传热学-第三章 非稳态导热

合集下载

传热学-第三章 非稳态热传导

传热学-第三章 非稳态热传导
(0, ) m ( ) 2 sin 1 F e 0 0 1 sin 1 cos 1
( x, ) x cos(1 ) m ( )
2 1 0
2 1 0
与时间无关
28
考察热量的传递
Q0 cV (t0 t )
Q0 --非稳态导热所能传递的最大热量
第三章
非稳态导热
1
§3-1 非稳态导热的基本概念
1 非稳态导热的定义 . 2 非稳态导热的分类
t f (r , )
周期性非稳态导热 (定义及特点)
瞬态非稳态导热 (定义及特点)
2
着重讨论瞬态非稳态导热
3 温度分布:

t
1
4 3
2
1
t
0
0
3
4 两个不同的阶段
非正规状况阶段 (不规则情况阶段)
6
7 毕渥数
本章以第三类边界条件为重点。 (1) 问题的分析 如图所示,存在两个换热环节: a 流体与物体表面的对流换热环节 rh 1 h b 物体内部的导热 (2) 毕渥数的定义:
tf
h

t

tf h
0
r

t
x

tf
h
r h Bi rh 1 h
0
7
x
(微细热电偶、薄膜热电阻)
当 4 时, 1.83% hA 0 Vc
工程上认为=4 Vc / hA时 导热体已达到热平衡状态
第三章 非稳态导热
17
3 瞬态热流量:
Φ ( ) hA(t ( ) t ) hA hA 0 e
hA Vc
W
导热体在时间 0~ 内传给流体的总热量:

传热学讲义——第三章

传热学讲义——第三章

第三章 非稳态导热(unsteady state conduction)物体的温度随时间而变化的导热过程称非稳态导热。

0≠τ∂∂t,任何非稳态导热过程必然伴随着加热或冷却过程。

根据物体内温度随时间而变化的特征不同,非稳态导热过程可分为两类:(1)周期性导热(periodic unsteady conduction ):物体的温度按照一定的周期发生变化; 如建筑物的外墙和屋顶温度的变化。

(2)瞬态导热(transient conduction):物体的温度随时间不断升高或降低,在经历相当长时间后,物体的温度逐渐趋于周围介质的温度,最终达到热平衡。

分析非稳态导热的任务:找出温度分布和热流密度随时间和空间的变化规律。

第一节 非稳态导热的基本概念一、瞬态导热过程采暖房屋外墙墙内温度变化过程。

采暖设备开始供热前:墙内温度场是稳态、不变的。

采暖设备开始供热:室内空气温度很快升高并稳定;墙壁内温度逐渐升高;越靠近内墙升温越快;经历一段时间后墙内温度趋于稳定、新的温度分布形成。

墙外表面与墙内表面热流密度变化过程 采暖设备开始供热前:二者相等、稳定不变。

采暖设备开始供热:刚开始供热时,由于室内空气温度很快升高并稳定,内墙温度的升高相对慢些,内墙表面热流密度最大;随着内墙温度的升高,内墙表面热流密度逐渐减小;随着外墙表面的缓慢升高,外墙表面热流密度逐渐增大;最终二者相等。

上述非稳态导热过程,存在着右侧面参与换热与不参与换热的两个不同阶段。

(1)第一阶段(右侧面不参与换热)是过程开始的一段时间,特点是:物体中的一部分温度已经发生变化,而另一部分仍维持初始状态时的温度分布(未受到界面温度变化的影响),温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,物体内各处温度随时间的变化率是不一样的,即:在此阶段物体温度分布受t分布的影响较大,此阶段称非正规状况阶段或初始阶段(initialregime)。

(2)第二阶段(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受t影响,主要取决于边界条件及物性。

非稳态传热_传热学.最全PPT

非稳态传热_传热学.最全PPT
二类非稳态导热的区别:瞬态导热存在着有区别 的三个不同阶段,而周期性非稳态导热不存在。
t
四、边界条件对温度分布的影响 tf
一大平壁置于高温环境中。
h
tf h
问题的分析: 存在两个传热环节:
0
x
1、 流体与物体表面的对流换热
2、 物体内部的导热
r
rh 1 h
rh
r
tf
tw
tm
t
存在3种情况:
Biv
Fov
Biv
h(V
A)
Bi h
Fov (V
A)2
/
a
换热时间 热扰动扩散到(V A)2面积所用的时间
t t
hA
e vc eBivFov
0 t0 t
瞬态热流量:
hA
h A h A0 e vc
0~ 内传给流
体的总热量:
Q
0
d
0
hA
hA0e vc d
一、无限大平板的分析解
1、问题描述
λ=const a=const
h=const
因两边对称,只研究半块平壁
2、数学模型
t 2t
tx,0at0x2
导热微分方程
初始条件
t x
|x0
0
边界条件
t x
|x
ht
,
t
引入过余温度 t t
x,0ax202 t0 t
x
|x0
0
x
| x
h ,
3、求解(用分离变量法)
假设 x, x
a
2
x 2
x d
d
a
d 2
dx2

