一元二次方程根的判别式(PPT课件)
合集下载
一元二次方程根的判别式课件
两个虚根
当判别式 (D) < 0 时,方程没有 实根,只有两个虚根。
辨别方程解的图形表示方法
两个不相等的实根
方程的图像将与x轴交于两个不 同的点。
两个相等的实根
方程的图像将与x轴交于同一个 点。
两个虚根
方程的图像将完全位于x轴上方 或下方,不与x轴交于任何点。
判别式的应用举例
1
物理学
2
判别式在抛体运动和能量守恒定律等物
计算公式
判别式(D) = b²- 4ac,其中a、b和c是一元二次方程的系数。
判别式与方程根的关系
判别式的值可以用来确定方程根的个数和类型。
判别式与方程解的类型
两个不相等的实根
当判别式 (D) > 0 时,方程有两 个不相等的实根。
两个相等的实根
当判别式 (D) = 0 时,方程有两 个相等的实根。
理问题中有广泛应用。
3
房屋销售
判别式可以帮助确定一栋房屋是否能够 被出售,以及价值如何。
金融领域
判别式被用于计算利润和决策分析,帮 助预测市场趋势和投资回报率。
结论和要点
1 判别式是用来判断一 2 判别式的值可以用来 3 判别式的应用广泛,
元二次方程根的特性
确定方程根的个数和
涵盖了房屋销售、物
的数学工具。
一元二次方程根的判别式 ppt课件
欢迎大家来参加本次关于一元二次方程根的判别式的PPT课件。本课件将帮 助你理解判别式的定义、计算公式、与方程根的关系以及解的类型,同时还 会介绍辨别方程解的图形表示方法和判别式的一些应用举例。一起来探索这 个有趣而重要的主题吧!
什么是判别式?
定义
判别式是用来判断一元二次方程的根的特性的一个数学工具。
人教版九年级数学上册《解一元二次方程——一元二次方程的根的判别式》教学课件
2
2 −2 + = 3 − 1;
2
解: 化方程为 2 + 2 − 1 = 0.
= 2, = 2, = −1.
2
2
= − 4 = 2 −4 × 2 × (−1)
= 4 + 8 = 12 > 0.
∴ 此一元二次方程有两个不相等的实数根.
归纳
归纳
不解方程,判断一元二次方程根的情况的一般步骤:
2
当 − 4 < 0 时,方程没有实数根.
例1 不求出一元二次方程的根,判断下列方程根的情况:
2
= − 4
2
1 2 − 5 + 1 = 0;
2
2 −2 + = 3 − 1;
3 + 2 = − 2 2 − 1 +
2
4 + 2 2 + 6 = 0.
9
;
2
2
= − 4 = − 2 + 1
= 2 + 1
2
2
−4××2
− 8
2
= 4 + 4 + 1 − 8
2
= 4 − 4 + 1
= 2 − 1
2
2
≥ 0.
所以 − 2 + 1 + 2 = 0 ≠ 0 有实数根.
例3 在不解方程的情况下,判断下列关于 的方程
2
变式2 如果关于 的一元二次方程 x − 4x + − 5 = 0,
没有实数根,求 的取值范围.
2
变式1 如果关于 的一元二次方程 x − 4x + − 5 = 0,
有两个不相等的实数根,求 的取值范围.
2 −2 + = 3 − 1;
2
解: 化方程为 2 + 2 − 1 = 0.
= 2, = 2, = −1.
2
2
= − 4 = 2 −4 × 2 × (−1)
= 4 + 8 = 12 > 0.
∴ 此一元二次方程有两个不相等的实数根.
归纳
归纳
不解方程,判断一元二次方程根的情况的一般步骤:
2
当 − 4 < 0 时,方程没有实数根.
例1 不求出一元二次方程的根,判断下列方程根的情况:
2
= − 4
2
1 2 − 5 + 1 = 0;
2
2 −2 + = 3 − 1;
3 + 2 = − 2 2 − 1 +
2
4 + 2 2 + 6 = 0.
9
;
2
2
= − 4 = − 2 + 1
= 2 + 1
2
2
−4××2
− 8
2
= 4 + 4 + 1 − 8
2
= 4 − 4 + 1
= 2 − 1
2
2
≥ 0.
所以 − 2 + 1 + 2 = 0 ≠ 0 有实数根.
例3 在不解方程的情况下,判断下列关于 的方程
2
变式2 如果关于 的一元二次方程 x − 4x + − 5 = 0,
没有实数根,求 的取值范围.
2
变式1 如果关于 的一元二次方程 x − 4x + − 5 = 0,
有两个不相等的实数根,求 的取值范围.
