第一章图的基本概念节
第一章 图的基本概念(5)——极图理论简介
00
1 0.8
0.6 0.4 x 0.2
如果 m(G) m(Tl ,n )
则有 m(H ) m(G)
G与H有相同度序列,由定理4:G H
又由 m(G) m(Tl ,n ) ,且由定理3,有:
H Tl ,n 所以有: G Tl ,n
13
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
4部图
4
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定义2 如果在一个l 部图G中,任意部Vi中的每个顶点, 和G中其它各部中的每个顶点均邻接,称G为完全l 部 图。记作:
G Kn1,n2 , ,nl , (ni Vi ,1 i l)
例如:
显然:
00
1 0.8
0.6 0.4 x 0.2
几个有趣的相关结果:
设m (n, H)表示n阶单图中不含子图H的最多边数,则:
1, m(n,
K3 )
n2
4
2, m(n, Kl 1 )
(l
1)(n 2 2l
r2)
Cr2
其中,n r(modl), 0 r l
3,
m(n, Cn
)
1
(n
1)(n 2
由此可以推出: G= G1V G2 因为 G= G1V G2和H= G2V H1有相同度序列,于是 得到G1和H1有相同度序列,所以:
GH
定理5(Turán)若G是简单图,并且不包含 Kl+1,则:
m(G) m(Tl,n )
仅当 G Tl ,n 时,有 m(G) m(Tl ,n )
第一章(图论的基本概念)
第二节 图的顶点度和图的同构(4)
图序列:简单图的度序列. (d1, d 2 , , d p )(d1 d 2 d p ) 定理4 非负整数序列 是图序列当 p 且仅当 d i 是偶数,并且对一切整数k, 1 k p 1, 有
i 1
第二节 图的顶点度和图的同构(1)
定义1 设G是任意图,x为G的任意结点,与结点x关联的 边数(一条环计算两次)称为x的度数.记作deg(x)或d(x). 定义2 设G为无向图,对于G的每个结点x,若d(x)=K,则 称G为K正则的无向图.设G为有向图,对于G的每个结点 x,若d+(x)=d-(x), 则称G为平衡有向图.在有向图G中, 若 (G) (G) (G) (G) K , 则称G为K正则有向图. 定理1(握手定理,图论基本定理)每个图中,结点度数的 总和等于边数的二倍,即 deg(x) 2 E .
•
A
N
S
B
欧拉的结论 • 欧拉指出:一个线图中存在通过每边一次仅一次 回到出发点的路线的充要条件是: • 1)图是连通的,即任意两点可由图中的一些边连 接起来; • 2)与图中每一顶点相连的边必须是偶数. • 由此得出结论:七桥问题无解. 欧拉由七桥问题所引发的研究论文是图论的开 篇之作,因此称欧拉为图论之父.
xV
定理2 每个图中,度数为奇数的结点必定是偶数个.
第二节 图的顶点度和图的同构(2)
• 定理3 在任何有向图中,所有结点入度之和等于所有结 点出度之和. • 证明 因为每条有向边必对应一个入度和出度,若一个结 点具有一个入度或出度,则必关联一条有向边,因此,有向 图中各结点的入度之和等于边数,各结点出度之和也等 于边数. • 定义 度序列,若V(G)={v1,v2,…,vp},称非负整数序列 (d(v1),d(v2),…,d(vp))为图G的度序列.
