肌电图
肌电图的工作原理
肌电图的工作原理
肌电图(Electromyogram,EMG)是一种测量肌肉电活动的方法,可以记录到肌肉收缩时产生的电信号。
其工作原理包括以下几个步骤:
1. 电信号的产生:当肌肉收缩时,肌肉中的神经元会通过神经冲动传递电信号,刺激肌纤维收缩。
这些电信号可以在肌肉表面产生微弱的电流。
2. 电极的放置:将电极放置在测量区域的肌肉表面。
一般情况下,常用的电极包括表面电极和穿刺电极。
表面电极是通过粘贴在皮肤表面,可以捕捉到较浅层的肌电信号。
穿刺电极则需要将电极穿刺进入肌肉内部,可以记录到更深层次的肌电信号。
3. 信号放大和滤波:由于肌电信号非常微弱,需要经过放大器进行放大处理。
同时,由于肌电信号可能受到其他干扰信号的影响,如心电信号和肌肉活动产生的噪音等,需要进行滤波处理,以保留有效的肌电信号。
4. 信号采集和分析:经过放大和滤波处理后,肌电信号可以被采集到计算机或其他设备中。
通过对信号进行进一步的分析,如幅值、频率和时域等参数的计算,可以得到有关肌肉活动的详细信息。
总之,肌电图通过测量肌肉收缩时产生的微弱电信号,并经过放大、滤波和分析等处理步骤,实现了对肌肉活动的监测和分析。
这种技术在医学领域有广泛的应
用,用于诊断神经肌肉疾病、评估肌肉功能和运动控制等。
肌电图
4、颈椎病、胸腰椎病(如腰椎间盘突出症、肿物 压迫等)导致的神经损害。 5、重复电刺激:用于神经肌肉接头疾病。主要见 于重症肌无力、肌无力综合症、婴儿肌无力等疾 病。 6、各种肌肉疾病的诊断:如肌营养不良、多发性 肌炎、周期性瘫痪等 7、对脊髓和大脑的病变亦有辅助诊断价值。
–谢谢!
肌电图的检查适应症:
1、各种原因引起周围神经疾病,出现手足无力、 麻木、疼痛及其它感觉异常,尤其是双侧对称 性出现者。如糖尿病周围神经病、格林-巴利 综合症及腕管、肘管综合症等。 2、各种外伤导致的神经损伤,判断神经损伤的 程度,以及是否需要手术治疗。 3、面神经瘫痪的诊断以及判断可能恢复的快慢, 是否会留下后遗症,及时指导治疗。协助诊断 其它脑神经疾病如三叉神经痛等。
肌电图检查仪的图片-EMG
肌电图的发展史 肌电图
肌电图(EMG)目前尚是一种新的诊断技术, 二十世纪八十年代起源于欧美,九十年代引进国 内,陆续在北京、上海等大医院开展。肌电图检 查的原理是它将神经肌肉兴奋时发生的生物电变 化引导出,加以放大和记录,根据电位变化的波 形、振幅、传导速度等数据,分析判断神经、肌 肉系统处于何种状态,从而有助于神经系统疾病 和肌肉疾病诊断的检查方法。
肌电图检查的内容
检查的内容包括运动神经传导速度(MCV) 和感觉神经传导速度(SCV),测定参数包括 MCV、末端潜伏期(DML)、运动神经动作电位波 幅、SCV、感觉神经动作电位波幅。 我院于2011年底引进ZET-100型数字心脑肌 电图诊断仪,填补了周边医院没有此项设备的空 白,该机型功能强大,性能可靠,目前已经开展 肌电图检查数月来,为临床提供了不少的诊断依 据。
肌电图检查的临床适应症
Байду номын сангаас
如皋市新姚医院 陈 娟 2012-2
肌电图
肌电图(EMG)基础附属医院神经科电生理第一部分概况一、概述(一)EMG的概念EMG是研究肌肉静息电位和随意收缩及周围神经受刺激时各种电特性的一门科学。
狭义EMG:指同心圆针极肌电图,既常规肌电图。
广义EMG:1、神经传导速(NCV: MNCV、SNCV)2、重频电刺激(RNA)3、反射(瞬目反射\皮肤交感反SSR)4、单纤维肌电图(FEMG)5、巨肌电图、6、运动单位计数。
7、扫描肌电图(二)国外动态表面肌电图及临床应用优点:无创无痛没有感染的危险。
缺点:是不能记录单个MUAP1、运动肌电图学(1)步态研究(2)人体工程(3)康复研究(4)运动医学2、多导肌电图(1)评价肌肉的传导速度(2)终板区定位,为活检提供依据。
3、疲劳研究(三)EMG在临床上的应用EMG是神经系统检查的延伸。
是组织化学、生物化学及基因技术等检测不能取代的临床手段。
(四)EMG适应症:前角细胞以下包括前角细胞病变二、EMG的检测的临床意义1、常规EMG:反映部分运动单位的大小形态等变化。
鉴别神经源和肌源性损害。
排除神经肌肉接头病运动单位的概念:指由一个前角细胞及其轴突所支配的纤维,是肌肉收缩的最小单位。