(课件7)22.2一元二次方程根的判别式
2 2
4m 4m 1 4m 16m 16 20m 15 (1)要使方程有两个不等实根,只需 3 即 m 20m 15 0
4
所以当m>3/4时,方程Байду номын сангаас两个不等的实根。
2 2m1 x m 22 0 例2 已知关于的方程,x
解:原方程可化为: m2 y2 4mny n2 0 4
b2 4ac 4mn 44m2n2
2
16m2n2 16m2n2
0
所以此方程有两个相等的实数根。
不解方程,判断方程根的情况时: 1.先计算判别式的值; 2.再确定判别式的取值范围,从而判断方程根 的情况,(要注意二次项系数不为0).
系数不为0”.
动手试一试吧!
若关于x的方程x2-2nx+3n+4=0 有两个相等的实数根,则n=____.
1.(2004年· 西宁市)若关于x的一元二次方程mx2-2x+1=0 有实数根,则m的取值范围是 (D ) A.m<1 B. m<1且m≠0 C.m≤1 D. m≤1且m≠0 2.(2004年· 昆明)已知关于x的一元二次方程x2+2x+k=0 有实数根,则k的取值范围是 ( A) A.k≤1 B.k≥1 C.k<1 D.k>1 3.(2004年· 桂林市)如果方程组 y 2 数解,那么m的值为 A. -3/8 B.3/8 C. -1
ax 2 b c x 2 ( b c ) 2 a
2 2 2
有两个等根,试判断△ABC的形状. 解:利用Δ =0,得出a=b=c. ∴△ABC为等边三角形.
【例5】 已知:m、n为整数,关于x的二次方程x2+(7m)x+3+n=0有两个不相等的实数解,x2+(4+m)x+n+6=0 有两个相等的实数根,x2-(m-4)x+n+1=0没有实数根,求 m、n的值. 解:∵方程x2+(4+m)x2+n+6=0有两个相等的实根, ∴(4+m)2-4(n+6)=0,即m2+8m-8=4n. 又方程x2+(7-m)x+3+n=0有两个不等的实根, 方程x2-(m-4)x+n+1=0无实根, ∴(7-m)2-4(3+n)>0,(m-4)2-4(n+1)<0. 把4n=m2+8m-8代入上两式得 ∵m为整数∴m=2,从而n=3.
4m 4m 1 4m 16m 16 20m 15 (1)要使方程有两个不等实根,只需 3 即 m 20m 15 0
4
所以当m>3/4时,方程Байду номын сангаас两个不等的实根。
2 2m1 x m 22 0 例2 已知关于的方程,x
解:原方程可化为: m2 y2 4mny n2 0 4
b2 4ac 4mn 44m2n2
2
16m2n2 16m2n2
0
所以此方程有两个相等的实数根。
不解方程,判断方程根的情况时: 1.先计算判别式的值; 2.再确定判别式的取值范围,从而判断方程根 的情况,(要注意二次项系数不为0).
系数不为0”.
动手试一试吧!
若关于x的方程x2-2nx+3n+4=0 有两个相等的实数根,则n=____.
1.(2004年· 西宁市)若关于x的一元二次方程mx2-2x+1=0 有实数根,则m的取值范围是 (D ) A.m<1 B. m<1且m≠0 C.m≤1 D. m≤1且m≠0 2.(2004年· 昆明)已知关于x的一元二次方程x2+2x+k=0 有实数根,则k的取值范围是 ( A) A.k≤1 B.k≥1 C.k<1 D.k>1 3.(2004年· 桂林市)如果方程组 y 2 数解,那么m的值为 A. -3/8 B.3/8 C. -1
ax 2 b c x 2 ( b c ) 2 a
2 2 2
有两个等根,试判断△ABC的形状. 解:利用Δ =0,得出a=b=c. ∴△ABC为等边三角形.
【例5】 已知:m、n为整数,关于x的二次方程x2+(7m)x+3+n=0有两个不相等的实数解,x2+(4+m)x+n+6=0 有两个相等的实数根,x2-(m-4)x+n+1=0没有实数根,求 m、n的值. 解:∵方程x2+(4+m)x2+n+6=0有两个相等的实根, ∴(4+m)2-4(n+6)=0,即m2+8m-8=4n. 又方程x2+(7-m)x+3+n=0有两个不等的实根, 方程x2-(m-4)x+n+1=0无实根, ∴(7-m)2-4(3+n)>0,(m-4)2-4(n+1)<0. 把4n=m2+8m-8代入上两式得 ∵m为整数∴m=2,从而n=3.
一元二次方程根的判别式(ppt课件)
练习4:关于x的方程(a-1)x2-2x+1=0有实数根,求a
的取值范围
解:①当原方程是一元一次方程时 则有a-1=0,a=1
②当原方程是一元二次方程时 则有Δ≥0,(a-1)≠0
b2-4ac=(-2)2-4×(a-1)×1≥0,a≠1 解得:a<2且a≠1.