第三章 非稳态导热传热学

第三章 非稳态导热传热学
基本思想: 基本思想:当所研究的问题非常复杂, 当所研究的问题非常复杂,涉及到的参数很多, 涉及到的参数很多, 为了减少问题所涉及的参数, 为了减少问题所涉及的参数,于是人们将这样一些参数组合 起来, 起来,使之能表征一类物理现象, 使之能表征一类物理现象,或物理过程的主要特征, 或物理过程的主要特征, 并且没有量纲。 并且没有量纲。因此, 因此,这样的无量纲数又被称为特征数, 这样的无量纲数又被称为特征数,或 者准则数。 者准则数。
§3.1 非稳态导热的基本概念
二、非稳态导热的研究内容
1. 研究内容
温度分布和热流量分布随时间和空间的变化规律
t = f ( x, y , z ,τ ) ;
2. 数学模型
Φ = f(τ )
∂t ∂ ∂t ∂ ∂t ∂ ∂t ɺ ρ c = ( λ ) + ( λ ) + ( λ )+Φ ∂τ ∂x ∂x ∂y ∂y ∂z ∂z 解的唯一性定律 初 始 条 件 边 界 条 件
τ4 τ3
τ2
t
1
τ1
t
0
τ0
第3章 非稳态热传导
§3.1 非稳态导热的基本概念
一、非稳态导热
6. 导热量的特点
Φ1
Φ2
由于物体各处本身温度的变化 要积聚或消耗热量, 要积聚或消耗热量,非稳态导热过 程中在与热流方向相垂直的不同截 面上热流量处处不等。 面上热流量处处不等。
第3章 非稳态热传导
Φ1--板左侧导入的热流量 --板左侧导入的热流量 Φ2--板右侧导出的热流量 --板右侧导出的热流量

t
tf,h x
q
rh
rh = 1 h
rλ = δ λ

传热学 第3章-非稳态导热分析解法

传热学 第3章-非稳态导热分析解法

第三章 非稳态导热分析解法1、 重点内容:① 非稳态导热的基本概念及特点;② 集总参数法的基本原理及应用;③一维及二维非稳态导热问题。

2、掌握内容:① 确定瞬时温度场的方法;② 确定在一时间间隔内物体所传导热量的计算方法。

3、了解内容:无限大物体非稳态导热的基本特点。

许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。

如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。

因此,应确定其内部的瞬时温度场。

钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。

§3—1 非稳态导热的基本概念一、非稳态导热1、定义:物体的温度随时间而变化的导热过程称非稳态导热。

2、分类:根据物体内温度随时间而变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间而作周期性变化1)物体的温度随时间而趋于恒定值如图3-1所示,设一平壁,初值温度t 0,令其左侧的表面温度突然升高到1t 并保持不变,而右侧仍与温度为0t 的空气接触,试分析物体的温度场的变化过程。

首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍保持原来的t 0 。

如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线HCD 、HE 、HF 。

最后,当时间达到一定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。

由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参与换热的两个不同阶段。

(1)第一阶段(右侧面不参与换热)温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。

11-2 传热学第三章-导热四学时-3非稳态导热

11-2 传热学第三章-导热四学时-3非稳态导热
度,最终达到热平衡。
物体的温度随时间的推移逐渐趋近于恒定的值。
下面用实例介绍这两类非稳态导热的特点。
§3-1 非稳态导热的基本概念
(1)周期性非稳态导热过程简介
室内墙 面温度
墙内各 处温度 最高值
★ 夏季室外空气温度以一天 24小时为周期变化;
★ 室外墙面温度也以24小时为 周期变化,但比室外空气温 度变化滞后一个相位、振幅 有所减小;
(
t n
)w
h(tw
t
f
)
★ 解的唯一性定理:
本章所介绍的各种分析法都被认为是满足特定问题的唯一解。
§3-1 非稳态导热的基本概念
5.第三类边界条件下Bi数对平板中温度分布的影响
在第三类边界条件下,确定非稳态导热物体中的温度变化特征 与边界条件参数的关系。
t
已知:平板厚2δ、平板导热系数λ、
初温t0,将其突然置于温度为
第三章 非稳态导热
2
§3-1 非稳态导热的基本概念
2.非稳态导热的分类及其特点
非稳态导热分为周期性和非周期性(瞬态导热)两大类。
周期性非稳态导热:物体温度按一定的周期发生变化;
非周期性非稳态导热(非稳态 稳态):
物体的温度随时间不断地升高(加热过程)或降低(冷却过 程);在经历相当长时间后,物体温度逐渐趋近于周围介质温
(3)求解方法:分析解法、近似分析法、数值解法。
分析解法: 分离变量法、积分变换、拉普拉斯变换; 近似分析法: 集中参数法、积分法; 数值解法: 有限差分法、蒙特卡洛法、有限元法、
分子动力学模拟。
§3-1 非稳态导热的基本概念
4.导热微分方程解的唯一性定律
非稳态导热问题的求解实质:在规定的初始条件及边界条 件下求解导热微分方程式。