MU的大小:N和M的比例是不同的Eg : 眼肌1:3 腓肠肌1:1934它与肌肉的活动精细程度有关2、神经传导速度和F波的测定感觉和运动神经传导的功能诊断和鉴别髓鞘或轴索的损害F波反映近端运动神经功能与EMG结合具有定位诊断价值3、RNS了解神经肌肉接头功能鉴别诊断突触前膜和突触后膜的病变是诊断肌无力(MG)、副肿瘤综合征(LES)的特异性手段4、FEMG主要了解神经肌肉接头(NMJ)的传导功能可鉴别神经源或肌源性损害了解运动单位(MUAP)内纤维的分布。
记录范围的直径为此300微米。
了解神经再生情况。
5、各种反射瞬目反射:三叉神经——面神经通道皮肤交感反射(SSR)第二部分常规EMGEMG检查原则、适应症和注意事项1、熟悉解剖知识及详细的神经系统检查2、掌握适应症:前角细胞以下病变3、了解禁忌症:出血倾向疾病,如血友病,血小板〈3000 、乙肝,HIV阳性用一次性针电极。
肌电图诊断课件
1
肌电图-EMG
肌电图诊断
2
肌电图-EMG
基本方法步骤:needle 针电极插入肌肉 insert
观察插针时电活动 insertional activity
肌肉放松时电活动 activity in relaxed muscle
随意收缩时电活动 activity in contracting muscle
minimal/no act.缩短:引出的电位少或无--失 神经较久甚至已纤维化的肌肉
肌电图诊断
11
异常肌电图ຫໍສະໝຸດ 肌肉放松时 电静息消失,出现自发电活动 spontaneous activity 常见异常电位有
纤颤电位 fibrillation potential 正尖波positive sharp wave (PSW) 束颤电位fasciculation potential
肌源性异常myopathy : 静息时少量纤颤 轻用力时,波幅低 最大用力时,过分干扰型
肌电图诊断
18
神经电图诊断
神经传导速度测定 运动神经 MCV 感觉神经 SCV 周围神经病变的早期
鉴别肌源性myopathy或神经源性 neuropathy 脱髓鞘/轴索损伤
肌电图诊断
19
神经电图诊断
反射检查
正尖波 positive sharp wave 一个正相电位,宽度大于10ms,幅度大 于100-200uV。 神经损伤初期纤颤电位增多,后期正尖波 增多。
肌电图诊断
14
异常肌电图
束颤电位fasciculation potential
自发的完整的运动单位电位,肌肉处于 受激状态。形态与正常相似为良性束颤, 形态参数异常即为恶性束颤,表示运动单
肌电图
肌电图检查一、定义:肌电图检查是记录神经肌肉的生物电活动,通过检查,有助于临床医师对神经肌肉疾患的进一步诊断。
检查分为2个步骤:1、测定神经传导,2、肌肉检测。
二、适应症:1、神经源性疾病2、肌源性疾病3、神经肌肉接头疾病4、锥体系及锥体外系疾病,即患者出现四肢乏力麻木、肌肉萎缩、肌肉疼痛、肌无力、外伤后引起的神经损伤、腰椎病、颈椎病等等。
三、检查前注意事项:1、禁忌症:①安装心脏起搏器、金属性心导管者。
②开放性骨折或伤口未愈者,外固定支架者。
③血小板明显减少等出血倾向者。
④生命体征不稳定及无法合作者。
2、检查前一天请沐浴。
检查当天请穿宽松的衣服,勿佩戴饰品,无需空腹。
检查时保持肢体温暖。
3、具体检查时间、地点及要求按检查单条码提示执行,过期请重新预约。
如有疑难病例,会延长检查时间,请排在后面的预约者谅解并稍后。
4、凡是急慢性传染病者(包括乙肝、艾滋病等)必须事先告知检查医师。
5、肌电图检查过程复杂,花费时间长,需做好准备,耐心配合。
6、检查前收费为预收款,实际费用以检查结束为准,多退少补。
7、外伤后需行肌电图时,要符合下列条件:①有骨折者,须先行积极治疗后拆除石膏外固定。
②有伤口者,须缝合拆线后,伤口生长好,无感染倾向。
③有脱位,扭挫伤,但表皮完整无破损者。
以上情况都需要自受伤日起2-3周后方可进行检查。
四、检查过程:1、检查过程中手机请关机。
陪同家属在检查室外等候,减少干扰。
2、肌电图检查中,因电刺激和针会引起病人的不适感或稍有疼痛,特别是针刺肌肉行肌电图检查时,需被检者尽量配合,以便检查正常进行。
五、检查后:检查结束后门诊病人1小时取报告,疑难及特殊病例除外。
住院病人不用等候报告,会发送到病房。
肌电图
多相电位
单纯相、混合相、干扰相
重收缩时肌电图