【类型三】运用根的判别式判断三角形的形状
(1)2x2+3x-4=0; 有两个不相等的实数根
(2)x2-x+1=0;
4
有两个相等的实数根
(3)x2-x+1=0.
无实数根
练习 2:不解方程,判断下列方程根 的情况
(1)4(x-3)2-25(x-2)2=0. (2)(x-5)(x-6)=x-5. (3)4x2+4x+10=1-8x.
有两个不相等的实数根 有两个不相等的实数根 有两个相等的实数根
课
有两个不__相__等__的__实数根, (2)b2-4ac=0⇔一元二次方程ax2+bx+c=0(a≠0)
堂
有__俩__个__相__等__的__实数根。 (3)b2 - 4ac<0⇔ 一 元 二 次 方 程 ax2 + bx + c =
小
0(a≠0)解决问题时,如果二次项系数中
(4)由于 a≠0,方程 ax2+bx+c=0
移项,得:ax2+bx=-c
二次项系数划为 1:x2+bx=-c, aa
b
b
配方,得:x2+bx+
2a
2=-
c
+
2a
2,
a
a
b
x+ 2a
2=b2-4ac,
4a2
可以看出
只有当b²-4ac≥0时,方 程才有实数根,这样b²-
4ac就决定着一元二次方
人教版九年级数学课件《一元二次方程根的判别式》
典例解析
人教版数学九年级上册
例3 不解方程,判断下列方程的根的情况. (1)3x2+4x-3=0; (2)4x2=12x-9;
(3) 7y=5(y2+1).
解:(1)3x2+4x-3=0,a=3,b=4,c=-3, ∴b2-4ac=32-4×3×(-3)=52>0. ∴方程有两个不相等的实数根.
(2)方程化为:4x2-12x+9=0, ∴b2-4ac=(-12)2-4×4×9=0.
解:(2m+1)2 -4 (m−2)2 ≥0
4m2 +4m+1- 4m2 +16m-16≥0
20m≥15
m≥ 34 又∵ (m−2)2 ≠0 ∴m≠2 ∴m≥ 34 且m≠2
针对练习
人教版数学九年级上册
7.在等腰△ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程 x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC 的周长.
解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根, 所以Δ=b2-4ac=(b+2)2-4(6-b)=b2+8b-20=0. 所以b=-10或b=2. 将b=-10代入原方程得x2-8x+16=0,x1=x2=4; 将b=2代入原方程得x2+4x+4=0,x1=x2=-2(舍去);
所以△ABC 的三边长为4,4,5, 其周长为4+4+5=13.
=4m2-4m+1-4m2+4m=1>0,
∴此方程有两个不相等的实数根.
(2)解方程x2-(2m-1)x+m2-m=0
得x=m或x=m-1,
∵a>b,m>m-1,
2.3一元二次方程根的判别式++课件 2024—2025学年湘教版数学九年级上册
板书设计
2.3一元二次方程根的判别式
根的判别式∆:
∆>0:
∆=0:
∆<0:
习题讲解书写部分
作业布置
【知识技能类作业】必做题:
1.对于一元二次方程 2 + + = 0 ≠ 0 , 下列说法:①当 =
+ 时,则方程 2 + + = 0一定有一根为 = −1;②若 > 0
B. 2 + 3 + 6 = 0
C. 2 + 8 + 16 = 0
D.( − 1)2 = 9
3.已知关于x 的一元二次方程 2 − = 2 有两个不相等的实数根,
则m的取值范围是( A )
A.m>-1 B.m<-2 C.m ≥0 D.m<0
课堂练习
【知识技能类作业】选做题:
4.已知关于 的方程 2 + (1 − ) − 1 = 0 ,下列说法正确的是( C )
2 − 4 − 2 + 4 = 0
( − 1) 2 − 4 + 4 = 0
∵方程有两个不相等的实数根,
∴k−1≠0,即k≠1,且△>0,即(-4)2−4×(k−1)×4>0,
解得k<2,则k<2且k≠1,
∴k<2且k≠1;
作业布置
【综合拓展类作业】
已知关于x的方程 ( − 4) − 2 + 4 = 0
新知导入
用配方法解二次项系数不为1的一元二次方程的一般步骤:
1.二次项系数化为1:左右俩边同时除以二次项系数;
2.移项:将常数项移至右边,含未知数的项移至左边;
3.配方:左、右两边同时加上一次项系数一半的平方;
初中数学沪教版八年级上册一元二次方程根的判别式 课件PPT
逆定理的用途是: 在已知方程根的情况下,用逆定理来确定△
值的符号,进而可求出系数中某些字母的取值范 围。
注意: 运用定理和逆定理时,必须把所给的方
程化成一般形式后方可使用。
1.不解方程,判断下列方程根的情况. (1)2x2-5x-4=0; (2)7t2-5t+2=0; (3)x(x+1)=3; (4)3y2+25=10 3y.
