两相间转移所引起的自由 能变化就是它在两相中的化学位之差,即
这一相间双电层的电位差就是金属接触电位。
2.1、相间电位和电极电位
真空中任何一点的电位等于一个单位正电荷从无穷远处移 至该处所作的功。所以,试验电荷移至距球面10-4~10-5cm 处所作的功W1等于球体所带净电荷在该处引起的全部电 位。这一电位称为M相(球体)的外电位,用ψ表示。
然后考虑试验电荷越过表面层进入M相所引起的 能量变化。
由于讨论的是实物相M,因此这一过程要涉及两方面的能 量变化:
带电粒子或偶极子在界面层中的非均匀分布。造成这种
非均匀分布的原因可能有以下几种:
1. 两相中出现剩余电荷。这些剩余电荷不同程度地集中在
界面两例,形成所谓的“双电层”。
产生原因:带电粒子在两相间的转移或利用外电源向 界面两侧充电。 例如,在金属相溶液界面间形成如图2.1(a)所示的“离 子双电层”。
B A
同样也不能直接测量
下面,我们分别介绍几种在金属腐蚀和防护领域中常见 的相间电位。
2.1、相间电位和电极电位
一、相间电位
二、金属接触电位
三、电极电位
四、绝对电位和相对电位 五、液体接界电位
二、金属接触电位
定义:相互接触的两个金属相之间的外电位差称为金属接界
电位。
由于不同金属对电子的亲和能不同,因此在不同的金 属相中电子的化学位不相等,电子逸出金属相的难易 程度也就不相同。
当带电粒子在两相间的转移过程达到平衡后,就在相界面
区形成一种稳定的非均匀分布,从而在界面区建立起稳定
的双电层(见图2.1)。双电层的电位差就是相间电位。
相间电位也可相应地定义为以下几类:
外电位差
内电位差
电化学位差
(1)外电位差,又称伏打(Volta)电位差,定义 为 B A。直接接触的两相之间的外电位差又 称为接触电位差,用符号 B A 表示。它是可以 直接测量的参数。
通常,以电子离开金属逸入真空中所需要的最低能量
来衡量电子逸出金属的难易程度,这一能量叫电子逸
出功。
产生原因:当两种金属相互接触时,由于电子逸出功不等,
相互逸入的电子数目将不相等,因此,在界面层形成了双
电层结构:
在电子逸出功高的金属相一侧电子过剩,带负电; 在电子逸出功低的金属相一侧电子缺乏,带正电。
2.
荷电粒子(如阳离子和阴离子)在界面层中的吸附量不同,
造成界面层与相本体中出现等值反号的电荷,如图
2.1(b) 。
3.
在界面的溶液一例吸附溶液中的极性分子在界面溶液一 侧定向排列,而形成偶极子层。如图2.1(c)所示。
4.
表面电位差。例如面偶极化的原子在界面金属一侧的定
向排列所形成的双电层,如图2.1(d)所示。
第二章 电化学热力学
1.
2.
相间电位和电极电位
平衡电极电位
3.
4.
不可逆电极
电位-pH图
2.1、相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
一、相间电位
相间电位是指两相接触时,在两相界面层中存在的 电位差。
两相之间出现电位差的原因
1.
单位正电荷情况:任一相的表面层中,由于界面上的短程
力场(范德华力、共价键力等)引起原子或分子偶极化并定向 排列,使表面层成为一层偶极子层。单位正电荷穿越该偶
极子层所作的电功称为M相的表面电位χ。所以将一个单位
正电荷从无穷远处移入M相所作的电功是外电位ψ与表面电 位χ之和,即:
式中,ф称为M相的内电位。
(2)内电位差,又称伽尔伐尼(Galvani)电位差。定 义为
B A。直接接触或通过温度相同的良好
电子导电性材料连接的两相间的内电位差可以表 示为 B A 。只有在这种情况下。
B A
B A
由不同物质相组成的两相间的内电位差是不能直接 测得的。
(3)电化学位差,定义为 i i。
建立相间平衡的能量条件中就必须考虑带电粒子
的电能。 因此,我们先来讨论一下一个孤立相中电荷发生 变化时能量的变化,再进一步寻找带电粒子在两 相间建立稳定分布的条件。
作为最简单的例子,假设孤立相M是一个由良导体 组成的球体,因而球体所带的电荷全部均匀分布在 球面上(见图2.2)。
当单位正电荷在无穷远处时,它同M相的静电作用力为零。 当它从无穷远处移至距球面约10-4~10-5cm时,可认为试验 电荷与球体间只有库仑力(长程力)起作用,而短程力尚未 开始作用。