传热学第3章非稳态导热PPT课件

传热学第3章非稳态导热PPT课件

x x h Bi
2)毕渥数Bi对温度分布的影响
O( / Bi, 0)
2)毕渥数Bi对温度分布的影响
§3.2 集中参数法分析导热问题
当物体内部导热热阻远小于其表面的换热热阻, 也就是物体内部温度分布几乎趋于一致,可以近似 认为物体内部在同一瞬间均处于同一温度下。 此时 Bi h 0
对于任意形状的物体当Bi<0.1, 0.95 物体内部的过余温度与其表面的过m 余温度之比为 0.95。其内部热阻就可忽略,从而采用集中参数 法。
物体的温度随时间的变化关系是一条负 自然指数曲线,或者无因次温度的对数
0
与时间的关系是一条负斜率直线。
e
A cV
e
(V
A
)•(VaA
)2
e Bi •Fo
0
其中V/A具有长度的量纲,称为特征长度。
(2)导热量的计算
cV hA 称为系统的时间常数,记为s。
时间常数是反应物体对流体温度变动响应快慢的指标。它 取决于自身的热容量ρcv及表面换热条件hA。热容量越大, 温度变化得越慢;表面换热条件越好单位时间内传递的热 量越多,则越能使物体自身温度迅速接近流体温度。
突然把两侧介质温度降低 为 t并保持不变;壁表 面与介质之间的表面传热 系数为h。
两侧冷却情况相同、温度 分布对称。中心为原点。
3.3 无限大平壁非稳态导热
导热微分方程:
t 2t
a x2
初始条件: 0, t t 0
边界条件: (第三类)
x 0, t x 0
x
,
- t
x
h(t
t )
对于圆柱体和球体在第三类边界条件下的一维非
稳态导热问题,也可以求得温度分布的分析解。

传热学V4-第三章-非稳态热传导

传热学V4-第三章-非稳态热传导

3-2 零维非稳态导热-集总参数法 基于集总参数法的瞬态热流量:
Φ = hAθ = hAθ 0 exp(−τ / τ c )
基于集总参数法的 0~τ 时刻内总热量:
Q = ∫0Φ(τ )dτ = ρVcθ0 (1− e τ
τ

hA τ ρVc
) [J]
SJTU-OYH
传热学 Heat Transfer
温度分布与空间坐标无关 过余温度随时间呈指数曲线变化。
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
3-2 零维非稳态导热-集总参数法 基于集总参数法的温度分布:
− τ θ t −t∞ ρVc = =e θ0 t0 −t∞ hA
定义时间常数:
a,b,c 查表3-2
J 0 ( x) = 0.9967 + 0.0354 x − 0.3259 x 2 + 0.0577 x 3
' J 1 ( x) = − J 0 ( x)
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
3-3 一维非稳态导热的分析解 (正规状况阶段) 在 Fo >0.2 前提下,另外两种实用计算方法:近似拟合法,诺模图(海斯勒图)法 诺模图(海斯勒图)法 1 平板任一点瞬态温度
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
3-3 一维非稳态导热的分析解
t
一维非稳态导热微分方程及定解条件:
t∞ h
δ
δ
t∞ h

传热学第三章 非稳态导热

传热学第三章 非稳态导热
Bi hl ≤0.1
时、物体中最大与最小的过余温度之差小于5%,对于一 般工程计算,此时已经足然特确地可以认为整个物体温度 均匀。按照这样要求,由于l=V/A对圆柱有球分别是半轻 的1/2与1/3、因而如果以l作为Bi数的特征长度,则该Bi数 对平板、国柱与球应该分别小于0.1、0.05和0. 033。
方程中指数的量纲:
hA
W m2K
m2
w1
Vc
kg m3
Jkg K
[
m3
]
J
s
第三章 非稳态导热
9
即与 1 的量纲相同,当 Vc 时,则
hA
hA
1 Vc
此时,
e1 36.8%
0

