双酶切体系
双酶切实验
双酶切概述双酶切反应(Double Digests)1、同步双酶切同步双酶切是一种省时省力的常用方法。
选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。
NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。
NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。
能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。
由于内切酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。
2、分步酶切如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。
分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。
3、使用配有特殊缓冲液的酶进行双酶切(图)使用配有特殊缓冲液的酶进行双酶切也不复杂。
在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。
这保证了对缓冲液有特殊要求的酶也能良好工作。
由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。
通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。
双酶切建议缓冲液注:只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。
BSA不会影响任何内切酶的活性。
注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。
可通过增加反应体系的总体积的方法实现这一要求。
某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。
上表中这些组合以“se q”标注。
[编辑本段]双酶切的注意事项1、做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解.为保险起见,一般连接3小时,16度。
2、对含有AMP-RESISTENCE的质粒铺板时,注意加AMP时的温度,温度过高,会使克隆株无法筛选出来.我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。
双酶切鉴定
四、双酶切鉴定㈠双酶切反应(Double Digests)1、同步双酶切同步双酶切是一种省时省力的常用方法。
选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。
NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。
NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。
能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。
由于内切酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。
2、分步酶切如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。
分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。
3、使用配有特殊缓冲液的酶进行双酶切(图)使用配有特殊缓冲液的酶进行双酶切也不复杂。
在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。
这保证了对缓冲液有特殊要求的酶也能良好工作。
由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。
通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。
双酶切建议缓冲液注:只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。
BSA不会影响任何内切酶的活性。
注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。
可通过增加反应体系的总体积的方法实现这一要求。
某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。
上表中这些组合以“seq”标注。
㈡连接反应1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
基因克隆技巧之---双酶切系统的具体应用实例
双酶切系统(DDDesigner)的具体应用实例DDDesigner group1. 避免浪费限制性内切酶双酶切系统能够避免限制性内切酶的浪费,因为很多限制性内切酶在实际应用中所需的用量极少。
如:利用NEB公司的PstI-HF和EcoRV-HF两种酶消化长度为3000bp的1ug质粒DNA,当这两种酶在质粒上各只有一个切点时,完全消化质粒DNA所需要的PstI-HF仅为1.2U,需要的EcoRV-HF也仅为1.5U。
由此可见,如果按照该酶所附的使用说明用1ul酶(10或者20IU)消化1ug质粒DNA,你将浪费了大约5-10倍的酶。
这种浪费在一些特别贵的酶上面可能体现得更明显。
2.确保质粒载体的完全酶切,降低载体自连而出现的背景克隆由于单位定义时底物选择的不同,以及酶在底物上识别位点的数目的差别,导致在实际工作中,切割相同的质粒DNA时,不同的酶所需要的酶量(单位数)有很大的差别,有时能够相差近30倍。
如:利用NEB公司的PstI-HF和NheI-HF两种酶消化长度为3000bp的1ug质粒DNA,当这两种酶在质粒上各只有一个切点时,完全消化质粒DNA所需要的PstI-HF仅为1.2U,需要的NheI-HF则高达32U,两种酶的用量相差近30倍。
因而,如果按照该酶所附的使用说明用1ul酶(10或者20IU)消化1ug质粒DNA,那么PstI-HF会出现浪费,但同时,NheI-HF的用量则不能保证质粒DNA的完全酶切。
此种情况下,在进行载体和外源片段的连接时,就会出现大量的载体自连,导致阳性克隆率低,或者克隆失败。
3.确保PCR产物的完全酶切,提高克隆成功率对同样质量(如1ug)的不同DNA样品,长度短(分子量小)的DNA样品中的分子数多,因而如果这些DNA样品分子上的酶切位点数是一样的,那么完全消化较短的DNA分子所需要的酶量将会比完全酶切较大的质粒DNA多。
如:用Takara的EcoRI和XbaI完全酶切1ug纯化的短PCR产物(300bp),且此两种酶在该分子上各有一个识别位点,那么需要大约64U的EcoRI和323U的XbaI。
双酶切
双酶切及连接
指导老师:陈思 组员:李婷 王鹏飞 高峰 姜威 邵振天
实验原理
• 用限制性内切酶去切割DNA片断,由于酶 具有专一性,一种酶只能识别一种特定的 脱氧核苷酸序列,所以可以用特定的这种 酶去切割相应的DNA片断,进而达到定向 切割的目的。
三、仪器、材料与试剂
• • • • • • • • • • 水浴锅 移液枪和枪头 制冰机 浮板 PCR产物 SaⅡ酶 BgⅢ酶 10×H Buffer 无菌水 小离心管
思考题
影响限制性内切酶活性 的因素有哪些?