①把方程化为一般形式,确定a、b、c的值,计算△。
②用配方法等将△变形,使之符号明朗化后,判断△ 的符号。 ③根据根的判别式定理,写出结论。
例3、利用一元二次方程的判别式求字母的取值范围
已知关于x的方程x2-3x+k=0,问k取何值时, 这个方程:
(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?
记住了, 别搞错!
我们把 b2 4ac 叫做一元二次方程
ax2 bx c 0a 0 的根的判别式,
用符号“ ”表示,即 b2 4ac
对于一元二次方程 ax2 bx c 0(a 0)
你能谈论一下它的根的情况吗? (1)在什么情况下,一元二次方程有解? (2)有什么样的解?它的解是多少? (3)什么情况下一元二次方程无解?
2、同步练习17.3
x b b2 4ac b2 4ac 0 2a
老师的 “绝活”
不解一元二次方程,就能很快 知道它的根的大致情况。 你相信吗?
1、用公式法解下列方程
(1)x2 3x 2 0 (2)x2 8x 16 0
(3)3y2 10 2 y
2、一元二次方程根的判别式
初中数学沪教版八年级上册 《一元二次方程根的判别式》
值的符号,进而可求出系数中某些字母的取值范 围。
注意: 运用定理和逆定理时,必须把所给的方
程化成一般形式后方可使用。
1.不解方程,判断下列方程根的情况. (1)2x2-5x-4=0; (2)7t2-5t+2=0; (3)x(x+1)=3; (4)3y2+25=10 3y.
①把方程化为一般形式,确定a、b、c的值,计算△。
②用配方法等将△变形,使之符号明朗化后,判断△ 的符号。 ③根据根的判别式定理,写出结论。
例3、利用一元二次方程的判别式求字母的取值范围
已知关于x的方程x2-3x+k=0,问k取何值时, 这个方程:
(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?
记住了, 别搞错!
我们把 b2 4ac 叫做一元二次方程
ax2 bx c 0a 0 的根的判别式,
用符号“ ”表示,即 b2 4ac
对于一元二次方程 ax2 bx c 0(a 0)
你能谈论一下它的根的情况吗? (1)在什么情况下,一元二次方程有解? (2)有什么样的解?它的解是多少? (3)什么情况下一元二次方程无解?
2、同步练习17.3
x b b2 4ac b2 4ac 0 2a
老师的 “绝活”
不解一元二次方程,就能很快 知道它的根的大致情况。 你相信吗?
1、用公式法解下列方程
(1)x2 3x 2 0 (2)x2 8x 16 0
(3)3y2 10 2 y
2、一元二次方程根的判别式
初中数学沪教版八年级上册 《一元二次方程根的判别式》
1一元二次方程根的判别式课件
相等实数根,
(2) b-4ac=0, 一元二次方程ax+bx+c=0( a≠0) ,有两个相
等实数根,
(3) b-4ac<0, 一元二次方程ax+bx+c=0( a≠0) , 没有相等
实数根。
反之,同样成立,即
(1) 一元二次方程有两个不相等实数根, b 2-4ac > 0,
(2) 一元二次方程有两个相等实数根, b 2-4ac = 0,
所以原方程没有实数根.
(3)x(x+1)=3; 解:原方程可变形为x2+x-3=0,
因为∆=12-4×1×(-3)=13>0, 所以原方程有两个不相等的实数根.
(4)3y2+25=10 3 y. 解:原方程可变形为3y2-10 3y+25=0,
因为 ∆=(10 3 )2-4×3×25=0, 所以原方程有两个相等的实数根.
1、一元二次方程的一般情势是什么?
ax2 bx c (0 a 0)
2、解一元二次方程都有哪些方法? 3、公式法解一元二次方程的具体步骤是
什么?
探究与发现 思考并总结
用公式法解下列一元二次方程,并结合你 以往解一元二次方程的经验完成以下探究
(1)x2 5x 6 0
(2)x2 4x 4 0
17.3一元二次方程根的判别式
复习回顾:
一元二次方程的根的情况:
1.当 b2 4ac 0时,方程有两个不相等的实数根 2.当 b2 4ac 0 时,方程有两个相等的实数根 3.当 b2 4ac 0 时,方程没有实数根
反过来: 1.当方程有两个不相等的实数根时, b2 4ac 0 2.当方程有两个相等的实数根时, b2 4ac 0 3.当方程没有实数根时, b2 4ac 0
一元二次方程根的判别式ppt课件
2.3 一元二次方程根的判别式
第2章 一元二次方程
基础主干落实 重点典例探析 5+2思维赋能
基础主干落实
一元二次方程根的判别式 1.定义:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,记作 “Δ”,即Δ=b2-4ac. 2.与一元二次方程的根的关系
判别式 Δ>0
Δ=0 Δ<0
【挑战】(2021·邵阳中考)在平面直角坐标系中,若直线 y=-x+m 不经过第一象限,
则关于 x 的方程 mx2+x+1=0 的实数根的个数为( D )
A.0 个 B.1 个 C.2 个 D.1 或 2 个
【解析】∵直线 y=-x+m 不经过第一象限, ∴m≤0, 当 m=0 时,方程 mx2+x+1=0 是一次方程,有一个根,当 m<0 时, ∵关于 x 的方程 mx2+x+1=0, ∴Δ=12-4m>0, ∴关于 x 的方程 mx2+x+1=0 有两个不相等的实数根.