Vc
hA
为时间常数,用 c 表示。
第三章 非稳态导热
10
如果导热体的热容量( Vc )小、换热条件好(h大),
有一直径为 5cm 的钢球,初始温度为 450 ℃,将其突然置 于温度为 30 ℃空气中。设钢球表面与周围环境间的总换热 系数为 24w/(m2 . K),试计算钢球冷却到 300 ℃所需的 时间。已知钢球的 c=0.48kJ/(kg·K ) , ρ =7753kg/m3 , λ =33w/(m. K ).
Fo
l2
a
换热时间 边界热扰动扩散到l 2面积上所需的时间
无量纲 热阻
Fo越大,热扰动就能越深入地传播到物体 内部,因而,物体各点地温度就越接近周
围介质的温度。
无量纲 时间
第三章 非稳态导热
12
对于平板、圆柱、球的一维非稳态第三类边界条件条件下 的导热问题,当按特征长度
l= 、厚度为2 的平板,
l=R、圆柱 l=R.球 定义的Bi数满足

传热学第3章非稳态导热

传热学第3章非稳态导热
对于一个特征数,应该掌握其定义式+物理意义,以及定义式中各个参数的意义。
2019/8/31 - 8 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
Bi r h
rh
1h

当 Bi 时, r rh ,因此,可以忽略对流换热热阻 当 Bi 0 时, r rh ,因此,可以忽略导热热阻
第三章 非稳态导热
第3章 非稳态导热
§3-1 非稳态导热的基本概念 §3-2 零维问题的分析法——集中参数法 §3-3 典型一维物体非稳态导热的分析 §3-4 半无限大物体的非稳态导热 §3-5 简单几何形状物体多维非稳态导热的解析解
2019/8/31 - 2 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
3、工程上几种典型非稳态导热过程温度变化率的数量级
2019/8/31 - 3 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
着重讨论瞬态非稳态导热
4、温度分布:
t

开始的一段时间,物体内部温度变化一层
层逐渐深入到内部,温度变化速度不一样,反映 到吸热量上,吸热量不一样。
t1 P
金属壁 保 温 层

BiV
FoV
BiV

h(V

A)
FoV

a
(V A)2
2019/8/31 - 12 -
第3章 非稳态导热——§3-2 集中参数法
BiV

h(V

A)
FoV

a
(V A)2
FoV 是傅立叶数
0

exp(
hA
cV
)

exp( BiV

传热学课件 第三章 非稳定导热

传热学课件 第三章 非稳定导热
2
0e
特征尺寸
V A

hA cV
0e FoBi
a Fo V / A2
Bi
h(V / A)
4. 热量计算

0
hAt t hA hA0e BiF hA0ehA cV f
累积传热量 0 时传热量
Biv

hV A


h d 2 l 4 dl 2 d 2 4




h dl 4 140 0.50 0.3 0.049 0.05 l d 2 33 0.3 0.025
1
可以采用集总参数法.又
hA h V h 4l d 2 cV c A c dl 140 4 0.325 0.326 10 2 s 1 0.48 10 3 7753 0.005 0.3
cV
10.36 5 60 1.89103 0.138103 13110 0.953103 2


exp Bi Fo exp1.07103 1.89103 exp 2.02 0.133 V V
0
即经5min后温度计读数的过余温度的确13.3%.也就是说,在这 段时间内温度计的读数上升了这次测量中温度跃升的86.7%
2. 数学描述
t t a x 2
2
引入过余温度
t t
0 t0 t

t x,0 t0
t x 0, 0 x x 0 t x , ht t x
t
t x x
方程简化为:
例题3-3 一直径为5cm,长为30cm的钢圆柱体,初始温度为300C,将其 放入炉温为12000C的加热炉中加热,升温到8000C方可取出.设钢圆 柱体与烟气间的复合换热表面传热系数为140W/(m2.K),钢的物性参 数取与例3-1中一样的值,问需多少时间才能达到要求。 解:首先检验是否可用集总参数法.为此计算Biv

传热学第三章

传热学第三章

内能减小=物体向环境对流换热
7
机械工程与材料能源学部 能源与动力工程学院
传 热 学
定义过余温度: θ=t-t∞
dt cV Ah (t t ) d
cV
dt Ah d
初始条件:
d
τ=0, θ =θ0=t0-t∞

微分方程分离变量,并积分:


0
hA cV
Fo>0.2,正规状况阶段
非稳态导热过程中传递热量
从τ=0 至热平衡
Q0 cV (t 0 t )
19
机械工程与材料能源学部 能源与动力工程学院
传 热 学
从τ=0 至τ时刻
Q c V t 0 t ( x, )dV 1 Q0 cV (t 0 t ) V 1 1 V (t 0 t ) (t t ) dV V t0 t
机械工程与材料能源学部 能源与动力工程学院 6
传 热 学
1. 导热微分方程式建立
例:测量变化着的温度的热电偶
t0 t
t t0 0
t f ( ) ?
t 2t 2t 2t ( 2 2 2) 导热微分方程: c x y z c
11
传 热 学
4. BiV及FoV物理意义
Biv hl