• • • • • • DNA的纯度 DNA的甲基化程度 酶切消化反应的温度 DNA的分子结构 溶液中离子浓度及种类 缓冲液的pH值
• 为什么任何时候2种酶 的总量不能超过反应 体系的1/10体积?
• 我们平时所用的酶试剂中 都含有一定量的甘油,用 量过多容易使酶产生星号 活性,即限制性酶的特异 性会受影响。
• 质粒DNA的双酶切ຫໍສະໝຸດ 反应体系:BgⅢ0.6μL
SaⅡ
10× Buffer PCR产物 无菌水 总体积
0.6μL
2μL 10μL 0.8 μL 20μL(无菌水补至总积)
反应条件:温度37℃,酶切h • 琼脂糖凝胶电泳检测酶切结果 • UVP凝胶成像系统记录结果(电泳图)
结果及分析
• 双酶切结果跑出一条 带,质粒无条带。 • 分析:质粒无条带, 可能是模板问题。 • 双酶切跑出一条带, 可能是酶切后DNA片 段太小,导致结果模 糊。
注意事项
• 任何时候2种酶的总量不能超过反应体系的1/10体积。 • 双酶切时如果两种酶反应温度一致而buffer不同时,可查 阅内切酶供应商在目录后的附录中提供的各种酶在不同 buffer中的活力表,如果有一种buffer能同时使2种酶的活 力都超过70%的话,就可以用这种buffer作为反应buffer。 如果两种酶厂家不同无法查时可比较其buffer成份,相似 的话可以考虑各取一半中和。 • 如果2种酶的buffer成份相差较大或2种酶的反应温度不同 则必须分别做酶切 • 特别注意:在双酶切载体时如果2个酶切位点*得很近,必 须注意酶切顺序。因为有的限制性内切酶要求其识别序列 的两端至少保留有若干个碱基才能保证酶的有效切割。有 的酶要求识别序列两端有多个碱基的,则必须先切,否则 就可能造成酶切失败。
酶切
双酶切反应(Double Digests)1、同步双酶切同步双酶切是一种省时省力的常用方法。
选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。
NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。
NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。
能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。
由于内切酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。
2、分步酶切如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。
分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。
3、使用配有特殊缓冲液的酶进行双酶切(图)使用配有特殊缓冲液的酶进行双酶切也不复杂。
在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。
这保证了对缓冲液有特殊要求的酶也能良好工作。
由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。
通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。
双酶切建议缓冲液注:只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。
BSA不会影响任何内切酶的活性。
注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。
可通过增加反应体系的总体积的方法实现这一要求。
某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。
上表中这些组合以“seq”标注。
注意事项1、做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解.为保险起见,一般连接3小时,16度。
2、对含有AMP-RESISTENCE的质粒铺板时,注意加AMP时的温度,温度过高,会使克隆株无法筛选出来.我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。
质粒双酶切构建经验!