【自主解答】由关于 x 的一元二次方程 x2+kx-k-1=0 可知:Δ=k2+4k+4=(k+ 2)2, 分情况讨论: 当 k=-2 时,Δ=0,方程有两个相等实根 当 k≠-2 时,Δ>0,方程有两个不相等的实根.
1.x 的一元二次方程 x2+kx-4=0 根的情况是__有__两__个__不__相___等__的__实__数__根___. 【解析】Δ=k2-4×(-4)=k2+16>0,所以方程有两个不相等的实数根. 2.(变问法)求证:无论 k 取何值,关于 x 的一元二次方程 x2+kx-k-1=0 总有实数 根. 【证明】由题意知:Δ=k2+4k+4=(k+2)2≥0,所以方程总有实数根.
【归纳提升】 根的判别式的应用 1.可以直接用:不解方程,可以判断方程根的情况. 2.可以逆用:知道方程根的情况,从而确定字母系数的取值范围. 3.证明一个方程根的情况.
第2章 一元二次方程
基础主干落实 重点典例探析 5+2思维赋能
基础主干落实
一元二次方程根的判别式 1.定义:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,记作 “Δ”,即Δ=b2-4ac. 2.与一元二次方程的根的关系
判别式 Δ>0
Δ=0 Δ<0
【挑战】(2021·邵阳中考)在平面直角坐标系中,若直线 y=-x+m 不经过第一象限,
则关于 x 的方程 mx2+x+1=0 的实数根的个数为( D )
A.0 个 B.1 个 C.2 个 D.1 或 2 个
【解析】∵直线 y=-x+m 不经过第一象限, ∴m≤0, 当 m=0 时,方程 mx2+x+1=0 是一次方程,有一个根,当 m<0 时, ∵关于 x 的方程 mx2+x+1=0, ∴Δ=12-4m>0, ∴关于 x 的方程 mx2+x+1=0 有两个不相等的实数根.
【自主解答】由关于 x 的一元二次方程 x2+kx-k-1=0 可知:Δ=k2+4k+4=(k+ 2)2, 分情况讨论: 当 k=-2 时,Δ=0,方程有两个相等实根 当 k≠-2 时,Δ>0,方程有两个不相等的实根.
1.x 的一元二次方程 x2+kx-4=0 根的情况是__有__两__个__不__相___等__的__实__数__根___. 【解析】Δ=k2-4×(-4)=k2+16>0,所以方程有两个不相等的实数根. 2.(变问法)求证:无论 k 取何值,关于 x 的一元二次方程 x2+kx-k-1=0 总有实数 根. 【证明】由题意知:Δ=k2+4k+4=(k+2)2≥0,所以方程总有实数根.
【归纳提升】 根的判别式的应用 1.可以直接用:不解方程,可以判断方程根的情况. 2.可以逆用:知道方程根的情况,从而确定字母系数的取值范围. 3.证明一个方程根的情况.