重收缩时肌电图波形的异常改变是运动单位电 位数量和放电频率的改变。 1、完全无运动单位电位:大力收缩时,不出 现任何运动单位电位,表示运动功能完全丧失。 见于严重的神经肌肉疾患、神经失用及癔症性 瘫痪。 2、运动单位电位数量减少:表现为单纯相或 少量运动单位电位出现。 3、病理干扰相:见于肌病患者。严重受累肌 肉。可无病理干扰相。
异常插入电位
(1)插入电位延长是肌肉去神经支配后肌膜 兴奋行异常增高的结果。出现强直样电位 与肌强直电位为插入电位延长改变。见于 神经源性疾病,也可见于多发性肌炎、皮 肌炎。 (2) 插入电位减弱消失,见于肌纤维严重萎 缩,被结缔组织或脂肪组织所替代。
强直样电位与肌强直电位
1、强直样电位:针极插入后继发的一系列 高频电位。特点:突然出现,突然消失, 波幅和频率通常没有变化,扬声器上可听 到“咕咕” 样蛙鸣声。 2、肌强直电位:插入电位延长的一种特殊 形式,特点:波幅和频率递增递减,扬声 器上可听到俯冲轰炸机样特殊音响。
神经传导速度检测
3、时程(D):从电位开始到回到基线的 时间,以毫秒表示。反映神经纤维兴奋的 同步性。D延长,提示神经纤维脱髓鞘传导 扩散可能性。 4、传导速度:单位时间内冲动传导的距离 (m/s),综合反映神经传导状态。
神经传导速度检测
1、运动神经传导(MNCV) 运动神经传导速度(m/s)=近端、远端刺激 点间的距离(mm)/两点间潜伏期差(ms)
2、感觉神经传导(SNCV) 感觉神经传导速度(m/s)=刺激与记录点的 距离(mm)/潜伏期(ms)
肌电图
肌电图测量时可用电极大体有两类:一是皮肤表面电极,它是置于皮肤表面用以记录整块肌肉的电活动,以 此来记录神经传导速度、脊髓的反射、肌肉的不自主运动等;二是同轴单心或双心针电极,它是插入肌腹用以检 测运动单位电位。医学上常用针电极,插入受检的肌肉会引起疼痛,因此在测量食品质地时不可滥用。在相同的 条件下,使用电极面积小者比面积大者记录的电位更大。因此,在食品质地分析时,使用较多的是皮肤表面电极。 它的优点是不引起疼痛,也常在测定神经传导速度时用于记录诱发的EMG反应。表面电极通常为两个小圆盘(直径 约8mm)或长方形(12mm×6mm)的不锈钢、锡或银板构成,安放在被检测EMG的肌肉覆盖皮肤表面,电极间距离视肌 肉大小及检测范围而定。据报道,用表面电极测定咀嚼肌EMG时,若两极问的距离在3.5~40mm,则EMG平均电压 随两极间距离的增大而增高;如两极间距达50ram,平均电压不再增高,反而有下降的趋势。在咀嚼肌EMG测量时 一般两极间距可采用15~20ram。电极应与清洁的皮肤表面良好接触,在皮肤表面可涂以导电膏或生理盐水,皮 肤电阻应小于10k12。接触不良或皮肤电阻太大时会发生干扰。表面电极不能用于引导深部肌肉的电活动,即使 对表浅的小肌肉也不能用它来引导单个运动单位电位和EMG的高频成分。
《医学肌电图学》课件
个性化治疗
普及推广
基于肌电图的个体化特征,未来将有望开 展个性化治疗和康复方案,提高治疗效果 。
随着人们对肌肉疾病的认知不断提高,肌 电图技术将得到更广泛的普及和应用。
06
案例分析
神经源性疾病的肌电图表现
神经根病变
肌电图可显示神经传导速度减慢 ,波幅降低,肌肉无收缩反应等
异常表现。
脊髓病变
肌电图可显示神经传导速度减慢或 消失,肌肉无收缩反应等异常表现 。
肌肉源性疾病的诊断
01
肌无力综合征
肌电图检查可以检测肌肉的电生 理活动,有助于诊断肌无力综合 征。
肌萎缩症
02
03
先天性肌肉疾病
通过肌电图检查,可以观察肌肉 的电生理特征,有助于诊断各种 肌萎缩症。
肌电图可以检测先天性肌肉疾病 的肌肉电生理特征,如先天性肌 营养不良症等。
周围神经损伤的诊断与预后评估
初步发展
进入20世纪后,随着电子技术和计算机技术的进步,肌电图学得 到了初步的发展和应用。
现代应用
随着科技的不断进步和应用领域的拓展,肌电图学在医学、运动科 学、康复医学等领域得到了广泛的应用和发展。
02
肌电图的原理与技术
肌电图的原理
肌电图是通过记录肌肉活动的电信号 来反映神经肌肉功能的一种检测方法 。
采集到的肌电图信号需要进行预处理和后处理,以提取有用的信息并进行准确的解 读。
肌电图的解读与报告
解读肌电图时,需要分析肌电图的波 形、幅度、频率等特征,并与正常值 进行比较,以判断肌肉或神经的功能 状态。
报告肌电图结果时,需要详细描述检 测过程、结果解释、临床意义和建议 等信息,以便医生根据报告结果进行 诊断和治疗。
特点
肌电图.