质粒双酶切构建经验!大神教你做酶切!1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
2、酶切、回收后的PCR产物与载体的连接摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524µg。
《双酶切及连接》课件
• 双酶切技术简介 • 双酶切的实验步骤 • 双酶切的应用 • 双酶切的注意事项 • 双酶切技术的发展趋势
01
双酶切技术简介
酶切技术的定义
01
02
03
酶切技术定义
酶切技术是一种利用酶的 专一性对特定底物进行切 割的生物技术。
酶的专一性
酶只对特定的底物起作用 ,切割位点具有高度专一 性。
双酶切技术的改进与创新
新型限制性核酸内切酶的 开发
随着生物技术的不断发展,新型限制性核酸 内切酶不断涌现,为双酶切技术提供更多选 择和灵活性。
自动化双酶切系统的研发
通过自动化技术实现双酶切的快速、高效和 标准化操作,提高实验效率并减少人为误差
。
双酶切技术的发展前景
01
双酶切技术在基因克隆和基因治 疗等领域的应用前景广阔,未来 将继续发挥重要作用。
05
双酶切技术的发展趋势
双酶切与其他技术的结合
双酶切与PCR技术的结合
通过双酶切技术将目的基因和载体进行酶切,再利用PCR技术进行扩增和鉴定,提高基 因克隆的效率和准确性。
双酶切与基因编辑技术的结合
将双酶切技术与CRISPR-Cas9等基因编辑技术结合,实现对特定基因的敲除、敲入和 定点突变等操作,为基因功能研究和基因治疗提供有力工具。
02
随着生物技术的不断进步,双酶 切技术将与其他技术不断融合创 新,为生命科学研究提供更多有 力工具。
THANKS
感谢观看
酶切技术的分类
单酶切技术
使用一种限制性内切核酸酶对 DNA进行切割。
双酶切技术
使用两种不同的限制性内切核酸酶 对DNA进行切割,通常用于产生 具有不同黏性末端的DNA片段, 便于后续的连接反应。
双酶切连接
前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了 14个质粒。
现就自己的体会,谈一下质粒重组的一些个人经验。
1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
2.纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒3.酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
4.酶切、回收后的PCR产物与载体的连接:摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524µg。
DNA的酶切及电泳检测
DNA的酶切及电泳检测酶切体系:酶切应使用0.5ml灭菌炮弹和灭菌枪头(一般为10ul,也可以适当增加体系量)10ul体系:①DNA含量在0.5ug;②一般酶用0.25ul(理论上1ug DNA~1U ase,实际上,为了便于完全切割,常用1ugDNA~2-4U ase;一般1ul ase为10U, 按此计算);③buffer 1×用1ul,0.5×用0.5ul(有时会用到1×BSA);④最后用水补齐。
在配置相同的酶切体系时,可以先总配再分装。
不同的酶有不同的特性,我们平常使用的酶一般为37℃,1h。
双酶切体系:①若两个酶用同一种buffer(须为同一家公司),可一起酶切,至少1h。
②若两个酶不同buffer,最好分开切。
注意:●酶程太大,>100ug/ng DNA或PH>8.0,会导致星活性。
●BSA,牛血清白蛋白。
●Pr, EDTA, 酚,氯仿,SDS, 乙醇都会影响酶活。
可以通过纯化,增加酶量,增加酶切的时间等克服。
配胶:一般配置1%,20ml的琼脂糖凝胶。
0.2g琼脂糖+20ml TAE/TBE→min火(比小火还小两个点)加热2-3min液体至透明→晾至55℃(不烫手即可)→加入0.5ul EB(小分子插入DNA中,紫外显红色,积累性致癌物)→倒入叉好梳子的板内→待胶冷却凝固电泳:每个体系加入10%(1ul)的溴酚兰,混合后点入点样孔中→每块胶中点入合适的marker 以确定每个样品DNA的大小(一般10ul的marker亮度即为0.5ug DNA亮度)→80V 20min 左右溴酚兰跑到全胶的4/5左右。
(溴酚兰所处位置约为400bp)。
双酶切体系
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*Double Digestion(双酶切反应)时Universal Buffer(通用缓冲液)的使用表■ 说明使用二种酶同时进行DNA切断反应(Double Digestion) 时,为了节省反应时间,通常希望在同一反应体系内进行。