1 h
l
内部面积导热热阻 表面面积对流换热热阻
无量纲 热阻 无量纲 时间
从边界上开始发生热扰 动时刻起 a 到所计算时刻为止的时 间间隔 Fov 2 2 边界上发生有限大小的 热扰动穿过一定 l l a 厚度的固体层扩散到 2的面积上所需时间 l
FoV越大,热扰动越深入地传播到物体内部, 物体内各点的温度越接近周围介质的温度

《传热学》第三章 非稳态导热

《传热学》第三章  非稳态导热

令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响

进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:

《传热学》第3章-非稳态导热

《传热学》第3章-非稳态导热

特殊多维非稳态导热的简易求解方法
在第一类边界条件(初始温度均匀)或第三类边界条件(表面 传热系数h为常数)下的二维或三维的非稳态导热问题,在数学 上已经证明,它们的无量纲过余温度的解等于构成这些物体的 两个或三个物体在同样边界条件下一维非稳态导热问题解的连 乘。
特殊多维非稳态导热的简易求解方法
对于无限长方柱 θ (x, y,τ ) = θ (x,τ ) ⋅ θ (y,τ )
该问题的解可以由3块相应的无限大平板的 解得出。最低温度发生在钢锭的中心,即3 筷无限大平板中心截面的交点上,最高温度 发生在钢锭的顶角,即3块大平板表面的公 共点上。
4
例题3 θ
m/B则θi x0钢==锭hλδ(1θ中=m心3/ 4θ温840×0度).05x.2⋅5(θ=
2.14
m/θ 0
)
y
⋅ (θ
无限大平板的非稳态导热
当Fo ≥ 0.2时,可取
θ (x,τ )
θ0
=
β1
2 sin β1 + sin β1 cos β1
cos

β
1
x δ
e − β12 ⋅Fo
只与Bi、x/δ有关, 与时间无关
lnθ
=
−mτ
+ lnθ 0
β1
2sin β1 + sinτ β1 cos β1
cos
= 0.36
短圆柱的中心温度为
查图3-6得 θ
再讨论直径为
m2R/θ=600=0m0m.8的无θ限m长/ θ圆0柱=:0.13
×
0.8
=
0.104
Bi = hR = 232 × 0.3 = 1.72 λ 40.5
tm = 0.104θ0 + t∞ 查附=2图0.11得04θ×m(3/θ00−=103.0103) +1300

传热学(第四版)第三章:非稳态热传导

传热学(第四版)第三章:非稳态热传导

方程求解
dt cV hA t t d
一阶非齐次方程
0时,t =t0
令: t t — 过余温度,则有
d -hA Vc d 0时, t t 0 0
一阶齐次方程
方程式改写为:
d hA d Vc
3 拟合线1: t 12.7 79.4 exp 79.4 0.216 3 拟合线2 : t 11.1 80.0 exp 80.0 第三章 非稳态导热 1.252
8
时间常数 ( Vc / hA)反应导热体的热惯性。 如果导热体的热容量( Vc )小、换热条件好(h大), 那么单位时间所传递的热量大、导热体的温度变化快。 对于测温的热电偶节点,时间常数越小、说明热电偶对 流体温度变化的响应越快。这是测温技术所需要的。
Q Q= Q 0 Q0
3.2 正规热状况的实用计算方法-近似拟合公式法(了解) 对上述公式中的A,B,μ 1,J0 可用下式拟合
b 1 (a ) Bi
2 1
A a b( 1 e cBi ) a cBi B 1 bBi J 0 ( x ) a` b` x c` x 2 d` x 3
第三章 非稳态导热 11
讨论4:零维问题(集中参数法)的应用条件 理论上,集中参数法是在Bi->0的条件下提出的。 在实际应用中,可以适当放宽适用条件: h(V A) Bi 0.1 (V/A)是物体的特征长度
对厚为2δ 的