(图论)图的基本概念--第一章
证明 设G=<V,E>为任意一图,令
V1={v|v∈V∧d(v)为奇数} V2={v|v∈V∧d(v)为偶数} 则V1∪V2=V,V1∩V2= ,由握手定理可知
2m d (v) d (v) d (v)
vV
vV1
vV2
由于2m和 d (v) ,所以 d (v) 为偶数,
举例
NG(v1) = {v2,v5} NG(v1) = {v1,v2,v5} IG(v1) = {e1,e2,e3}
Г+D(d ) = {c} Г-D(d ) = {a,c} ND(d ) = {a,c} ND(d ) = {a,c,d}
简单图与多重图
定义1.3 在无向图中,关联一对顶点的无向边如果多于1条,则 称这些边为平行边,平行边的条数称为重数。 在有向图中,关联一对顶点的有向边如果多于1条,并且这些 边的始点和终点相同(也就是它们的方向相同),则称这些边 为平行边。 含平行边的图称为多重图。 既不含平行边也不含环的图称为简单图。
无向图和有向图
定义1 一个无向图是一个有序的二元组<V,E>,记作G,其中 (1)V≠称为顶点集,其元素称为顶点或结点。 (2)E称为边集,它是无序积V&V的多重子集,其元素称为无向 边,简称边。
定义2 一个有向图是一个有序的二元组<V,E>,记作D,其中 (1)V≠称为顶点集,其元素称为顶点或结点。 (2)E为边集,它是笛卡儿积V×V的多重子集,其元素称为有向 边,简称边。
vV2
vV1
但因V1中顶点度数为奇数, 所以|V1|必为偶数。
问题研究
问题:在一个部门的25个人中间,由于意见不同,是否可能每 个人恰好与其他5个人意见一致?
图论第一章课后习题解答
bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。
图论-图的基本概念
证明:按每个顶点的度来计数边,每条边恰数了两次。 推论 1.1.1 任何图中,奇度顶点的个数总是偶数(包括 0)。 4. 子图
子图(subgraph):如果 V (H ) ⊆ V (G) 且 E(H ) ⊆ E(G) ,则称图 H 是 G 的子图,记为 H ⊆G。
生成子图(spanning subgraph): 若 H 是 G 的子图且V (H ) = V (G) ,则称 H 是 G 的生成子图。
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。
图论讲义第1章-图的概念
图论与网络流理论(Graph Theory and Network Flow Theory)高随祥中科院研究生院专业基础课学时/学分:60/3本课程适合基础数学、应用数学、计算数学、运筹学与控制论、概率论与数理统计各专业的硕士学位研究生作为专业基础课,也可供物理学、化学、天文学、地学、生物科学、计算机科学与技术、计算机软件、管理科学与工程以及通信、信号等学科专业的硕士研究生选修。
主要讲授图论与网络流理论的基本概念、方法和定理,介绍该领域重要的问题以及典型的算法,展示图论与网络流模型及方法的广泛应用。
为学习者将来从事有关方面的理论研究打下基础,也为进行应用性研究提供一种有力的工具。
内容提要第一章 图的基本概念图的基本概念;二部图及其性质;图的同构;关联矩阵与邻接矩阵。
路、圈与连通图;最短路问题。
树及其基本性质;生成树;最小生成树。
第二章 图的连通性割点、割边和块;边连通与点连通;连通度;Whitney定理;可靠通信网络的设计。
第三章 匹配问题匹配与最大匹配;完美匹配;二部图的最大匹配;指派问题与最大权匹配。
第四章 欧拉图与哈密尔顿图欧拉图;中国邮递员问题;哈密尔顿图;旅行商问题。
第五章 支配集、独立集、覆盖集与团支配集、点独立集、点覆盖集、边覆盖集与团的概念及其求法。
第六章图的着色问题点着色;边着色;平面图;四色猜想;色多项式;色数的应用。
第七章网络流理论有向图;网络与网络流的基本概念;最大流最小割定理;求最大流的标号算法;最小费用流问题;最小费用最大流;网络流理论的应用。
主要参考书[1] J.A. Bondy and U.S. Murty, Graph theory with applications, 1976, 有中译本(吴望名等译)。
[2] B.Bollobas, Modern graph theory (现代图论),科学出版社,2001。
[3] 蒋长浩,图论与网络流,中国林业出版社,2001。