22.2 第4课时 一元二次方程根的判别式 华师大版数学九年级上册课件
第22章 一元二次方程
22.2 一元二次方程的解法
第4课时 一元二次方程根的判别式
学习目标
1. 了解一元二次方程根的判别式; (重点) 2. 会判断一元二次方程根的情况; (难点) 3. 掌握一元二次方程根的判别式的应用. (难点)
回忆
我们在用配方法推导一元二次方程求根公式的过程中,得到
(x+2ba)2
Байду номын сангаас
=
b2−4ac 4a2
(*)
只有当b²-4ac ≥ 0时,才能直接开平方,得
x+2ba =±
b² −4ac 4a²
也就是说,只有当一元二次方程ax²+bx +c=0 (a≠0)的系数
a、b、c满足条件b²-4ac ≥ 0时才有实数根,因此,我们可以
根据一元二次方程的系数直接判定根的情况。
如果b²-4ac<0会怎么样? 如果b²-4ac<0,则不能直接开平方,因为负数没有平方根。
解:(3)原方程可变形为 4y2-y+4 = 0. 因为Δ =(-1)2-4×4×4 = 1-64 = -63<0, 所以方程没有实数根。
练习
1. 不解方程,判断下列方程的根的情况:
(1) 3x²+5x = 4; (2) 2x²-x²-2 = 0
解:(1)原方程可变形为 3x2 + 5x+4 = 0. ∵b²-4ac =52-4×3×(-4) = 73>0, ∴原方程有两个不相等的实数根。
解:(4)原方程可化为 2x2 - x+2 = 0. ∵b²-4ac =(-1)2-4×2×2= -15<0, ∴原方程无实数根。
2.小明告诉同学,他发现了判断一类方程有无实数根的简易方法:
若一元二次方程ax²+bx +c=0 (a≠0) 的系数a、c异号(即两数为一正
22.2 一元二次方程的解法
第4课时 一元二次方程根的判别式
学习目标
1. 了解一元二次方程根的判别式; (重点) 2. 会判断一元二次方程根的情况; (难点) 3. 掌握一元二次方程根的判别式的应用. (难点)
回忆
我们在用配方法推导一元二次方程求根公式的过程中,得到
(x+2ba)2
Байду номын сангаас
=
b2−4ac 4a2
(*)
只有当b²-4ac ≥ 0时,才能直接开平方,得
x+2ba =±
b² −4ac 4a²
也就是说,只有当一元二次方程ax²+bx +c=0 (a≠0)的系数
a、b、c满足条件b²-4ac ≥ 0时才有实数根,因此,我们可以
根据一元二次方程的系数直接判定根的情况。
如果b²-4ac<0会怎么样? 如果b²-4ac<0,则不能直接开平方,因为负数没有平方根。
解:(3)原方程可变形为 4y2-y+4 = 0. 因为Δ =(-1)2-4×4×4 = 1-64 = -63<0, 所以方程没有实数根。
练习
1. 不解方程,判断下列方程的根的情况:
(1) 3x²+5x = 4; (2) 2x²-x²-2 = 0
解:(1)原方程可变形为 3x2 + 5x+4 = 0. ∵b²-4ac =52-4×3×(-4) = 73>0, ∴原方程有两个不相等的实数根。
解:(4)原方程可化为 2x2 - x+2 = 0. ∵b²-4ac =(-1)2-4×2×2= -15<0, ∴原方程无实数根。
2.小明告诉同学,他发现了判断一类方程有无实数根的简易方法:
若一元二次方程ax²+bx +c=0 (a≠0) 的系数a、c异号(即两数为一正
《公式法—— 一元二次方程根的判别式》PPT课件
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
整合方法
14.【中考·衡阳】关于x的一元二次方程x2-3x+k =0有实数根. (1)求k的取值范围;
解:根据题意得(-3)2-4k≥0,
解得
9 k≤4.
整合方法
(2)如果k是符合条件的最大整数,且一元二次方程(m -1)x2+x+m-3=0与方程x2-3x+k=0有一个相 同的根,求此时m的值.
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类
【答案】A
夯实基础
※12.【中考·新疆】若关于 x 的一元二次方程(k-1)x2+x
+1=0 有两个实数根,则 k 的取值范围是( D )
A.k≤54 C.k<54且 k≠1
B.k>54 D.k≤54且 k≠1
【点拨】本题忽视一元二次方程二次项系数不为 0
这一条件,而直接由根的判别式求得
5 k≤4.
夯实基础
6.【中考·湘西州】一元二次方程x2+2x+3=0根 的情况是( C ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法判断
整合方法
14.【中考·衡阳】关于x的一元二次方程x2-3x+k =0有实数根. (1)求k的取值范围;
解:根据题意得(-3)2-4k≥0,
解得
9 k≤4.
整合方法
(2)如果k是符合条件的最大整数,且一元二次方程(m -1)x2+x+m-3=0与方程x2-3x+k=0有一个相 同的根,求此时m的值.
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类
【答案】A
夯实基础
※12.【中考·新疆】若关于 x 的一元二次方程(k-1)x2+x
+1=0 有两个实数根,则 k 的取值范围是( D )
A.k≤54 C.k<54且 k≠1
B.k>54 D.k≤54且 k≠1
【点拨】本题忽视一元二次方程二次项系数不为 0
这一条件,而直接由根的判别式求得
5 k≤4.
夯实基础
6.【中考·湘西州】一元二次方程x2+2x+3=0根 的情况是( C ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法判断
一元二次方程根的判别式课件(人教版)
x2-2x=0,解得x1=0,x2=2.
整合方法·提升练
14.【中考•岳阳】已知关于x的方程x2-(2m+1)x+
m(m+1)=0.
Δ>0
(1)求证:方程总有两个不相等的实数根;
证明:∵Δ=(2m+1)2-4m(m+1)=1>0, ∴方程总有两个不相等的实数根.