30
肌 电 图 在 神 经 内 科 疾 病 中 的 电 生 理 表 现
脊髓前角细胞疾病
神经根及神经丛病变
周围神经病
肌源性疾病
一、脊髓前角细胞疾病
1、肌电图(EMG):神经源性损害+束
颤电位
2、神经传导速度(NCV)
运动:MCV稍减慢或正常
感觉:SCV正常
二:神经根损伤
1、肌电图(EMG):神经源性损害,根据受累肌
五、肌源性疾病
1、EMG:肌源性损害和或病理性干 扰相 2、NCV:正常
注:如果合并神经炎时,MCV和或SCV减慢。
举例说明
脊髓节段 拇短展肌 小指展肌 第一骨间肌 尺侧屈腕肌 伸指总肌 C8-T1 C8-T1 C8-T1 C7-T1 C6-8
神经 正中神经 尺神经 尺神经 尺神经 桡神经
第三节
正常F波
异常F波
出现率为50% GBS病人早期
29
H反射的测定
H反射:电刺激胫后神经直接引起其支配腓肠肌的诱发电位成 为M波(直接刺激运动神经纤维的反应),此后经过一段潜 伏期又出现第二个诱发电位称H 波。其名称来自发现人 HOFFMAN,故也称HOFFMAN反射。 观察指标;H反射的潜伏期,波幅和波形等。 异常判断标准:(1)H反射潜伏期延长;(2)两侧波幅差异>60%; (3)H反射未引出。 腓肠肌H反射主要反映S1的传入和传出的神经功能
运动神经:上肢>52 m/s,下肢>42 m/s 。
感觉神经:上肢>54 m/s ,下肢>45 m/s 。
INCHING
• INCHING:分别在神经干上进行多点刺激 (微移技术/inching技术),以确定神经损 伤部位和节段
神经肌电图生理检查ppt课件
多棘慢复合波 由2个或2个以上的棘波和1个慢波组成。
多棘波 由2个或2个以上的棘波连续出现。
精神运动性变异型波 波幅50~70µV,4~7cps的带有切迹的
节律性电活动。此种带有切迹的慢波由二个负相波组成, 中间有1个正相偏转。呈短至长程出现,多见于中颞区。
14/sec及6/sec正性棘波 弓形,见于一侧或双侧后颞及临 近区域,出现在思睡期和轻睡期。
-周波/秒,C/S,CPS,Hertz (Hz)
常规走纸速度 3cm = 1秒
人类脑电活动的频率在0.5—30HZ之间。 • δ频带:0.5--3HZ • θ频带:4--7HZ • α频带: 8--13HZ • β频带: 18--30HZ • γ频带: >30HZ
脑波特征--波幅
代表一个波的高度 • 表示方法
视觉诱发电位的临床应用
• VEP最有价值之处是发现视神经的潜在病灶, 视神经病变常见于视乳头炎和球后视神经 炎,PRVEP异常率可达89%;VEP对多发性 硬化的诊断也很有意义。
运动诱发电位的临床应用
• 脑损伤后运动功能的评估及预后的判断; 协助诊断多发性硬化及运动神经元病;可 客观评价脊髓型颈椎病的运动功能和锥体 束损害程度。
-用µV 表示 -通过测定一个波的垂直距离与定标信号的高度比 较确定
如果定标信号高度是5㎜=50 µV ,那么1 ㎜ =10 µV 10 ㎜ =100 µV ㎶
• 按波幅大小分为
低波幅 <25 µV ㎶,中波幅25~75 µV ㎶,高波幅 >75 µV
肌电图的原理及临床应用
肌电图的原理及临床应用一、肌电图的原理肌电图(EMG)是一种用于记录肌肉电活动的生物电信号。
它通过电极将肌肉的电活动转化为电流信号,并将这些信号放大、滤波以便进行分析和记录。
1. 肌肉电活动产生的原理肌肉的收缩是由神经冲动引起的。
当神经冲动到达肌肉纤维时,会引发肌肉膜的电活动。
这种电活动可以通过肌电图来测量和记录。
2. 肌电图的测量方法肌电图的测量通常使用一对电极来记录肌肉的电活动。
其中,一个电极被放置在检测区域的上方,被称为采集电极;另一个电极则放置在离检测区域较远的地方,被称为参考电极。
通过测量采集电极与参考电极之间的电势差,可以获得肌肉电活动的信号。
3. 肌电图的特征参数肌电图信号可通过多种特征参数进行描述和分析。
其中常见的特征参数包括:- 平均振幅(MA):肌电图信号的均值,反映了肌肉收缩的强度。
- 零交叉数(ZC):一段时间内信号穿过零电平的次数。
用于分析信号的频率成分。
- 频率(F):信号由低到高变化的速度。
- 幅度(A):信号的振幅大小,反映了信号的强度。
二、肌电图的临床应用肌电图在医学领域中有着广泛的临床应用。
下面列举了几个主要的应用领域:1. 诊断神经肌肉疾病通过分析肌电图信号的特征参数,医生可以判断患者是否患有神经肌肉疾病。
例如,肌电图可以用于诊断肌无力、神经根病变、神经损伤等疾病。
通过分析肌电图的特征参数,可以确定神经传导是否正常以及肌肉功能是否受损。
2. 评估肌肉功能及康复训练肌电图可用于评估患者的肌肉功能以及进行康复训练的指导。
通过测量肌电图信号的特征参数,可以判断肌肉的强度和协调性。
这对于评估患者的运动功能以及设计个体化康复训练方案非常有帮助。
3. 研究运动控制和生物力学肌电图对于研究运动控制和生物力学具有重要意义。
通过分析肌电图信号,可以了解肌肉在运动过程中的激活模式和协调性。
这对于研究人体运动机制、改善运动技能等方面非常有价值。
4. 评估肌肉疲劳和调节肌电图可用于评估肌肉疲劳程度以及锻炼过程中的肌肉调节能力。
肌电图小讲座课件
第二部分 神经传导速度(NCV)