图论
例:有甲、乙、丙、丁、戊五个球队,各队之间比赛 有甲、 戊五个球队, 情况如表: 情况如表: 甲
乙 胜 × 负
丙 负 胜 × 负
丁 胜
戊 胜
甲 乙 丙 丁 戊
× 负 胜 负 负
胜 × 胜 负 ×
点:球队; 球队; 连线:两个球队之间比赛过,如甲胜乙, 连线:两个球队之间比赛过,如甲胜乙,用 v1 v2表示。 表示。
三 、一些特殊图类
1.平凡图 1.平凡图 2.零图 2.零图 3. 连通图 给定图G=(V,E),任何两点间至少有一条链,则 称G是连通图,否则为不连通图。 若G是不连通的,它的每个连通部分称为G的连通分 图。 节点数n=1,边数m=0的图。
边数m=0的图。
4.树 4.树 无圈连通图。 5. 完备图 无向图的完备图:任何两点之间有一条边; 有向图的完备图:任何两点u与v之间有两条有向 边(u,v)及(v,u)。 基本图:把有向图的每条边除去方向得到的无 向图。 6.二分图 6.二分图 若V(G)=X ∪ Y,X ∩ Y= Ф,X 、Y中的任两顶 点不相邻,则G称为二分图,记为(S,X,Y)。
无向图: 无向图:由点及边构成 ,边[vi,vj]
有向图:由点及弧构成, 有向图:由点及弧构成,弧( vi,vj)
中点集V的顶点个数 图G中点集 的顶点个数,记为 (G) ,边数记为 中点集 的顶点个数,记为p q(G),简记 ,q。 简记p, 。 简记
ppt2 完全图、偶图与补图 度序列
证明 : 设G是k-正则图,若k为奇数,则由推论1知 正则图G的点数必为偶数
例4 Δ与δ是简单图G的最大度与最小度,求证: 2m
n
11
H G 1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
证明:由握手定理有:
n d (v) 2m n vV (G)
1 (d2 1, d3 1, , dd11 1, dd12 , , dn )
是图序列。
15
H G 1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
例5 (6, 5, 4, 3, 2, 2, 2) 是否为图序列?如果是, 作出对应的一个简单图。
解: 1 (4, 3, 2,1,1,1)
定理: 一个满足d2=dn-1的图序列 (d1, d2 ,
, dn )
是唯一图序列的充分必要条件是下列条件之一满足:
(1), d1 dn, dn 1, n 1, n 2
(2), d1 dn 2, n 5 (3), d1 d2 dn 1
(4), d1 d2 dn 2, d1 n 1,n 2
图1
图2
图1与图2均是偶图,图2是K2,3
4
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
偶图是一种常见数学模型。
例1 学校有6位教师将开设6门课程。六位教师的代号是 xi(i=1,2,3,4,5,6),六门课程代号是yi (i=1,2,3,4,5,6)。已知, 教师x1能够胜任课程y2和y3;教师x2能够胜任课程y4和y5; 教师x3能够胜任课程y2;教师x4能够胜任课程y6和y3; 教师x5能够胜任课程y1和y6;教师x6能够胜任课程y5和y6。 请画出老师和课程之间的状态图。
1图的基本概念
(或若边<vi,vj>∈E,当且仅当 边<f(vi),f(vj)>∈E’),则称G与
G’同构,记作G≌G’. (同构a图 要保持b 边的“1 关联”4关系)
例如:右边所示的两个图: c
d
3
2
G=<V,E> G’=<V’,E’>
构造映射f:VaV1’ b 2 c 3 d 4
a 1 b 2 c 3 d 4
degi(a)=2 degi(b)=2 degi(c)=1 degi(d)=1
dego(a)=2 dego(b)=3 dego(c)=1 dego(d)=0
定理8-1.3 G=<V,E>是有向图, 则G的所有结点的出度之和
等于入度之和.
证明: 因为图中每条边对应一个出度和一个入度. 所以所
有结点的出度之和与所有结点的入度之和都等于有向边
如果可能,请试画出它的图. 哪些可能不是简单图?
a) (1,2,3,4,5)
b) (2,2,2,2,2)
c) (1,2,3,2,4)
2.已知无向简单图G中,有10条边,4个3度结点,其余结点的
度均小于或等于2,问G中至少有多少个结点?为什么?