无限大平板
对半径为R 的无限长 圆柱 对半径为R 的球
V A A A V R2 R A 2 R 2 4 R3 R V 3 2 A 4 R 3

非稳态导热

非稳态导热

rVc
华北电力大学
梁秀俊
高等传热学
从0到任意时刻 积分
1 d hA
d
0
rVc 0
t t
hA
e rVc
0 t0 t
上式中右端的指数可作如下变化
hA rVc
h(V /
A)
a
(V / A)2
BiV FoV
式中BiV是特征尺度l用V/A表示的毕渥数。
华北电力大学
梁秀俊
高等传热学
梁秀俊
高等传热学
(x, ) (x, ) m ( ) ;
0
m ( ) 0
m ( ) f (Bi, Fo) 0
无限大平板中心无量纲过余温度曲线
华北电力大学
梁秀俊
高等传热学
(x, ) (x, ) m ( ) ; (x, ) f (Bi, x )
0
m ( ) 0
m ( )
四、无限长圆柱 过程类似 图线类似
无限大平板无量纲过 华北电力大学 余温度曲线
梁秀俊
四、乘积解
高等传热学
在二维和三维非稳态导热问题中,几种典型几何 形状物体的非稳态导热问题可以利用一维非稳态导 热分析解的组合求得。无限长方柱体、短圆柱体及 短方柱体就是这类典型几何形状的例子。
华北电力大学
梁秀俊
高等传热学
矩形截面的无限长方柱体是由两个无限大平壁垂 直相交而成;短圆柱是由一个无限长圆柱和一个无 限大平壁垂直相交而成 ;短方柱体(或称垂直六面 体)是由三个无限大平壁垂直相交而成;
z
d d
C1 exp( 2 )
再 积 分 得 :
C1
exp( 2 )d
0
C2
代 入 定 解 C1 2w / 条 件 可 得 :C2 w

《传热学》第三章 非稳态热传导

《传热学》第三章 非稳态热传导

第3章 非稳态导热
3-1 非稳态导热基本概念 3-2 零维问题的分析法-集中参数法 3-3 典型一维物体非稳态导热问题的分析解 3-4 半无限大物体的非稳态导热 3-5 简单几何形状物体多维非稳态导热的分析解
3.1 非稳态导热的基本概念
3.1.1 非稳态导热过程及其特点
物体的温度随时间而变化的导热过程为非稳态导 热。 自然界和工程上许多导热过程为非稳态,t= f(τ) 例:冶金、热处理与热加工中工件被加热或冷却; 锅炉、内燃机等装置起动、停机、变工况;自然环 境温度;供暖或停暖过程中墙内与室内空气温度。
∂t & ρcp = λ div( grad t ) + φ (3-1a) ∂τ
温度的拉普拉斯算子
∇ 2t
& ∂t φ = a∇ 2t + ∂τ ρcp
(3-1b)
初始条件的一般形式
t ( x, y, z , 0) = f ( x, y, z )
简单特例
f(x,y,z)=t0
边界条件:着重讨论第三类边界条件
∂t −λ ( ) w = h(tw − t f ) ∂n
解的唯一性定理 数学上可以证明,如果某一函数t(x,y,z,τ)满足 方程(3-1a)(3-1b)以及一定的初始和边界条 件,则此函数就是这一特定导热问题的唯一解。 本章所介绍的各种分析法都被认为是满足特定问题 的唯一解。
3.1.3 第三类边界条件下Bi数对平板中 温度分布的影响
第3章 非稳态导热
许多工程实际问题需要确定物体内部的温度场随时间的变化, 或确定其内部温度到达某一限值所需的时间。——非稳态导热 问题 本章讨论非稳态导热问题。首先简述非稳态导热的基本概念, 然后由简单到复杂依次介绍零维问题、一维问题、半无限大物 体以及多维问题的导热微分方程的分析解法。最后总结求解非 稳态导热问题的一般策略以及应用实例。 与稳态导热类似,非稳态导热主要掌握基本概念、确定物体瞬 时温度场的方法和在一段时间间隔内物体所传到热量的计算方 法。

传热学-第三章非稳态导热问题分析解

传热学-第三章非稳态导热问题分析解

单位时间 0, t t0
物体内能 的减少(或 增加)
Φ hAt t
Φ cV dt d
当物体被冷却时(t 0 >t),由能量守恒可

hA(t t ) -Vc dt
d
令: t t — 过余温度,则有
hA
-Vc
d d
( 0) t0 t 0
控制方程 初始条件
方程式改写为:d hA d 分离变量法 Vc
由于表面对流换热热阻与导热热阻相对大小的不同, 平板中温度场的变化会出现以下三种情形:
(1) 1/ h / Bi
(2) / 1/ h Bi 0
(3) δ/ λ 与1/h 的数值比较接近 0 Bi
Bi 准则对温度分布的影响
1/ h /
/ 1/ h δ/ λ 与1/h的数值接近
是一种理想化模型; 物体内导热热阻忽略不计; 物体内温度梯度忽略不计,认为整个物体具有相
同的温度;
通过表面传递的热量立即使整个物体的温度同时 发生变化; 把一个有分布热容的物体看成是一个集中热容的物体;
只考虑与环境间的换热不考虑物体内的导热。
问题的提出:
2 温度分布 如图所示,任意形状的物体,参数均为已知。
0.049 0.05 可采用集总参数法。
F cp V
cp
dl 2d 2 d 2l 4
4
cp
4(l d dl
2)
140 4 (0.3 0.025) 480 7753 0.05 0.3
0.326102
t tf 800 1200 0.342
0 t0 tf 30 1200
由式(3-1)得:
???
§3-2 集总参数法
基本思想:对任意形状的物体,忽略物体内部的导热 热阻,认为物体温度均匀一致。