一. NCV测定 1. MCV:波幅称为
复合肌肉动作电 位(CMAPs)
CMAP波幅
2. SCV:波幅称为 感觉神经动作电 位(SNAPs)
3. 异常NCV的特点
NCV:髓鞘损害 波幅:轴索损害
4. 临床意义
诊断周围神经病 鉴别髓鞘或轴索损害 了解病变的程度
一.低频RNS正常值计算及临床意义
刺激频率: 5c/s 计算:第4,5波比第1波下降
的百分比 正常值:↓<58%或10%
以内意义 异常:波幅递减>10%~15% 意义:诊断后膜病变—MG
1. 神经源性损害 自发电位(进行性失神经或病变早期) MAUP 时 限 增 宽 、 波 幅 升 高 和 多 相 波 百
分比增高 大力收缩单纯相(运动单位丢失)
2. 肌源性损害 自发电位(肌炎活动的标志) MAUP 时 限 短 、 波 幅 降 低 和 多 相 波 百 分
比增高 大力收缩病理干扰相
第一部分 肌电图(EMG) 第二部分 神经传导速度(NCV) 第三部分 重复神经电刺激(RNS)
第一部分 肌电图(EMG)
一、基本概念 记录肌肉安静和随意收缩状态下及周围神 经受刺激时各种电生理特性的一门技术。 狭义EMG:仅指针极肌电图,即用特殊的针
插入肌肉,收集肌肉的电活动。
广义EMG:神经传导速度、重复神经电 刺激、运动电位计数、单纤维肌电图等
1. 肌肉安静状态下:自发电位(终板电位 和终板噪音)
2. 肌肉轻度自主收缩:MUAP 3. 肌肉大力收缩:募集电位
五. 异常EMG所见
1. 异常自发电位 纤颤电位:神经源性和肌源性损害 正锐波:同纤颤电位 束颤:神经源性损害 复合重复放电(CRD) 复合重复放电:见于
肌电图
神经系统疾病的辅助诊断方法肌电图检查主讲教师:狭义肌电图(electromyography, EMG)指同心圆针电极插入肌肉后,记录的肌肉安静状态下和不同程度收缩状态下的电活动。
广义EMG指记录肌肉在安静状态、随意收缩及周围神经受刺激时各种电生理特性的技术,包括神经传导速度、重复神经电刺激、单纤维肌电图及巨肌电图等。
常规EMG检查的适应证为脊髓前角细胞及其以下的病变。
一、EMG检测步骤及正常所见(一) 肌肉静息状态:包括插入电位和自发电位。
插入电位指针电极插入时引起的电活动,正常人变异较大;自发电位指终板噪音和终板电位,后者波幅较高,通常伴有疼痛,动针后疼痛消失。
(二) 肌肉小力自主收缩状态:测定运动单位动作电位(MUAPs)的时限、波幅、波形及多相波百分比,不同肌肉有其不同的正常值范围。
(三) 肌肉大力收缩状态:观察募集现象,指肌肉在大力收缩时运动单位的多少及其发放频率的快慢。
肌肉在轻收缩时只有阈值较低的I 型纤维运动单位发放,其频率为5~15Hz;在大力收缩时,原来已经发放的运动单位频率加快,同时阈值高的II型纤维参与发放,肌电图上呈密集的相互重叠的难以分辨基线的许多运动单位电位,即为干扰相。
二、异常EMG所见及其意义(一) 插入电位的改变:插入电位减少或消失见于严重的肌肉萎缩、肌肉纤维化和脂肪组织浸润以及肌纤维兴奋性降低等;插入电位增多或延长见于神经原性和肌原性损害。
(二) 异常自发电位:1、纤颤电位:是由于失神经支配肌纤维运动终板对血中乙酰胆碱的敏感性升高引起的去极化,或失神经支配的肌纤维静息电位降低所致的自动去极化产生的动作电位;其波形多为双相,起始为正相,时限1~5ms,波幅一般为20~200uV,见于神经原性损害和肌原性损害;2、正锐波:其产生机制及临床意义同纤颤电位;波形特点为双相,起始为一正相,之后为一时限较宽、波幅较低的负向波,形状似“V”字形,时限为l0~100ms;3、束颤电位:指一个或部分运动单位支配的肌纤维自发放电,见于神经原性损害。
肌电图检测
运动单位范围平均为5-10mm,其中下 肢肌肉的运动单位所占的区域最大。一 个运动单位支配的肌纤维量,少者如眼 外肌5-10条,多者如腓肠肌近2000条。 另外每一肌肉含运动单位数量不同,大 者达千个。凡精细运动的肌肉其运动单 位小,而较大力量的肌肉运动单位大。
肌电位发生原理
静息电位:正常肌纤维在静止状态下无电活 动,但由于肌细胞内外存在电位差,膜内为 负,膜外为正,该电位差称静息电位,主要 是由于细胞内钾离子外流所致。
混合相:中度用力时,参与收缩的MU数 量和频率增多,有些区域电位密集不能 分出单个电位,有些区域则可。
干扰相:最大用力时,MUP重叠,无法 分出单个电位,正常人为干扰相。
异常肌电图
一. 针插入和肌肉放松时 1. 插入电位延长:当针极插入或移动停止后,
电位并不立即消失称插入电位延长,为肌纤 维兴奋性增高所致。插入电位可有纤颤、正 相电位和正常MUP。常见于神经源性或肌肉 本身病变。
异常分析:观察潜伏期、中枢运动传导 时 间 ( CMCT)、 波 幅 、 波 形 、 刺 激 阈 值等。运动传导通路的病变可影响MEP, 主要表现为潜伏期和CMCT延长;波幅 减低;波形多相和刺激阈值增高。
临床应用
1. MS:确诊者异常率85%,主要为潜 伏期和CMCT延长,MEP可发现亚临床 病变。
2. 波形改变:多相波增多(>20%)提示异 常。
短棘多相电位:时限短(<3ms),波幅
低(<500uv),位相5-10相,见于肌源 性损害或神经再生。