1. a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4)
足够的。例如“目”的图形就是满足条件的例子。
七. 有向图结点的出度和入度:(in degree out degree)
G=<V,E>是有向图,v∈V v的出度: 从结点v射出的边数.
记作deg+(v) 或 dego(v)
a
b
c d
v的入度: 射入结点v的边数. 记作deg-(v) 或 degi(v)
图学基础教程习题集答案
图学基础教程习题集答案第一章:图学基本概念1. 图的定义是什么?答案:图是由顶点(或称为节点)和边组成的数学结构,其中边是顶点之间的连接。
2. 什么是有向图?答案:有向图是一种图,其中的边具有方向性,从一个顶点指向另一个顶点。
第二章:图的表示方法1. 邻接矩阵的优缺点是什么?优点:易于实现,可以快速判断任意两个顶点之间是否存在边。
缺点:空间复杂度高,对于稀疏图来说效率较低。
2. 邻接表的优缺点是什么?优点:空间效率高,对于稀疏图特别适用。
缺点:需要额外的时间来检查两个顶点之间是否存在边。
第三章:图的遍历1. 深度优先搜索(DFS)的基本思想是什么?答案:从图中的一个顶点开始,沿着边尽可能深地搜索,直到无法继续,然后回溯到上一个顶点,继续搜索其他路径。
2. 广度优先搜索(BFS)的基本思想是什么?答案:从图中的一个顶点开始,逐层遍历所有可达的顶点,直到所有顶点都被访问过。
第四章:最小生成树1. 最小生成树问题的定义是什么?答案:在无向图中,最小生成树是一棵连接所有顶点的树,且边的总权重最小。
2. Kruskal算法的基本步骤是什么?答案:Kruskal算法通过按权重递增的顺序选择边,确保选择的边不会形成环,直到所有顶点都被连接。
第五章:最短路径问题1. Dijkstra算法的工作原理是什么?答案:Dijkstra算法通过维护一个优先队列,不断地选择距离起点最近的顶点,并更新其邻接顶点的距离。
2. Bellman-Ford算法与Dijkstra算法的主要区别是什么?答案:Bellman-Ford算法可以处理带有负权重边的图,而Dijkstra算法不能。
第六章:图的着色1. 图的着色问题的定义是什么?答案:图的着色问题是指给图中的每个顶点分配一种颜色,使得相邻的顶点颜色不同。
2. 贪心算法在图的着色问题中的应用是什么?答案:贪心算法在图的着色问题中,从顶点集合中选择一个顶点,为其分配一种颜色,然后移动到下一个顶点,并为其分配一种与相邻顶点不同的颜色。
图论
《图论》程序设计目录第一章图的基本概念 2一、图的的定义 2二、图的存储结构 3 第二章图的遍历 5一、深度优先搜索 6二、广度优先搜索8 例、子图划分12 第二章图的生成树14 一、基本概念14 排列方案15 二、图的最小生成树(prim算法) 16 例、机器蛇18 第三章、最短路问题20一、计算单源最短路问题(Dijkstra算法)20二、任意两点间的最短路(floyd算法)23三、最短路径的应用25 例、颜色集28 例计算DAG中的最长路30 例、计算带权有向图的中心31 第四章应用举例32 例、位图32 【例题】士兵排队34 简化图36如果数据元素集合D 中的各元素之间存在任意的前后件关系R ,则此数据结构G=(D ,R )称为图。
奥林匹克信息学联赛的许多试题,需要用图来描述数据元素间的联系,需要用图的经典算法来解题用结点代表城市,每条边代表连接两个城市间的公路,边长的权表示公路长度。
这种公路网的表现形式就是属于图的数据结构。