传热学-第三章

传热学-第三章

无量纲数
当Bi→∞时,⇒rλ>>rh ;因此,可以忽略对流换热热阻 当Bi→0 时,⇒rλ<<rh;因此,可以忽略导热热阻
(4) 无量纲数的简要介绍 基本思想:当所研究的问题非常复杂,涉及到的参数很 多,为了减少问题所涉及的参数,将一些参数组合起来, 使之能表征一类物理现象,或物理过程的主要特征,并且 没有量纲。 因此,这样的无量纲数又被称为特征数,或者准则 数,比如,毕渥数又称毕渥准则。以后会陆续遇到许多类 似的准则数。特征数涉及到的几何尺度称为特征长度,一 般用符号 l 表示。 对于一个特征数,应该掌握其定义式+物理意义,以 及定义式中各个参数的含义。
着重讨论瞬态非稳态导热
3. 温度分布:
4. 两个不同的阶段
非正规状况阶段 (不规则情况阶段) 正规状况阶段 (正常情况阶段) 温度分布主要受初始温度 分布控制 温度分布主要取决于边界 条件及物性
非稳态导热过程总会经历:非稳态导热非正规状况阶段 (起始阶段)、正规状况阶段、新的稳态
5. 热量变化
可以采用集总参数法。时间常数为
13110 × 0.138 × 1000 × 0.953 × 10 −3 = = 148 τc = hA 11.63
ρcV
s
⎛ hA ⎞ 11.63 × 5 × 60 θ ⎛ ⎞ = exp⎜ − ⎟ ⎜ ρcV ⋅ τ ⎟ = exp⎜ − ⎟ −3 θ0 ⎝ 13110 × 0.138 × 1000 × 0.953 × 10 ⎠ ⎝ ⎠ = exp(− 2.02 ) = 0.133
5. 集总参数法的应用条件
对于平板、圆柱及圆球,如果Bi满足如下条件,则 物体中各点过余温度的差别小于5%
Bi v =
对厚为2δ的 无限大平板 对半径为R的 无限长圆柱 对半径为R的 球
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

θ
=
t − t∞
− hA τ
= e ρVc
θ0 t0 − t∞
其中的指数:
hA τ = hV ⋅ λA2 τ ρcV λA V 2ρc
= h(V A) ⋅ aτ λ (V A)2
= Biv ⋅ Fov
Bi v
=
h (V
λ
A)
Fo v
=

(V A ) 2
Fov是傅立叶数
θ
− hA τ
= e ρVc = e −Biv ⋅Fov
θ0
物体中的温度 呈指数分布
方程中指数的量纲:
[ ] hA =
⎡w ⎢⎣ m2K
⎤ ⎥⎦

m2
=w =1
[ ] ρVc
⎡ ⎢⎣
kg m3
⎤ ⎥⎦

m3

⎡J ⎢⎣ kgK
⎤ ⎥⎦
J
s
即与 1
τ
的量纲相同,当 τ
= ρVc
hA
时,则
τ ⋅ hA ρVc
=1
此时
θ = e−1 = 36.8% θ0
上式表明:当传热时间等于 ρVc 时,物体的过余温度
则有:
⎜⎜⎝⎛
∂2t ∂x 2
+
∂2t ∂y 2
+
∂2t ∂z 2
⎟⎟⎠⎞
=
0
dt = Φ&
(a)
dτ ρc
∵ Φ可视为广义热源,而且热交换的边界不是计算边界
(零维无任何边界)。
∴ 界面上交换的热量应折算成整个物体的体积热源,即:
− Φ& V = Ah(t − t∞ )
(b)
.
∵ to>t∞物体被冷却,∴ Φ应为负值
解:① 建立非稳态导热数学模型
方法一:椐非稳态有内热源的导热微分方程:
∂t
∂τ
=
λ ⎜⎛ ∂2t ρc ⎜⎝ ∂x 2
+
∂2t ∂y 2
+
∂2t ∂z 2
⎟⎟⎠⎞ +
Φ&
ρc
∵ 物体内部导热热阻很小,忽略不计。
∴ 物体温度在同一瞬间各点温度基本相等,即t仅是τ
的一元函数,而与坐标x、y、z无关,即:
着重讨论瞬态非稳态导热
3. 温度分布:
4. 两个不同的阶段
非正规状况阶段 (不规则情况阶段)
正规状况阶段 (正常情况阶段)
温度分布主要受初始温度 分布控制
温度分布主要取决于边界 条件及物性
非稳态导热过程总会经历:非稳态导热非正规状况阶段 (起始阶段)、正规状况阶段、新的稳态
5. 热量变化
Φ Φ1
Bi = r λ = δ λ = δ h
rh
1h
λ
无量纲数
当Bi→∞时,⇒rλ>>rh ;因此,可以忽略对流换热热阻 当Bi→0 时,⇒rλ<<rh;因此,可以忽略导热热阻
(4) 无量纲数的简要介绍 基本思想:当所研究的问题非常复杂,涉及到的参数很 多,为了减少问题所涉及的参数,将一些参数组合起来, 使之能表征一类物理现象,或物理过程的主要特征,并且 没有量纲。
由(a),(b)式得:
ρcV
dt