群 多 相 电 位 : 时 限 > 3 ms, 波 幅 2 0 0 0 -
3000uv,位相<10相,见于前角细胞和陈 旧性神经根损害。
三. 大力收缩时
肌电图
肌电图操作规范肌电图(electromyography, EMG)是记录肌肉静息、随意收缩及周围神经受刺激时电活动的电生理诊断技术。
狭义EMG通常指常规EMG或同心针EMG,记录肌肉静息和随意收缩的各种电活动特性。
广义EMG指记录神经和肌肉病变的各种电生理诊断检查,包括常规EMG、神经传导速度(never conduction velocity, NCV)、重复神经电刺激(repetitive nerve stimulation, RNS)、F波、H反射、瞬目反射、单纤维肌电图(single fiber electromyography, SFEMG)、运动单位计数、巨肌电图等。
以下主要介绍比较常用的EMG操作规范。
【适应证】1.前角细胞及其以下(包括前角细胞、神经根、神经丛、周围神经病、神经肌肉接头和肌肉)病变的诊断和鉴别诊断。
2.肌肉内注射肉毒毒素的有效部位选择(部分病人)。
3.肌肉活检合适部位的选择。
【禁忌证】1.血液系统疾病:有出血倾向、血友病及血小板<3万/mm3者;2.乙型肝炎患者,或使用一次性针电极;3.爱滋病患者或HIV(+)者,或使用一次性针电极;4.CJD患者,或使用一次性针电极。
【EMG检查的临床意义】1.可发现临床下病灶或易被忽略的病变,例如运动神经元病的早期诊断;肥胖儿童深部肌肉萎缩的检测等。
2.神经源性损害、肌源性损害及神经肌肉接头病变的诊断和鉴别诊断。
3.神经病变节段的定位诊断,如H-反射异常提示S1神经根病变;肱二头和三角肌神经源性损害提示C5,6神经根受累。
4.了解病变的程度和病变的分布。
【EMG检查注意事项】1.检查者应熟悉神经解剖知识;2.检测前应进行详细的神经系统检查;3.检查前向病人解释,获得病人的合作:(1)检测过程中保持肢体放松状态,尽量避免精神紧张;(2)检测过程中随着电刺激量的增加会有不适的感觉,MCV等测定(刺激运动神经)时会有肌肉收缩的动作。
肌电图怎么检查
肌电图怎么检查肌电图(Electromyography,简称EMG)是一种用于检测肌肉电活动的无创性检查方法。
本文将介绍肌电图的检查原理、检查步骤、应用领域以及注意事项。
一、肌电图检查原理肌电图检查利用电极记录肌肉产生的电信号,进而评估肌肉活动的功能状态。
正常情况下,肌肉收缩时产生的电信号通过电极传导到肌电图仪器上,并被转换为曲线图形展示。
肌电图曲线反映了肌肉的收缩和放松变化,通过分析这些变化可以判断肌肉的功能状态及存在的异常问题。
二、肌电图检查步骤1. 患者准备:在进行肌电图检查前,患者需要穿着舒适的衣物,并保证肌肉完好无损,不受任何影响。
2. 仪器连接:将肌电图电极粘贴在检测部位的肌肉上,确保电极与肌肉充分接触且粘贴牢固。
3. 信号录制:启动肌电图仪器,开始录制肌肉的电信号。
在检测过程中,患者需保持放松,遵循医生或技术人员的指示,如进行特定肌肉的收缩动作。
4. 数据分析:通过肌电图仪器的软件系统对录制的数据进行分析,生成肌电图曲线。
医生或技术人员根据曲线的形态、波幅、时程等指标进行初步判断。
三、肌电图检查应用领域1. 神经肌肉疾病诊断:肌电图检查可用于判断是否存在神经性肌肉疾病,如周围神经病变、肌萎缩侧索硬化症等。
通过观察曲线变化,可以评估神经传导速度、肌肉反应等指标,辅助疾病的诊断和治疗。
2. 运动损伤康复评估:肌电图检查可帮助评估运动损伤的康复过程,判断肌肉功能恢复情况。
通过监测肌肉活动的变化,对康复计划进行调整和指导,促进康复效果的提升。
3. 运动员体能评估:肌电图检查可对运动员的肌肉活动进行客观评估,了解肌肉活动的稳定性、力量和耐力等指标。
这对训练调整和提升运动表现具有重要意义。
四、肌电图检查注意事项1. 遵医嘱:检查前需提前咨询医生的建议和指导,并在专业技术人员的指导下进行检查。
2. 放松状态:进行肌电图检查时,患者需保持放松状态,按医生或技术人员的要求进行相应的肌肉动作。
3. 不适反应:在检查过程中,有时会出现肌肉抽搐、疼痛等不适反应,患者需及时告知医生或技术人员。
肌电图演示ppt课件
肌电图能够检测肌肉的神经冲动传导和肌肉的收缩反应,有助于鉴别神经源性与 肌源性损害,为治疗方案的选择提供依据。
肌电图在肌肉疾病诊断中的应用
诊断肌肉疾病
肌电图可以检测肌肉的神经冲动传导 和肌肉的收缩反应,有助于诊断肌肉 疾病如肌炎、肌无力综合征等。
评估治疗效果
通过肌电图检测肌肉的功能状态,可 以评估治疗效果,指导治疗方案调整 。
高频肌电图技术
总结词
高频肌电图技术能够提供更精细的肌肉活动信息,有助于更准确地评估和诊断肌肉疾病和神经病变。
详细描述
随着科技的进步,高频肌电图技术不断发展,其采样频率更高,能够捕捉到更多的肌肉电活动细节。 这使得医生能够更准确地评估肌肉疾病的严重程度,以及神经病变对肌肉的影响。
神经肌肉电生理技术在康复医学中的应用
肌电图与事件相关电位的区别
事件相关电位主要检测大脑的认知电活动,而肌 电图主要检测肌肉的电活动。
3
适用范围
事件相关电位常用于评估认知障碍和痴呆等神经 系统疾病。
05
肌电图的临床意义与局限 性