整合方法·提升练
将x=0代入x2-(2m+1)x+m(m+1)=0 m(m+1)=0
15
无论k取何值,这个方程 总有实数根;10
答案显示
夯实基础·逐点练
化为一般情势: 2x2 +(-7)x+(-4)=0
1.方程7x=2x2-4化为一般情势ax2+bx+c=0后, a=__2____,b=__-__7__,c=_-__4___,b2-4ac= __8_1___.
夯实基础·逐点练
化为一般情势: 5x2 +(-6)x+8=0
4[(a+1) x2+(a+1) x]+1=0
整合方法·提升练
解:x※(a※x)=x※(ax+x)=x※[(a+1)x]=(a+1)x2+(a +1)x=- 1 ,
4
整理,得4(a+1)x2+4(a+1)x+1=0. ∵关于x的方程x※(a※x)=-14 有两个相等的实数根, ∴a+1≠0,Δ=16(a+1)2-16(a+1)=0.
解:若分a为类等讨腰论三a=角4为形底A边BC;的a=底4边为长腰,,分则别b,确c定为等腰三 角b形、Ac的BC值的,两根腰据三长角,形由的题三意边知关方系程确定有a两、个b、相等的 实c数能根否,组所成三以角Δ=形0,,再即求k三=角32.形所的以周方长程. 为x2-4x+4 =0,解得x1=x2=2. 即b=c=2,不符合三角形三 边关系,故舍去.
人教版 九年级上
整合方法·提升练
14.【中考•岳阳】已知关于x的方程x2-(2m+1)x+
m(m+1)=0.
Δ>0
(1)求证:方程总有两个不相等的实数根;
证明:∵Δ=(2m+1)2-4m(m+1)=1>0, ∴方程总有两个不相等的实数根.
整合方法·提升练
将x=0代入x2-(2m+1)x+m(m+1)=0 m(m+1)=0
15
无论k取何值,这个方程 总有实数根;10
答案显示
夯实基础·逐点练
化为一般情势: 2x2 +(-7)x+(-4)=0
1.方程7x=2x2-4化为一般情势ax2+bx+c=0后, a=__2____,b=__-__7__,c=_-__4___,b2-4ac= __8_1___.
夯实基础·逐点练
化为一般情势: 5x2 +(-6)x+8=0
4[(a+1) x2+(a+1) x]+1=0
整合方法·提升练
解:x※(a※x)=x※(ax+x)=x※[(a+1)x]=(a+1)x2+(a +1)x=- 1 ,
4
整理,得4(a+1)x2+4(a+1)x+1=0. ∵关于x的方程x※(a※x)=-14 有两个相等的实数根, ∴a+1≠0,Δ=16(a+1)2-16(a+1)=0.
解:若分a为类等讨腰论三a=角4为形底A边BC;的a=底4边为长腰,,分则别b,确c定为等腰三 角b形、Ac的BC值的,两根腰据三长角,形由的题三意边知关方系程确定有a两、个b、相等的 实c数能根否,组所成三以角Δ=形0,,再即求k三=角32.形所的以周方长程. 为x2-4x+4 =0,解得x1=x2=2. 即b=c=2,不符合三角形三 边关系,故舍去.
人教版 九年级上
根的判别式复习课PPT课件
2、根据方程的根的情况确定方程的待定系数的取值范围
例2:当k取什么值时,已知关于x的方程:
(1)方程有两个不相等的实根;(2)方程有两个相等的实根;(3) 方程无实根;
解:△=
(1).当△>0 ,方程有两个不相等的实根, 8k+9 >0 , 即 (2).当△ = 0 ,方程有两个不相等的实根, 8k+9 =0 , 即 (3).当△ <0 ,方程有两个不相等的实根, 8k+9 <0 , 即
说明:解此类题目时,也是先把方程化为一般形式,再算 出△,再由题目给出的根的情况确定△的情况。从而求出 待定系数的取值范围
例3、已知m为非负整数,且关于x的方程 : 有两个实数根,求m的值。 解:∵方程有两个实数根 ∴
解得:
∵m为非负数 ∴m=0或m=2 说明:当二次项系数也含有待定的字母时,要注意 二次项系数不能为0,还要注意题目中待定字母的取 值范围.
一元二次方程根的判别式
一元二次方程 根的判式是:
一元二次方程
判别式的情况 根的情况 两个不相等实根 两个相等实根 无实根(无解) 定理与逆定理
两不相等实根 两相等实根 无实根
判别式的应用: 1、不解方程,判别方程的根的情况
例1:不解方程,判别下列方程的根的情况
(1)
(2)
(3) 解:(1) =
所以,原方程有两个不相等的实根。 说明:解这类题目时,一般要先把方程化为一般形式,求出△, 然后对△进行计算,使△的符号明朗化,进而说明△的符号情 况,得出结论。
3、证明方程根的情况
例4、求证:关于x的方程: 有两个不相等的实根。
证明:
无论m取任何实数都有: 即:△>0
所以,无论m取任何实数,方程有两个不相等 的实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一元二次方程 ax bx c 0(a 0)中
2
若a与c异号, 则方程 (
A.有两个不相等的实数根 B.有两个相等的实数根
)
C.没有实数根
D.根的情况无法确定
例2.若关于x一元二次方程 kx2-(2k+1)x+k=0, (1)有两个不相等的实数根 (2)有两个相等的实数根
(2)∵方程有两个相等的实数根。 ∴△=0,即4k+1=0
思考:一元二次方程根的情况与一元二次方程中二 次项系数、一次项系数及常数项有关吗?
