7.3 二次根式(第3课时)教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号:15
第二章 实数
7.二次根式(第3课时)
一、教学目标
本节课的目标定为:
1.进一步理解二次根式的概念,进一步熟练二次根式的化简。
2. 了解根号内含有字母的二次根式的化简。
3.利用二次根式的化简解决简单的数学问题。通过独立思考,能选择合理的方法解决问题。
4.在运算过程中巩固知识,通过与人交流总结方法。
二、教学重难点
重点:利用二次根式的化简解决简单的数学问题
难点:对根号内含字母的二次根式的化简。
三、教学过程设计
第一环节:复习引入
内容:
(1)最简二次根式的概念;
(2)二次根式化简过程中,你有哪些体会?
(3)上节课课后作业:若414.12≈,732.13≈,449.26≈,求
23.你是怎样解决的?
第二环节:知识巩固
1.巩固提升
例4 计算:
(1)3223-;(2)81818+-;(3)3)6
124(÷-. 解:(1)3223-=33322223⨯⨯-⨯⨯=631621-=6)3
121(-=661; (2)81818+
-=162222322+⨯-⨯=2412223+-=245;
(3)3) 6124(÷-= 361324÷-÷= 36
1324÷-÷ = 3618⨯-= 66224⨯-⨯= 26122-= 2611. 说明:可以放手让学生独立完成,然后通过交流,发现问题,给出一个统一的意见.
2.交流
收集第(3)小题有多少种解决方法.让学生说说想法.
3.反思
以上过程每位同学都是怎样化简的,方法好不好,能做到快而准确吗?
4.练习
化简:
(1)10152-;(2)31312+-;(3)8)2
118(⨯-. 解:(1)10152-=10101015552⨯⨯-⨯⨯=1010
11051-=10101; (2)31312+
-=3331334⨯⨯+-⨯=331332+-=334; (3)8)2
118(⨯-=821818⨯-⨯=821818⨯-⨯ =821818⨯-
⨯=4144-=212-=10. 第三环节:问题解决
如图所示,图中小正方形的边长为1,试求图中梯形
的面积,你有哪些方法,与同伴交流.
1.交流
让学生充分发表意见.
2.答案
(1)直接求法.
过点D 作AB 边上的高DE ,可发现边AB ,DC 及DE
都是某一个小直角三角形的斜边.根据勾股定理可求得
AB =25, CD =2,DE =23,面积梯形ABCD 的面积是
23)225(2
1⨯+=18. (2)间接求法.
将梯形ABCD 补成一个5×7长方形,用长方形的面积减去3个小三角形的面积,得梯形ABCD 的面积是11212421552175⨯⨯-⨯⨯-⨯⨯-
⨯=18. 第四环节:知识提升
1.知识探索
问题:2a (0>a )等于多少? 根据算术平方根的定义,可知a a =2(0>a ).
2.知识运用
例5 化简:
(1)3325b a (0>a ,0>b );(2)3)(y x +(0≥+y x );(3)a
b b a
(0>a ,0>b ). 解:(1)3325b a =ab b a ⋅2225=ab b a ⋅2225=ab ab 5;
(2)3)(y x +=)()(2y x y x +⋅+=y x y x ++)(;
(3)a b b a =2
a a
b b a =ab a b a 1⨯=ab b 1. 3.课堂练习
1.当0>a ,0>b 时化简:
(1))(a b b a ab +;(2)324b a ;(3)ab b a
⨯-)1(; (4)b a a b ab a 155
102÷⋅. 解:(1))(a b b a ab +=a b ab b a ab ⨯+⨯=a
b ab b a ab ⨯+⨯ =22b a +=b a +;
(2)324b a =b b a ⋅2222=b b a ⋅2222=b ab 2;
(3)ab b a
⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a ⨯-⨯1=a b b ⨯-2 =a b b -;
(4)b a a b ab a 155102÷⋅=b a a b ab a ÷⋅÷⨯)15510(2=a
b a 32310⋅ =222310a ba b a ⋅⋅=222310a ba b a ⋅⋅=222310a
ab b a ⋅⋅=ab a b a ⋅⋅2310 =ab ab 3
10. 2. 求代数式ab b a ⨯-)1(
的值,其中3=a ,2=b . 解:由题知0>a ,0>b .
ab b a ⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a
⨯-⨯1=2ab b - =a b b -.
当3=a ,2=b 时,a b b -=322-.
第五环节:课堂小结
(1)二次根式的化简:
二次根式的化简一定要化成最简二次根式.
(2)利用式子a a =2(0>a )可将根号内含字母的二次根式化简,结果也要化成最简二次根式.
第六环节:课后作业
习题 2.11 1, 3
四、教学反思
本节课继续熟练二次根式的化简,要求化成最简二次根式.同学们需通过练习认真体会各类方法,做到熟练并能灵活运用.
本节还涉及根号内含有字母的二次根式的化简,仍然要求化成最简二次根式.这部分内容对学生的基础要求较高,基础不好的班级可降低难度.