高分子物理基本概念汇总37页PPT
《高分子物理》ppt课件
PART 03
高分子溶液性质与行为
REPORTING
高分子溶解过程及热力学
溶解过程的描述
高分子在溶剂中的溶解过程包括 溶胀、溶解两个阶段,涉及高分 子链的舒展和溶剂分子的渗透。
热力学参数
溶解过程中的热力学参数如溶解 度参数、混合焓、混合熵等,决 定了高分子与溶剂的相容性。
温度对溶解的影响
区别
高分子化学主要关注高分子的合成和化学反应,而高分子物理则更加关注高分子的结构和性质以及它们之间的关 系。此外,两者的研究方法也有所不同,高分子化学通常采用化学合成和表征的方法,而高分子物理则采用各种 物理手段和理论计算的方法。
PART 02
高分子链结构与形态
REPORTING
高分子链化学结构
可用于制造透明或半透明的制品,如透明塑料、有机玻璃等。
03
耐候性
高分子材料在户外环境下能够保持其光学性能的稳定,不易发生黄变、
老化等现象,因此适用于户外光学器件的制造。
耐热性、耐腐蚀性等其他性能
耐热性
高分子材料通常具有较好的耐热性,能够在高温环境下保持其物理和化学性质的稳定。这 使得高分子材料在高温工作环境中具有广泛的应用,如汽车发动机部件、电子电器部件等 。
特定的高分子结构、温度区间和浓度等。
液晶态性能
液晶态高分子具有优异的光学性能、力学性能(如高强度和高模量 )以及热稳定性等。
PART 05
高分子材料力学性能与增 强机制
REPORTING
拉伸、压缩、弯曲等力学性能
拉伸性能
高分子材料在拉伸过程中,经历弹性变形、屈服、应变硬化和断裂 等阶段,表现出不同的力学行为。
核磁共振法研究分子运动状态
高分子物理优秀PPT完整PPT
的部分结晶度大于相对分子质量高的部分。
△高分子链的形状对结晶的影响
线型高分子链容易结晶,结晶度大;支链型次之;体型难于结晶。
▲外因
△温度
温度是最主要的外部条件。
在玻璃化温度与熔融温度之间 存在最佳的结晶温度,一般情况下, 最佳的结晶温度为:
4
结 晶 速 率
3
1
2
1-晶核生成速率 2-晶体成长速率 3-结晶总速率 4-黏度
二、高聚物的结晶形态与结构 ★高聚物的结晶形态
高聚物的结晶形态
稀溶液,缓慢降温 单晶 浓溶液或熔体冷却 球晶 挤出、吹塑、拉伸 纤维状晶体 熔体在应力下冷却 柱晶 极高压力下慢慢结晶 伸直链晶体
★晶态高聚物的结构
☆晶态高聚物的结构模型
(a)
(b)
缨状-胶束模型
(a)非取向高聚物 (b)取向高聚物
(a)
内聚能密度(CED) 单位体积的内聚能
★内聚能密度与高聚物的使用
内聚能密度小于290J/cm3的高聚物分子间作用力较小,分子链较柔顺,容易变形,具 有较好弹性,一般可以作为橡胶使用;内聚能密度较高的高聚物,分子链较刚性,属于典 型的塑料;内聚能密度大于400J/cm3的高聚物,具有较高的强度,一般作为纤维使用。
二、高聚物的结晶形态与结构
聚酰胺分子间的氢键示意图
与极性分子偶极距的平方成正比,与被诱导分子的变形性成正比;
★次价力与高聚物的使用
次价力小于4.4×103J/mol的高聚物用作橡胶;次价力大于2.1×103J/mol的高聚物用作
纤维;次价力介于两者之间的高聚物用作塑料。
★次价力的描述
内聚能 将一摩尔分子聚集在一起的部能量Tm
高聚物结晶速率与温度的关系
高分子物理(共90张PPT)
收缩与翘曲
高分子制品在成型后,由 于内应力的存在,会发生 收缩和翘曲现象,需通过
工艺控制减少其影响。
高分子加工过程中的物理和化学变化
01 热变化
高分子在加工过程中吸收或放 出热量,引起温度变化,对制 品性能产生影响。
02 力学变化
高分子在加工过程中受到剪切 、拉伸等力的作用,发生力学 状态的变化。
高分子物理(共90张PPT)
CONTENTS
• 高分子物理概述 • 高分子的结构与形态 • 高分子的物理性质 • 高分子的溶液性质 • 高分子的加工与成型 • 高分子物理的应用与发展前景
01
高分子物理概述
高分子的定义与分类
定义
高分子是由大量重复单元通过共价键 连接而成的长链化合物,分子量高达 数千至数百万。
弹性