= − Ah(t − t∞ ) = Φτ
这就是瞬时时刻导热微分方程式。
方法二:根据能量守恒原理,建立物体的热平衡方程,即
物体与环境的对流散热量=物体内能的减少量
ρcV
dt

= − Ah(t − t∞ ) = Φτ
② 物体温度随时间的依变关系
hA(t

t∞
)
=
-
因此,这样的无量纲数又被称为特征数,或者准则 数,比如,毕渥数又称毕渥准则。以后会陆续遇到许多类 似的准则数。特征数涉及到的几何尺度称为特征长度,一 般用符号 l 表示。
对于一个特征数,应该掌握其定义式+物理意义,以 及定义式中各个参数的含义。
§3-2 零维问题的分析法—集总参数法
1. 定义:忽略物体内部导热热阻、认为物体温度均匀一致
的分析方法。此时, Bi→0 ,温度分布只与时间
有关,即t=f(τ),与空间位置无关,因此,也称为
零维问题。
2. 温度分布
已知:有一任意形状的物体,其体 积为V,表面积为A,初始温度为 t0,在初始时刻,突然将其置于温度 恒为t∞的流体中,且to>t∞,固体与流 体间的表面传热系数h,固体的物性 参数均保持常数。 求:根据集总参数法确定物体温度 随时间的依变关系
hA
已经达到了初始过余温度的36.8%。

ρVc为时间常数,用τ
hA
c
表示。
τ =τc
e θ = −1 = 36 .8 %
θ0
θ 1.0 θ 0 0.8
0.6
0.4
36.8%
0.2
0.0
0
1
2
3
4
Biv ⋅ Fov
如果导热体的热容量(ρcV)小、换热条件好(h大),那
么单位时间所传递的热量大、导热体的温度变化快,时间
h
如图所示,存在两个换热环节:
① 流体与物体表面的对流换热
rh = 1 h
② 物体内部的导热 rλ = δ λ
(2) 毕渥数的定义:
Bi = rλ = δ λ = δh rh 1 h λ
物理意义:固体内部导热热阻与其 界面上换热热阻之比
t
δ
δ tf
h
0
x

t
δ tf h
0
x
(3) Bi数对温度分布的影响
第三章 非稳态导热
§3-1 非稳态导热的基本概念
1. 定义:物体的温度随时间而变化的导热过程称为非稳
态导热,t = f (r,τ )
① 瞬态非稳态导热:物体的温度随时间的推
2. 分类
移逐渐趋近于恒定值;如钢坯在炉内 的加热 ② 周期性非稳态导热:物体的温度随时间做
周期性的变化;如室式热处理炉炉壁 的导热
Φ2
0 τ0
τ
Φ1 — 板左侧导入的热流量 Φ2 — 板右侧导出的热流量
6. 学习非稳态导热的目的
(1) 温度分布和热流量分布随时间和空间的变化规律
t = f (x, y, z,τ ) ; Φ = f(τ )
(2) 非稳态导热的导热微分方程式
ρc ∂t ∂τ
=
∂ ∂x

∂t ) + ∂x
∂ ∂y

∂t ) + ∂y
∂ (λ
∂z
∂t ) + Φ& ∂z
(3) 求解方法数理方程 高 Nhomakorabea数学 数值分析
分 析 解 法:分离变量法、积分变换、拉普拉斯变换 近似分析法:集总参数法、积分法 数 值 解 法:有限差分法、蒙特卡洛法、有限元法、
分子动力学模拟
7. 毕渥数
本章以第三类边界条件为重点。
tf
(1) 问题的分析
ρVc
dt

令θ= t-t∞,则有
⎪⎧hAθ

=
-ρVc
dθ dτ
控制方程
⎪ ⎩
θ (τ
=
0)
= t0
− t∞
= θ0
初始条件

方程式改写为:
=−
hA

θ
ρ Vc
∫ ∫ dθ = − hA dτ
θ ρVc
积分
⇒⇒
θ dθ = − hA
τ

θ0 θ
ρVc 0
⇒ ⇒ ln θ = − hA τ θ0 ρVc
常数 ( ρcV / hA) 小。
对于测温的热电偶节点,时间常数越小、说明热电
偶对流体温度变化的响应越快。这是测温技术所需要的 (微细热电偶、薄膜热电阻)
当τ = 4 ρVc 时,θ = 1.83%
相关文档
最新文档