肌电图在神经系统疾病诊断中的应用
诊断神经根病变
肌电图可以检测神经根受压或损伤时所引起的神经传导速度减慢或阻滞,有助于 诊断神经根病变。
肌电图的局限性
假阳性与假阴性
肌电图检测结果可能受到多种因素的影响,如患者的配合程度、电 极放置位置等,可能导致假阳性或假阴性的结果。
对患者有一定的创伤
肌电图检测需要将电极插入肌肉中,对于患者有一定的创伤和不适 感。
费用较高
肌电图检测费用较高,可能限制其在临床的广泛应用。
06
未来肌电图技术的发展趋 势与展望
神经传导异常
肌电图课件大全
异常肌电图
针电极插入及肌肉放松时的异常肌电图
➢ 插入电位延长:针极插入、挪动时骤然出现电位排放,针 极挪动停止后电位并不立即消失,但数量、频率逐渐减少 以至消失,挪动针极后又重新出现。 病理意义:插入电位延长常见于神经源性疾病,在周围 神经损伤中最常见,肌炎、肌强直中也可见到
➢ 纤颤电位:单根肌纤维自发性收缩产生的电位,以起始 为正向、短时限、低电压节律较整齐为其特点。时限大 多<3.0ms,电压<300uv 病理意义:失神经支配;电解质改变;肌炎;肌纤维的 破坏等
➢ 临床意义:主要是检测小纤维特别是C类无髓小纤维的电 生理特点,是客观评价自主神经系统功能的检测方法之一 ,最常用于糖尿病周围神经病和痛性周围神经病的诊断和 研究。糖尿病周围神经病可表现为潜伏期延长,波幅降低 或分化不良,严重者无波形。
正常肌电图
➢ 针电极插入及肌肉放松时的肌电图
1 插入电位:指针电极插入挪动和叩击时,因针电极 对肌肉纤维或神经的机械刺激及损伤作用而猝发的 电位 正常肌肉插入电位持续时间短,针电极一旦停 止移动,插入电位迅速消失
影响神经传导速度的技术和生理因素
➢ 技术因素 ➢ 温度:皮肤温度降低时,传导速度减慢、潜伏期延长 ➢ 年龄:老年人传导速度下降、波幅降低 ➢ 上肢神经的运动传导速度比下肢快,近端神经传导速度
比远端快、感觉神经传导速度比运动神经快
影响神经传导速度的病理因素
➢ 髓鞘脱失:传导速度减慢 ➢ 神经轴突直径改变:
的信息,准确反映患者的病变范围。 (2)检查者应将丰富的临床经验与电生理结合
➢ 重视病变随时间演变的过程 根据疾病发生发展的过程,动态分析不同阶段的电生
理特点 ➢ 注意不同检测内容的严重程度和特点以及与临床的相关性,
肌电图的判读
数据记录
将检查过程中获得的肌 电图数据进行记录,包 括波形、幅度、频率等
指标。
检查后注意事项
01
02
03
04
检查后观察
检查结束后,观察患者有无不 适反应,如疼痛、麻木等。
结果解读
由专业医生对肌电图结果进行 解读,判断肌肉和神经的功能
状态。
治疗建议
根据肌电图结果,为患者提供 相应的治疗建议,如药物治疗
肌电图的判读
汇报人:XX
目录
CONTENTS
• 肌电图基本概念与原理 • 肌电图检查方法与步骤 • 肌电图波形特征分析 • 常见疾病在肌电图中表现及诊断意义 • 肌电图判读技巧与误区提示 • 实例分析:典型病例肌电图解读
01 肌电图基本概念与原理
CHAPTER
肌电图定义及作用
肌电图(EMG)
是一种通过记录肌肉生物电活动来评 估肌肉和神经系统功能的电生理检查 方法。
作用
肌电图可用于诊断神经肌肉疾病,如 肌肉萎缩、神经损伤、运动神经元疾 病等,帮助医生了解病情、制定治疗 方案和评估治疗效果。
肌电图检测原理
01
02
03
电极放置
在皮肤表面放置电极,记 录肌肉收缩和松弛时的电 信号。
信号放大与滤波
通过放大器将微弱的电信 号放大,并通过滤波器去 除干扰信号,以便更好地 观察和记录肌肉电活动。
呈现神经源性损害的表现。
病例二:周围神经损伤肌电图解读
神经传导速度
周围神经损伤后,神经传导速度减慢,通过比较患侧与健侧的神 经传导速度,可以判断神经损伤的程度和范围。
远端潜伏期
周围神经损伤后,远端潜伏期延长,提示神经传导功能受损。
复合肌肉动作电位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电生理检查是近50年发展起来的诊断技术,它将神经肌肉兴奋时发生的生物电变化引导出,加以放大和记录,根据电位变化的波形、振幅、传导速度等数据,分析判断神经、肌肉系统处于何种状态。
最初应用直流电变性反应,检查强度-时间曲线(时值)。
50年代针极肌电图开始应用临床,尤其是近十多年来广泛采用诱发电位方法和平均、叠加技术,更增加了电生理检查的使用范围和价值。
临床上将电生理检查分肌电图(electromyography, EMG)神经电图(electroneurography)和诱发电位(evoked potential)等。
有人习惯将神经电图归入肌电图中,概念上不够准确。
由于神经电图产生的原理与诱发电位相同,是使用脉冲电诱发出的神经肌肉兴奋电位,故归入诱发电位较妥当。
本节将电生理检查分为肌电图和诱发电位两大类。
肌电诱发电位仪所开展的项目:
一、肌电图(EMG)
二、神经传导速度(NCV),包括运动神经传导速度(MCV)、感觉神经传导速度(SCV)、F波、H反射
三、诱发电位(EP),包括脑干听觉诱发电位(BAEP)、视觉诱发电位(VEP)和上、下肢体感诱发(SEP)
四、事件相关电位(P300)
什么是肌电图检查?