第一章 图的基本概念一、图的的定义如果数据元素集合D 中的各元素之间存在任意的前后件关系R ,则此数据结构G=(D ,R )称为图。
如果将数据元素抽象为结点,元素之间的前后件关系用边表示,则图亦可以表示为G=(V ,E ),其中V 是结点的有穷(非空)集合,E 为边的集合。
如果元素a 是元素b 的前件,这种前后件关系对应的边用(a ,b)表示,即(a ,b)∈E 。
1、无向图和有向图⑴无向图:在图G=(V ,E )中,如果对于任意的a ,b∈V,当(a ,b)∈E 时,必有(b ,a )∈E(即关系R 对称),对称此图为无向图。
在一无向图中用不带箭头的边连接两个有关联的结点。
在具有n 个结点的无向图中,边的最大数目为n*(n+1)/2。
而边数达到最大值的图称为无向完全图。
在无向图中一个结点相连的边数称为该结点的度,无向完全图中,每一个顶点的度为n-1。
⑵有向图:如果对于任意的a ,b∈V,当(a ,b)∈E 时 ,(b ,a)∈E 未必成立,则称此图为有向图。
第一章 图案概述
第四节
图案的基本概念 图案的起源 图案的风格和种类 图案的基本特征与原理
第一节 图案的基本概念
图案,顾名思义即图形的设计方案。按照我们通常所 理解的,图案的概念有着广义与狭义之分,广义的概念诸如 我们日常所使用的器物、所穿着的衣物上面带有图形的图样 都称之为图案,这些图案与我们生活息息相关,而狭义上图 案的概念则是指具有装饰意味的花纹和图形。《辞海》艺术 分册对“图案”条目给出的解释是:“广义指对某种器物的 造型结构、色彩、纹饰进行工艺处理而事先设计的施工方案, 制成图样,通称图案。有的器物(如某些木器家具等)除了 造型结构,别无装饰纹样,亦属图案范畴(或称立体图案)。 狭义则指器物上的装饰纹样和色彩而言。”图案教育家陈之 佛先生在1928年曾将图案的概念总结为:图案是构想图,它 不仅是平面的、立体的、创造性的计划,也是设计实现的阶 段。
第四节 图案的基本特征与原理
实用性与艺术性、装饰性和寓意性、系统性 和多样性、工艺性。
图案在其纹样变化形式上,分为具象图案与 抽象图案。具象图案是指具有较为完整的客观对象 特征的图案,比如花草树木等自然物象。自然物象 可以说是艺术创作灵感的重要来源,从某个角度来 说,图案纹样的造型是将自然物象处理成造型形象, 通过不同的组织形式与变化手段把现实生活中的各 种物象的形象加以设计成适应于艺术需要的图案。 具象图案,是运用自然物象的形态特征进行艺术再 创造,将自然物象艺术化的处理成艺术形象,但绝 不是对于自然物象的再现,而是力图使现实中的自 然形象变得更加美观,更加典型。
图案的概念虽然有着广义与狭义之说,但在实际生活 之中,并不会刻意去区分哪些东西用广义概念的图案,哪些 东西用狭义概念的图案,在实际的应用之中,图案更多的是 通过其形态颜色的变化,使生活中的物质产品变得装饰感更 强,更加具有美感。
图论第一章 图的基本概念
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
图论及其应用
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
第一章 图的基本概念
本次课主要内容
图的概念与图论模型
(一)、图论课程简介
(二)、图的定义与图论模型 (三)、图的同构 (四)、完全图、偶图与补图 (五)、顶点的度与图的度序列
0.5
00
1 0.8
0.6 0.4 x 0.2
(四)、完全图、偶图与补图
1、每两个不同的顶点之间都有一条边相连的简单图称为 完全图 .