高分子链的柔顺性和链段运动能力使其具 有弹性,如橡胶的弹性回复。
黏性
高分子链间的缠结和摩擦使其具有黏性, 如聚合物的熔融和溶液行为。
塑性
高分子在一定条件下可发生塑性变形,如 热塑性塑料的加工成型。
强度
高分子材料抵抗外力破坏的能力,如纤维 的强度和韧性。
高分子的热学性质
热容
高分子材料的热容通常较大,吸热和放热 过程中温度变化较小。
物理的研究提供了有力支持。
02
高分子的结构与形态
高分子的链结构
链的近程结构
包括键接方式、支化、交联等
链的远程结构
涉及链的柔顺性、构象和链的尺寸等
链结构的表征方法
如X射线衍射、中子散射、电子显微镜等
高分子的聚集态结构
高分子的分子间相互作用:包括范德华力 、氢键、离子键等
高分子的聚集态类型:如溶液、凝胶、晶 体、非晶态等
高分子物理共90张PPT
高分子物理共90张PPT第一部分:高分子物理基础知识1. 高分子物理概述高分子物理是研究高分子材料的构造、力学性质及其在热、电、光等方面的行为规律的一门学科。
高分子物理的主要研究对象是具有大分子结构的聚合物和高聚物。
2. 高分子材料的结构高分子材料的分子结构可以分为线性、支化和交联三种。
其中,线性结构的高分子链是单纯的直线结构,支化结构则是在链上引入支链结构,交联结构则是在高分子链上形成水晶点,使高分子链之间发生交联作用。
3. 高分子材料的物理性质高分子材料的物理性质包括力学性质、热性质、电性质、光学性质和磁性质等。
其中,力学性质是高分子材料最基本的性质之一,包括拉伸、压缩、弯曲、挤压、剪切等方面的力学性能;热性质则包括高分子材料的热干扰系数、热导率、热膨胀系数等;电性质则包括高分子材料的电导率、介电常数、介质损耗等;光学性质包括吸收、散射、透射、反射等方面的反映;磁性质则包括磁导率、磁化率等。
4. 高分子材料的分子运动高分子材料的分子运动是高分子物理学研究的一个重要方面。
高分子分子的运动可分为平动、转动、振动三种类型,其中振动运动通常与分子中的化学键振动相关联。
第二部分:高分子材料的物理加工工艺1. 高分子材料的成型加工高分子材料的成型加工包括挤出、注塑、吹塑、压缩成型、旋压成型等多种技术,其中挤出、注塑和吹塑等工艺技术是广泛应用的成型技术,具有高效、经济绿色等优点。
2. 高分子材料的复合加工高分子材料的复合加工是目前最为关注的技术之一,它将高分子材料与其他材料进行有效的综合利用,并在性能上得到了显著的提高。
高分子复合材料广泛应用于航空航天、汽车、电子、建筑等领域。
3. 高分子材料的改性加工高分子材料的改性加工是指通过添加改性剂来改变高分子材料的属性,以得到更好的性能。
常见的改性剂包括增强剂、塑化剂、光稳定剂、抗氧化剂等。
4. 高分子材料的表面处理高分子材料的表面处理是一种重要的加工技术,它可以提高高分子材料的表面性能和增强其附着力,同时也可以达到美化、防腐蚀等目的。
高分子物理化学全套PPT课件课件
探索新型高分子材料的合成方法
发展新型的高分子合成方法,实现高效、环保、低成本的合成,提高 高分子材料的性能和功能。
拓展高分子材料的应用领域
将高分子材料应用于新能源、生物医学、环保等领域,开发具有创新 性和实用性的高分子材料。
高分子物理化学的发展历程
• 总结词:高分子物理化学的发展历程包括起步阶段、成长阶段和繁荣阶段,其 发展推动了人类社会的进步。
• 详细描述:高分子物理化学的发展历程可以追溯到20世纪初,当时科学家开 始对高分子物质进行研究,并发现了高分子化合物的长链结构和多分散性等特 点。随着研究的深入,人们逐渐认识到高分子物质的结构和性质在不同尺度上 存在差异,并开始从微观到宏观的不同尺度上进行研究。在成长阶段,高分子 物理化学的研究领域不断扩大,涉及的学科也越来越多,如物理学、化学、生 物学等。同时,人们开始将高分子物理化学应用于实际生产和生活中,推动了 相关产业的发展。进入21世纪后,随着科学技术的发展和人类对物质世界的 认识不断深入,高分子物理化学的研究进入繁荣阶段。人们开始深入研究高分 子物质的结构和性质,探索其在不同环境下的变化规律和机制,为解决实际问 题提供更加精准的理论支持。同时,随着计算机技术和数值模拟方法的不断发 展,人们可以更加方便地模拟和预测高分子物质的行为和性能,进一步推动相 关领域的发展。总之,高分子物理化学的发展历程是一个不断创新和发展的过 程,其发展推动了人类社会的进步。