肌电图是通过描述神经肌肉单位活动的生物电流,来判断神经肌肉所处的功能状态,以结合临床对疾病作出诊断,利用肌电图检查可帮助区别病变系肌原性或是神经原性。
对于神经根压迫的诊断,肌电图更有独特的价值。
神经肌肉单位又称为运动单位,由一个前角运动神经元及其支配的肌纤维组成。
正常的运动单位在静止时肌纤维呈极化状态。
神经冲动传到肌纤维时,肌纤维呈去极化状态,即产生动作电位并发生收缩,收缩之后又恢复极化状态。
由于神经、肌肉病变性质及部位的差异,动作电位也不同。
通过多级放大后将其显示在阴极示波器上,可用肉眼观察波形。
1.确定有无损伤及损伤的程度完全损伤时肌肉不能自主收缩,记录不到电位,或出现纤颤电位、正锐波等;部分损伤时可见平均时限延长,波幅及电压降低,变化程度与损伤的轻重有关。
2.有助于鉴别神经源性或肌源性损害一般认为,自发电位的出现是神经源性损害的特征。
3.有助于观察神经再生情况神经再生早期出现低波幅的多相性运动单位波,并逐渐形成高电压的巨大电位。
定期观察其变化,可以判断神经再生的质量和进展。
如再生电位数量增多,波型渐趋正常,纤颤波减少,提示预后良好,否则预后不佳或需手术治疗。
感觉神经动作电位(sensory nerveactive potential,SNAP)、肌肉动作电位(muscle active potential,MAP)及体感诱发电位(somatosensory evoked potential, SEP)等。
各电位的观察指标有波形、波幅、潜伏期和传导速度等。
传导速度较稳定,是最常用的观察指标。
其计算方法是将两刺激点所诱发出电位的潜伏期差除两点间的距离,即传导速度=距离/时间。
正常成人肘以下正中神经运动传导速度(MCV)为55~65m/s,感觉传导速度(SCV)为50~60m/s。
上肢神经传导速度快于下肢,近端快于远端。
SEP主要观察潜伏期,以第一个
负相波峰计算潜伏期。
正常成人正中神经和尺神经SEP潜伏期在19~20ms之间,故将第一个负相波峰命名为N19或N20。
神经部分损伤时,诱发电位可出现程度不同的波形改变、振幅降低、潜伏期延长或传导速度减慢,可据此判断有无神经损伤及损伤轻重。
神经传导速度:是评定周围运动神经和感觉神经传导功能的一项诊断技术。
主要用于周围神经病的诊断如多发性神经病、遗传性周围神经病、格林-巴利综合征、腕管综合征、周围神经外伤等,结合肌电图可鉴别前角细胞、神经根、周围神经及肌原性疾病等。
卡压性周围神经病
腕管、肘管、腕尺管综合症
旋前圆肌综合症:桡侧屈腕肌、屈拇长肌、旋前方肌
腰椎间盘突出症
电生理表现
1、患侧肢体相应神经根支配肌及腰椎棘旁肌的自发病理性电位(正锐、纤颤波)
L1查椎旁肌。
2、肌肉大力收缩时募集反应减弱。
3、运动、传导速度一般正常
4、F波潜伏期延长或消失
5、S1神经根损伤、H反射潜伏期延长,波幅降低,甚至H波消失
6、患肢SEP潜伏期延长,波幅降低,波形离散
腰骶丛神经病变
腰丛损伤
1、患肢股四头肌、髂腰肌、股内收肌群可见自发电位(正锐波、纤颤波)而腰椎旁肌正常。
2、以上肌肉大力收缩时募集反应减弱。
3、股神经运动传导速度减慢,波幅下降,甚至消失。
4、隐神经、股外侧皮神经感觉传导速度减慢,波幅降低,甚至消失。
骶丛损伤
1、患肢臀大肌、臀中肌及坐骨神经支配的肌肉可见自发电位,而腰椎旁肌正常
2、以上肌肉大力收缩时募集反应减弱。
3、坐骨神经(腓总、胫神经)运动传导速度减慢、波幅下降、甚至消失
4、腓浅神经、腓肠神经感觉传导速度减慢,波幅降低,甚至消失
5、患肢H反射潜伏期延长,波幅降低,甚至H波消失
臂丛神经损伤
视觉诱发电位;它主要检测视觉通路的病损,在眼科广泛应用于视神经炎、球后神经炎、视神经萎缩、视神经压迫病变、多发性硬化、视觉皮层病变、眼外伤、癔病等疾病;在内科主要用于糖尿病等引起的视觉通路的病损,它对早期诊断、定位诊断、估计预后、评定疗效有重要作用。
脑干听觉诱发电位;主要检查听神经损伤、发作性眩晕、听神经瘤、多发神经硬化、耳毒药及外周损伤后的听力学检查;可客观评价听觉检查不合作者、婴幼儿和歇斯底里病人有无听觉功能障碍。
体感诱发电位:主要用于检测周围神经、神经根、脊髓、脑干、丘脑及大脑的功能状态。
应用于格林-巴利综合征、颈椎病、后侧索硬化综合征、多发性硬化、脑血管病、神经性膀胱、性功能障碍等。