在同构意义下,n个顶点的完全图只有一个,记为 Kn
K2
K3
K5
容易求出: m(Kn )
1 2
n(n
1)
20
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
定理:若n阶图G是自补图( G G ),则有:
n 0,1(mod 4)
证明:n阶图G是自补图,则有:
22
H G 1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
m(G)
m(G)
m(Kn )
1 2
n(n
1)
所以:
m(G) 1 n(n 1) 4
由于n是正整数,所以:n 0,1(mod 4)
推论2 正则图的阶数和度数不同时为奇数 。
什么是图的基本概念和特征
什么是图的基本概念和特征图是一种数学结构,用于表示多个对象之间的关系。
图由节点(vertex)和边(edge)组成,节点表示对象,边表示节点之间的关系。
图的基本概念和特征包括节点的度、路径、连通性、连通分量等。
1. 节点的度:节点的度是指与该节点相连的边的数量。
对于有向图来说,节点的度分为入度和出度,分别表示指向该节点的边的数量和由该节点指出的边的数量。
节点的度可以用来描述节点的重要性和连接的紧密程度。
2. 路径:路径是指由边连接的一系列节点的序列。
路径的长度是指路径中包含的边的数量。
最短路径是指连接两个节点之间具有最少边数的路径。
路径可以用来描述节点之间的关系和节点之间的可达性。
3. 连通性:图的连通性表示图中任意两个节点之间是否存在路径。
如果图中任意两个节点之间都存在路径,那么图被称为连通图;如果存在某些节点之间不存在路径,那么图被称为非连通图。
连通性可以用来描述图的整体连接情况。
4. 连通分量:连通分量是指图中的最大连通子图。
一个连通分量包含一组相互可达的节点,并且在该连通分量内部的任意两个节点之间都存在路径,而与该连通分量外的节点之间不存在路径。
图可以由多个连通分量组成。
图有以下几种常见的特征:1. 有向图和无向图:根据边的有向性,图可以分为有向图和无向图。
在无向图中,边没有方向,表示节点之间的双向关系;而在有向图中,边有方向,表示节点之间的单向关系。
2. 权重:图的边可以带有权重,用来表示节点之间的距离、成本等。
带权重的图被称为带权图,而不带权重的图被称为无权图。
3. 稀疏图和稠密图:如果图中的边数接近节点数的平方,那么图被称为稠密图;如果图中的边数相对较少,那么图被称为稀疏图。
稠密图和稀疏图在算法设计和空间复杂度上有不同的考虑。
4. 循环和非循环图:如果图中存在一个节点可以通过一系列边回到自身,那么图被称为循环图;如果图中不存在这样的节点,那么图被称为非循环图(也称为无环图)。
5. 连通图和非连通图:根据连通性,图可以分为连通图和非连通图。
电子科技大学《图论及其应用》复习总结--第一章图的基本概念
电⼦科技⼤学《图论及其应⽤》复习总结--第⼀章图的基本概念⼀、重要概念图、简单图、图的同构、度序列与图序列、偶图、补图与⾃补图、两个图的联图、两个图的积图1.1 图⼀个图G定义为⼀个有序对(V, E),记为G = (V, E),其中(1)V是⼀个有限⾮空集合,称为顶点集或边集,其元素称为顶点或点;(2)E是由V中的点组成的⽆序点对构成的集合,称为边集,其元素称为边,且同⼀点对在E中可出现多次。
注:图G的顶点数(或阶数)和边数可分别⽤符号n(G) 和m(G)表⽰。
连接两个相同顶点的边的条数,叫做边的重数。
重数⼤于1的边称为重边。
端点重合为⼀点的边称为环。
1.2 简单图⽆环⽆重边的图称为简单图。
(除此之外全部都是复合图)注: 1.顶点集和边集都有限的图称为有限图。
只有⼀个顶点⽽⽆边的图称为平凡图。
其他所有的图都称为⾮平凡图。
边集为空的图称为空图。
2.n阶图:顶点数为n的图,称为n阶图。
3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图1.3 邻接与关联:顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。
注:1.规定⼀个顶点与⾃⾝是邻接的。
2.顶点u与边e相关联:顶点u是边e的端点。
3.边e1与边e2相邻接:边e1与边e2有公共端点。