TaKaRa采用Universal Buffer表示系统,并对每种酶表示了在各Universal Buffer中的相对活性。
尽管如此,在进行Double Digestion时,有时还会难以找到合适的Universal Buffer。
本表以在pUC系列载体的多克隆位点处的各限制酶为核心,显示了在Double Digestion可使用的最佳Universal Buffer条件。
在本表中,各Universal Buffer 之前表示的[数字×] 是指各Universal Buffer的反应体系中的最终浓度。
TaKaRa销售产品中添附的Universal Buffer全为10倍浓度的缓冲液。
终浓度为0.5×时反应体系中的缓冲液则稀释至20倍,1×时稀释至10倍,2×时稀释至5倍进行使用。
■ 注意◇1 μg DNA中添加10 U的限制酶,在50 μl的反应体系中,37℃下反应1小时可以完全降解DNA。
◇为防止Star活性的产生,请将反应体系中的甘油含量,尽量控制在10%以下。
◇根据DNA的种类,各DNA的立体结构的差别,或当限制酶识别位点邻接时,有时会发生Double Digestion不能顺利进行的可能。
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*。
双酶切连接反应之全攻略
双酶切连接反应之全攻略一、实验原理:1.首先,将待连接的两个DNA片段通过限制性内切酶酶切,产生两个具有互补末端的DNA片段。
2.再利用DNA连接酶,以这些互补末端为引导,将两个DNA片段连接在一起。
3.最后,通过热激励反应,将连接酶不活性化。
二、实验步骤:1.设计引物:根据待连接的两个DNA片段的序列,设计合适的引物,使得限制性内切酶切割后的末端具有互补性。
2.DNA酶切:将待连接的两个DNA片段与限制性内切酶一同反应,根据内切酶的适宜反应条件进行酶切反应。
3.酶切产物纯化:将酶切产物进行电泳分离,通过切胶取带的方式将目标片段分离出来,然后进行片段纯化。
4.连接反应:将纯化后的两个DNA片段与DNA连接酶一同反应,根据连接酶的适宜条件进行连接反应。
一般而言,反应体系中还需要包含ATP供能和缓冲液等。
5.连接产物纯化:对连接反应的产物进行纯化,一般选择柱层析法(如凝胶过滤法、离心柱法等)或酸酶消化法(如酚氯仿法)等方法。
6.验证连接效果:通过DNA测序等方法验证连接效果,确保连接成功。
三、实验注意事项:1.引物设计要合理:引物的设计要充分考虑到限制性内切酶的切割位点和连接效率。
合理选择引物长度和碱基组成,避免引物之间产生非特异性连接。
2.内切酶酶切条件的选择:根据所使用的内切酶的反应条件和切割位点,合理选择反应温度和反应时间,确保内切酶可以有效切割DNA片段。
3.DNA连接酶的选择和反应条件:根据实验需要,选择合适的DNA连接酶,考虑到连接效率和连接酶的活性等因素。
同时需要注意反应缓冲液的pH和温度等条件。
4.连接产物纯化:选择合适的纯化方法,确保连接产物的纯度和浓度。
同时注意纯化过程中的温度和pH等条件,避免产物降解或损失。
5.连接效果的验证:通过DNA测序方法验证连接效果,并且需要对连接的序列进行分析,确保连接正确。
四、实验应用:1.基因克隆:用于将外源基因克隆到载体上,以便于大规模扩增和表达。
各种酶切体系
-
2
6
2.4
10×buffer D
2
1
1
1
3
4
BSA(10µg/µl)
0.2
0.1
0.1
0.2
0.6
0.6
DNA(1µg/µl)
8.3
4
7.9
6
18
30
Not I(10U/µl)
0.5
0.3
0.5
0.4
1.2
1.5
Sal I(10U/µl)
0.5
0.3
0.5
0.4
1.2
1.5
反应条件
37℃,1~3hr,电泳检测
NheI单酶切
依DNA量定体系
20µl
10µl
灭菌去离子水
-
-
10×buffer
2
1
DNA(1µg/µl)
17
8.5
Nhe I
1
0.5
反应条件
37℃,1~3hr,电泳检测
Xbal I和Sal I双酶切体系鉴定
依DNA量定体系
20µl
10µl
10µl
灭菌去离子水
8.5
4.3
-
10×buffer
2
1
1
BSA(10µg/µl)
0.2
0.1
0.1
DNA(1µg/µl)
8.3
4
7.9
Xba I(10U/µl)
0.5
0.3
0.5
Sal I(10U/µl)
0.5
0.3
0.5
反应条件
EcoR I酶切鉴定
组分
体系
质粒DNA
双酶切的原理及应用
双酶切的原理及应用1. 前言在分子生物学和基因工程领域,DNA分子的切割是一项重要的实验操作。
传统的DNA切割方法主要采用单酶切割,即使用一种特定的限制性内切酶来切割DNA分子。
然而,有时候使用单一酶切割不够灵活或效果不好。
为了解决这个问题,科学家们提出了双酶切的方法,即同时使用两种酶来切割DNA分子。