高分子物理化学全套 ppt课件
目录
• 高分子物理化学概述 • 高分子结构与性质 • 高分子合成与制备 • 高分子反应与改性 • 高分子材料性能与应用 • 高分子物理化学前沿研究
高分子物理pptPPT课件演示文稿
态聚合物,玻璃化转变是指其中非晶部分的这 种转变。 发生玻璃化转变的温度叫做玻璃化温度Tg
27
第二十七页,共390页。
Tg的工艺意义
是非晶热塑性塑料(如PS, PMMA)使用温度的上限 是非晶性橡胶(如天然橡胶, 丁苯橡胶)使用温度的下限
41
第四十一页,共390页。
自由体积理论(Fox 、 Flory)
固体和液体总的体积(VT)由两部分组成: 占有
7. 高分子热运动是一个松弛过程,松弛时间的大小取决于(
)。
A、材料固有性质 B、温度 C、外力大小 D、以上三 者都有关系。
40
第四十页,共390页。
5.3 高聚物的玻璃化转变
5.3.2 玻璃化转变理论 The theories of glass transition
等自由体积理论 (半定量) 热力学理论 (定性) 动力学理论 (定性)
T
T
(时温等效原理)
112
对于链段运动,松弛时间与温度的关系遵循WLF方程
第十二页,共390页。
5.2 聚合物的力学状态和热转变
➢ 1. 线形非晶态聚合物的力学状态 ➢ 2. 晶态聚合物的力学状态 ➢ 3. 交联聚合物的力学状态
113 第十三页,共390页。
5.2.1 线形非晶态聚合物的力学状态
流动,但此时已超过Td , 所以已经分解。PTFE就是如此, 所以不能注射成型,只能用烧结法。 PVA和PAN也是如此,所以不能熔融法纺丝所以不能 熔融法纺丝,只能溶液纺丝。
224
第二十四页,共390页。
5.2.3 交联聚合物的力学状态
1. 分子链间的交联限制了整链运动,无Tf 。 2. 交联密度较小时, “网链”较长,外力作用下链
高分子物理章.pptx
增塑剂从化学结构上分大体有以下几类: a邻苯二甲酸酯类、b磷酸酯类、c乙二 醇和甘油类、d己二酸和癸二酸酯类、e脂 肪酸酯类、f环氧类、g聚酯类、h矿物油、 氯化石蜡等
第27页/共86页
增塑剂进入高聚物可把分子间的距离拉 大,高分子链之间的作用力减小,使原来 不能运动的链段可以运动,高聚物就显得 柔软。增塑剂的用量越多,增塑效果越明 显。
以上外加增塑剂的方法称为外增塑 通过共聚或接枝或分子链上引入基团的 方法叫内增塑。虽然可增加塑性,但分子 结构发生了变化,很少称它为内增塑。往 往看做为另一种聚合物。如氯乙烯和少量 的醋酸乙烯酯共聚,可增加PVC的韧性, 但称它为氯醋树脂。
第32页/共86页
②纺丝液 化纤生产中的湿法纺丝是把聚合物溶解在溶 剂中成浓溶液进行纺丝。浓的纺丝液,从喷丝板 孔洞中挤出,在凝固浴中凝固,再拉伸使分子链 取向,得到一定强度的纤维。 有些聚合物在加热后不能变成聚合物熔体,通 过熔体来挤出纺丝。因为这些聚合物的热分解温 度比熔融温度低或是熔体流动性太差,无法用熔 体挤出方法纺丝。只能用湿法纺丝,这样得到的 纤维成本比熔融纺丝要高。
第5页/共86页
②非晶态的高聚物比较好溶解,对于结 晶高聚物,一定要在结晶破坏的熔点以上 溶解。
如聚乙烯醇(1799)在水中的溶解需在 95℃以上才能溶解,而聚乙烯醇(1788) 在温水中即可溶解。
第6页/共86页
③教材上讲的分子量大的溶解度小,小 的溶解度大。是在有非溶剂共存时;或是 不良溶剂中,在降低温度等情况,才有上 述说法,那是分子大小不同的溶解性差异 造成的。
第2页/共86页
二、高聚物的溶解性 1、高分子比小分子溶解要复杂, ①由于高分子有构型和构象的复杂性 高分子有分子量的多分散性,形状有 枝链,线形和交联 结晶和非结晶,分子链 惯穿多个晶区,非结晶部分分子链相互缠 结。 ②另外高分子与溶剂分子的尺寸相差悬 殊,运动速度也不一样,溶剂分子能较快 地渗透入高聚物,而高分子向溶剂扩散慢。