1.4 图的同构设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。
称G1与G2同构,记为:G1≌G2注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。
2、⾃⼰空间的理解:通过空间的旋转折叠可以进⾏形态转换1.5 完全图、偶图1、在图论中,完全图是⼀个简单图,且任意⼀个顶点都与其它每个顶点有且只有⼀条边相连接。
图论 第1章 图的基本概念
G
G[{e1 , e4 , e5 , e6 }]
G − {e5 , e7 }
G + {e8 }
图G1,G2的关系
设 G1 ⊆ G, G2 ⊆ G. 若 V (G1 ) V (G2 ) = φ x-disjoint) 若 E (G1 ) E (G2 ) = φ ,则称G1和G2是边不交的 (edge-disjoint) G1和G2的并, G1 G2 其中 V (G1 G2 ) = V (G1 ) V (G2 )
连通性
设 u, v 是图G的两个顶点,若G中存在一条 (u, v)
≡ v表示顶点 u 和v是连通的。 如果图G中每对不同的顶点 u , v都有一条 (u , v)
以 u
道路,则称顶点 u和 v是连通的(connected)。
道路,则称图G是连通的。
连通图
连通图
图G的每个连通子图称为G的连通分支,简
证明:G中含奇数个 1 (n − 1) 度点。 2 | Vo | 为 证明 V (G ) = Vo Ve 由推论1.3.2知, 偶数。因为 n ≡ 1(mod 4) ,所以n为奇数个。 因此,| Ve | 为奇数个。 n ≡ 1(mod 4) , 1 2 ( n − 1) 为偶数。 1 1 d ( x ) = n − 1 − d ( x ) ≠ (n − 1) 设 x ∈Ve。若 d ( x) ≠ 2 (n − 1),则 且 2 为偶数。由 G ≅ G c ,存在y,使得 d ( y) = d ( x) 为偶数。即 y ∈Ve 且 d ( y) ≠ 1 (n − 1) 。Ve 中度不为 2 1 (n − 1) 的点是成对的出现的。 2
G
G[{v1 , v2 , v3 }]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1
3 5
v2
4 2
v3 5 3 1 邮局 v0
4 2
1
v4
v5
6
v6
18
• 问题分析: (1)如果道路正好是一个Euler图,则容易求 解,用Fleury算法求出一个Euler回路即可; (2)如果不是Euler图,则加上如干重复边, 使之变成Euler图,然后求Euler回路。
现在问题的关键:如何加重复边! 中国邮路问题是Euler回路的近似求解。
4
(3) B=A2。
a11 a12 … a21 a22 … …… an1 an2 … a1n a2n ann a11 a12 … a21 a22 … …… an1 an2 … a1n a2n ann
B=A2=
×
=(bij)n×n bij表示vi两步到达vj的路径数目
5
(4) 有向图中:C=AAT。
11Βιβλιοθήκη • 另一方面,即使两个图具有相同的阶和相同 的变数,也不能确保它们同构。
• 定理:图G和H是同构图,则它们对应的顶点 有相同的度。 • 从以上定理可知,若两图同构,则它们具有相 同的度序列。 • 实际上,即便具有相同的度序列,也只是两个 图同构的必要条件,而非充分条件。
12
举例:判断下面两图是否同构。
C= (cij)=
a11 a12 … a21 a22 … …… an1 an2 …
a1n a2n
ann
×
a11 a21 … a12 a22 … …… a1n a2n …
an1 an2
ann
cij=∑αik αjk cij表示以vi,vj为始点的终点数目。
vi
vj
vk
6
(5) 有向图中:D=ATA。
9
• 判别定理:图G1 ,G2同构的充要条件是:存 在置换矩阵P,使得:A1=PA2P。 其中A1,A2分别是G1 ,G2的邻接矩阵。 如何判断两图同构是图论中一个困难问题, 下面我们来探讨一些判断同构的一些策略。
10