在本文中,我们将介绍双酶切的原理及其应用。
2. 双酶切的原理双酶切的原理基于两种不同的DNA限制性内切酶对DNA分子上的特定序列进行切割。
这两种限制性内切酶在DNA分子上分别识别并切割两个不同的序列。
在双酶切实验中,首先将DNA与两种酶一起孵育,然后酶在特定序列上切割DNA,形成切割产物。
3. 双酶切的应用双酶切在分子生物学和基因工程领域有着广泛的应用。
以下是一些双酶切的常见应用:3.1 DNA片段克隆双酶切可以用于DNA片段的克隆。
在这种应用中,将目标DNA分子与两种限制性内切酶一起消化,并将两种酶的切割产物与载体DNA连接,形成重组DNA分子。
通过将重组DNA转化到宿主细胞中,可以将目标DNA片段克隆到宿主细胞中进行后续的研究。
3.2 DNA测序双酶切也可以用于DNA测序。
在传统的测序方法中,需要将目标DNA序列分割成多个小片段。
使用两种不同的限制性内切酶,可以将目标DNA序列切割成多个重叠的片段,并在测序过程中获得更加准确的序列信息。
3.3 基因组编辑双酶切在基因组编辑中也有重要的应用。
例如,CRISPR-Cas9技术就是一种常用的基因组编辑工具,它使用CRISPR与Cas9酶组合来识别和切割目标DNA序列。
通过将Cas9与另一种限制性内切酶组合使用,可以实现更精确的基因组编辑。
3.4 DNA分析双酶切也可用于DNA分析中。
比如,在基因检测中,采用双酶切可以对目标DNA中的特定基因序列进行切割,通过分析切割产物可以确定目标基因是否存在。
4. 双酶切的优势相较于单酶切,双酶切具有以下优势:•更灵活:使用两种不同的限制性内切酶,可以选择更多的切割位点,使实验更灵活多样化。
双酶切实验原理
双酶切实验原理双酶切实验是一种常用的分子生物学技术,用于分析DNA序列。
它基于限制性内切酶的特异性切割DNA的原理,结合凝胶电泳技术,可以对DNA进行特异性切割和分离,从而获得所需的DNA片段。
本文将介绍双酶切实验的原理及其操作步骤。
1.双酶切实验原理。
双酶切实验的原理基于限制性内切酶对DNA的特异性切割。
限制性内切酶是一类能够识别DNA特定序列并在该序列上切割的酶,它们能够将DNA分子切割成具有特定序列的片段。
在双酶切实验中,通常会使用两种不同的限制性内切酶,它们分别识别DNA的不同序列,并在这些序列上进行切割。
通过这种双酶切割的方式,可以获得具有特定序列的DNA片段。
2.双酶切实验操作步骤。
双酶切实验的操作步骤主要包括DNA提取、酶切反应、凝胶电泳和DNA可视化等步骤。
首先,需要从样品中提取DNA。
提取的DNA可以是来自细菌、动植物或其他生物体的基因组DNA,也可以是从质粒或病毒中提取的DNA。
提取的DNA需要经过纯化和定量后,才能进行后续的操作。
接下来,将提取的DNA与两种限制性内切酶和相应的缓冲液混合,进行酶切反应。
酶切反应的条件需要根据所使用的酶的特性来确定,包括反应温度、反应时间和反应缓冲液的配制等。
酶切反应完成后,需要对反应产物进行电泳分离。
在凝胶电泳中,将酶切反应产物加载到琼脂糖凝胶上,通电进行分离。
由于DNA分子在电场中具有不同的迁移速度,可以根据DNA片段的大小进行分离和检测。
分离完成后,可以通过染色或荧光标记等方法对DNA进行可视化。
3.双酶切实验的应用。
双酶切实验在分子生物学研究中有着广泛的应用。
它可以用于分析DNA序列的特异性,鉴定基因型、进行基因工程、构建基因库等。
通过双酶切实验,可以获得特定序列的DNA片段,为后续的克隆、测序和分析提供了重要的基础。
总的来说,双酶切实验是一种重要的分子生物学技术,它基于限制性内切酶的特异性切割原理,能够对DNA进行特异性切割和分离。
双酶切体系定量计算设计查询软件使 用手册
双酶切体系定量计算设计查询软件使用手册Version:1.0目录一、引言 (3)二、软件概述 (3)1. 产品介绍 (3)2. 产品特点 (3)3.产品功能 (3)酶量定量计算 (3)酶切体系缓冲液智能推荐 (3)酶信息数据库查询 (4)三、运行环境 (4)1) 硬件环境 (4)2) 软件环境 (4)四、安装与卸载 (4)五、软件使用说明 (4)1. 登陆 (4)变更语言 (5)修改密码 (6)2. 双酶切设计 (6)第一步,输入底物信息,包括DNA长度,DNA质量 (6)第二步:选择酶供应商 (6)第三步:选择酶切反应所需的酶 (7)3. 设计结果显示 (9)3.1 推荐双酶切设计 (9)3.2 更多信息 (10)4. 酶信息搜索功能 (11)4.1 按照酶名进行搜索 (11)4.2 按照酶识别序列进行搜索 (11)4.3 按照粘性末端进行搜索 (12)4.4 按照同裂酶(同序同切酶)进行搜索 (12)4.5 对异功酶进行搜索 (13)4.6 信息提示 (14)5. 案例帮助教学 (15)6. 反馈功能 (15)7. 英文版 (16)六、版权申明 (16)一、引言编写本使用说明的目的是充分叙述本软件所能实现的功能及其运行环境,以便使用者了解本软件的使用范围和使用方法,并为软件的维护和更新提供必要的信息。