用公式法解下列方程: 例题 (1)x2+x-1=0; (2)x2 -2 3x+3=0;
(3)2x2-2x+1=0.
一元二次方程ax2+bx+c=0(a≠0)根的情况 可由b2-4ac来判定: (1)当b2-4ac >0时, 方程有两个不等的实数根 (2)当b2-4ac = 0时, 方程有两个相等的实数根 (3)当b2-4ac <0时, 方程没有实数根
初中数学八年级下册 (苏科版)
4.2一元二次方程的解法 根的判别式
城南实验初级中学
用公式法解下列方程: 例题 (1)x2+x-1=0; (2)x2 -2 3x+3=0;
(3)2x2-2x+1=0.
不解方程,你能判断下列方程根的情况吗? (1)x2+2x-8=0; (2)x2=4x-4; (3)x2-3x=-3
拓展延伸 2.关于x的方程 kx2+3x-1=0有实数根,则k 的取值范围是 ( C )
9 A.k 4 9 C.k 4 9 B.k 且k 0 4 9 D.k 且k 0 4
拓展延伸 1 2 3.已知关于x的方程 x (2k 1) x 4(k ) 0
10.方程(k-1) x 2 2 k x 1 0有两个不相等的
实数根,求k的取值范围
知识要点:
一元二次方程ax2+bx+c=0(a≠0)根的情况 可由b2-4ac来判定: (1)当b2-4ac >0时, 方程有两个不等的实数根 (2) 当b2-4ac = 0时, 方程有两个相等的实数根 (3) 当b2-4ac <0时, 方程没有实数根 (1)关于x的方程x2-kx+k- 2=0 根的情况是方程有两个不等的实数根.
2
所以,不论m为何值,这个方程总有两个 不相等的实数根
练习
2.关于x的方程 (k 1) x (1 2 x)k 2 0 有两个不相等的实数根,求k的最小整数.
2
拓展延伸 1.已知关于x的方程
(1 2k ) x 2 k 1x 1 0
2
有两个不相等的实数根,求k的取值范围.
根的情况是方程有两个不等的实数根 .
当方程系数中含有字母时, 一般先将b2-4ac化成b2-4ac=( )2+k的形式.
例2: 1.k取什么值时, 方程x2-kx+4=0有两个相 等的实数根?求这时方程的根. 变式: (1)k取什么值时, 方程x2-4x+k=0有两个不 相等的实数根? (2)k取什么值时, 方程x2-4x+k=0有两个实 数根?
7 (2)若关于x的方程 x (2k 1) x k 4 0 有两个相等的实数根,则k=1)x2+x-1=0; (2)x2 -2 3x+3=0;
(3)2x2-2x+1=0.
2+bx+c=0(a≠0)根的情况 一元二次方程 ax 2- 4ac叫做一元二次方程 我们把 b 可由b22 -4ac来判定: ax +bx+c=0(a≠0)的根的判别式 . 2 (1)当b -4ac >0时, 方程有两个不等的实数根 (2)当b2-4ac = 0时, 方程有两个相等的实数根 (3)当b2-4ac <0时, 方程没有实数根
1 ∴k= 4
1 当k= 4
时,方程有两个相等的实数根
例3、已知关于x的方程,
2
证明:不论m为何值,这个方程 总有两个不相等的实数根
解: 4m 4 2m 4 2 4m 8m 16
2
x 2mx 2m 4 0
4 m 2m 1 12 2 4m 1 12 0
练习:书第17页第1题
不解方程,你判断下列方程根的情况吗? (1)x2+2x-8=0; (2)x2=4x-4; (3)x2-3x=-3
(4) x (2m 1) x (m m) 0
2 2
当方程系数中含有字母时, 一般先将b2-4ac化成b2-4ac=( )2+k的形式.
练习:
关于x的方程x2-kx+k-2=0
2
(1)求证:无论k取什么实数值,这个方程总有 实根. (2)若等腰△ABC的一边长a=4,另两边b、c 恰好是这个方程的两根,求△ABC的周长.
小结
☆ 一元二次方程根的判别式. ☆ 根据条件确定方程中字母的值或范围. ☆ 证明方程有无实数根.
9.若关于x的一元二次方程(k-1)x2-2kx+k+3=0 有两个不相等的实数根,求k 的最大整数值.