• 根据同构的定义可知,如果两个图G和H是同 构的,则从G的顶点集到H的顶点集必须存在 一个一一对应,这意味着G的顶点和H的顶点 必能够完全匹配,所以G和H有相同的阶,因 此讨论两个图是否相同,我们先考虑他们的阶 是否相同。 • 同理,根据定义,边也存在一一对应,因此, 若两个图同构,则必有相同的边数。 • 因此,若两个图的阶或边数不同,则它们一定 不同构。
14
2
a e5 e4 3 e7 d k1
b
k2
k3 c k6
k4 k7
k5
e
课堂练习答案
解:同构。 对应关系 顶点对应:1-a;2-b;3-e;4-d;5-c; 边对应: e1-k1;e2-k2;e3-k3;e4-k4; E5-k5;e6-k6;e7-k7;
15
§5 中国邮路问题
16
§5 中国邮路问题
a11 a21 … a12 a22 … …… a1n a2n … an1 an2
ann
D= (cij)=
×
a11 a12 … a21 a22 … …… an1 an2 …
a1n a2n
ann
dij=∑αki αkj dij表示以vi,vj为终点的始点数目。
vi
vk
vj
7
•图的同构
• 定义:若两个图顶点数相同且相对应,对应顶 点之间的边也相对应,则称两个图同构。 G1=(V1,E1), G2=(V2,E2),G1<->G2 若u1,v1∈V1, u2,v2∈V2,u1 <->u2, v1 <->v2,则(u1,v1) ∈E1<-> (u2,v2) ∈E2。
P=
A=
PA =
a11 a12 a31 a32 a21 a22
a13 a33 a23
a11 a13 (PA)P = a31 a33 a21 a23
a12 a32 a22
P就是一个置换矩阵
2
• 邻接矩阵中图的性质:
v1 v3 0 1 1 0
无向图的邻接 矩阵是对称的!
1 0 1 1 1 1 0 0 0 1 0 0
§4 图的矩阵表示法
• 定义:对于图G=(V,E),构造一个矩阵 A = ( aij ) n×n 其中n=|V|;
aij =
1 0
(vi,vj)∈E; 否则;
称A是图G的邻接矩阵。
1
• 置换矩阵:相当于将单位矩阵中相应的行与 行,或者列与列互换的矩阵。
1 0 0 0 0 1 0 1 0 a11 a12 a21 a22 a31 a32 a13 a23 a33
A=
v2
v4
(1)A=(αij)n×n中,第i行或第i列中非0元素 的个数等于顶点vi的度。(无向图)
3
v1
v3 A= v4 0 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0
v2
竖入横出
(2) A=(αij)n×n中,第i列中非0元素的个数等于 顶点vi的入度,第i行中非0元素的个数等于顶点 vi的出度。(有向图)
v1 v3 v4 va
v2
vb
vc
vd
8
v1
v1<->va
v2<->vb
va
v2
v3
v4
图G1
1 A1= 0 1 1 1 2 1 0 1 1 3 1 1 0 1 4 1 1 1 0
v3<->vc
v4<->vd
vb
vc
图G2
vd
a A2= 0 1 1 1
b 1 0 1 1
c 1 1 0 1
d 1 1 1 0
e 1 e1
2 e2 3 e3 e6 图1 e4 e5 4 e7 5 b k3 d 图2
6
a k2
k1 k5 k6 k4 c
k7
f
• 以上2个图的度序列均为(4,3,3,2,1,1),事实 上它们并不同构。为什么?
13
课堂练习
1、判断下面两图是否同构,若同构写出对 应关系,若不同构则写出理由。
1
e1 e2 e3 4 e6 5 图1 图2
中国邮路问题(Chinese postman problem),
是我国数学家管梅谷于1960年首次提出的。 • 问题描述: 设邮递员从邮局出发,遍历他所管辖的每 一条街道,将信件送到后返回邮局,求所走 的路径最短。
17
• 中国邮路问题的图论模型为: 设G=(V,E)是连通图,而且对于所有的 e∈E都赋以权c(e)≥0,求从点v0∈V出发, 通过所有边至少一次最后返回v0的回路C, c ( e) 使得 达到最小。
19
E*是重复边 集合
• 定理:设E* E是使W(E*)= c(e) 达到最小 的重复边集合,当且仅当对于Ga图的任一回 路 C,恒有W( C∩E*)≤W(E( ) -E*) C
eE*
v1 3 v3 4