2. 术语和缩写词DDD:Double Digestion Designer双酶切的缩写二、软件概述1. 产品介绍开发团队从实验理论的分子基础出发,结合十多年的分子生物学经验和生物信息学工具,开发了双酶切定量计算设计平台Double Digestion Designer,具有多种应用,操作简易,指导性强等特点,平均可为实验室节省3倍实验支出和时间。
2. 产品特点DDD设计采取B/S架构,由LAMP+JQUERY动态网络构建,核心数据为数据库存取,实时计算结果进行显示。
有以下优点:1. 方便用户。
双酶切实验
双酶切概述双酶切反应(Double Digests)1、同步双酶切同步双酶切是一种省时省力的常用方法。
选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。
NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。
NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。
能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。
由于内切酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。
2、分步酶切如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。
分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。
3、使用配有特殊缓冲液的酶进行双酶切(图)使用配有特殊缓冲液的酶进行双酶切也不复杂。
在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。
这保证了对缓冲液有特殊要求的酶也能良好工作。
由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。
通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。
双酶切建议缓冲液注:只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。
BSA不会影响任何内切酶的活性。
注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。
可通过增加反应体系的总体积的方法实现这一要求。
某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。
上表中这些组合以“se q”标注。
[编辑本段]双酶切的注意事项1、做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解.为保险起见,一般连接3小时,16度。
2、对含有AMP-RESISTENCE的质粒铺板时,注意加AMP时的温度,温度过高,会使克隆株无法筛选出来.我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Double Digestion(双酶切反应)时Universal Buffer(通用缓冲液)的使用表
■说明
使用二种酶同时进行DNA切断反应(Double Digestion)时,为了节省反应时间,通常希望在同一反应体系内进行。
TaKaRa采用Universal Buffer表示系统, 并对每种酶表示了在各Universal Buffer中的相对活性。
尽管如此,在进行Double Digestion 时,有时还会难以找到合适的Universal Buffer。
本表以在pUC系列载体的多克隆位点处的各限制酶为核心,显示了在Double Digestion可使用的最佳Universal Buffer条件。
在本表中,各Universal Buffer 之前表示的[数字刃是指各Universal Buffer的反应体系中的最终浓度。
TaKaRa销售产品中添附的Universal Buffer全为10倍浓度的缓冲液。
终浓度为0.5 x
时反应体系中的缓冲液则稀释至20倍,1X时稀释至10倍,2X时稀释至5倍进行使用。
■注意
◊1 (i g DNA中添加10 U的限制酶,在50 口的反应体系中,37 C下反应1小时可以完全降解DNA。
◊为防止Star活性的产生,请将反应体系中的甘油含量,尽量控制在10%以下。
◊根据DNA的种类,各DNA的立体结构的差别,或当限制酶识别位点邻接时,有时会发生
Double Digestion不能顺利进行的可。