反比例函数图像与性质复习课课件.

合集下载

反比例函数复习课完整版课件

反比例函数复习课完整版课件
图像观察法
通过观察反比例函数和直线图像的相对位置关系,可以直观判断交点的存在性及 个数。例如,当直线与双曲线有两个交点时,说明存在两个解;当直线与双曲线 相切时,说明存在一个解;当直线与双曲线无交点时,说明不存在解。
03 反比例函数在实际问题中 应用
生活中常见问题建模为反比例关系
路程、速度和时间的关系
当路程一定时,速度和时间成反比例关系。例如,从家到学校距离一定,步行速度越快, 所需时间越短。
工作总量、工作效率和工作时间的关系
当工作总量一定时,工作效率和工作时间成反比例关系。例如,完成一项任务所需的总工 作量是固定的,工作效率越高,所需时间越短。
矩形面积、长和宽的关系
当矩形面积一定时,长和宽成反比例关系。例如,一块固定面积的土地,长度越长,宽度 就越短。
我们探讨了反比例函数与直线交点的求解方法,以及交点存在
和不存在的条件。
学生自我评价报告分享
01
02
03
知识掌握情况
学生们表示通过本节课的 复习,对反比例函数的概 念、性质和应用有了更深 刻的理解。
学习方法反思
部分学生提到,在解决反 比例函数与直线交点问题 时,需要更加细心地处理 计算过程,以避免出错。
反比例函数定义
形如 $y = frac{k}{x}$ (其中 $k$ 为常 数,且 $k neq 0$) 的函数称为反比 例函数。
反比例函数表达式
比例系数的意义
$k$ 决定了反比例函数的图像和性质 ,当 $k > 0$ 时,图像位于第一、三 象限;当 $k < 0$ 时,图像位于第二 、四象限。
$y = frac{k}{x}$,其中 $x$ 是自变量 ,$y$ 是因变量,$k$ 是比例系数。

中考数学考点专题复习课件反比例函数的图象和性质

中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.

【中考数学考点复习】第三节反比例函数的图象与性质课件

【中考数学考点复习】第三节反比例函数的图象与性质课件

∴点C的坐标为(m,12m),
∴PC=|m8 -12m|,
∴S△POC=12PC·xP,
第9题图
即3=12×|m8 -12m|·m,(7分) 整理为|8-12m2|=6, 解得m=±2或±2 7, ∵点P在第一象限, ∴m>0, ∴P(2,4)或(2 7,477).(10分)
第9题图
10. 在平面直角坐标系 xOy 中,反比例函数 y=mx (x>0)的图象经过点 A(3, 4),过点 A 的直线 y=kx+b 与 x 轴、y 轴分别交于 B,C 两点.
(5)【思维教练】通过作辅助线将△PAB分为两个三角形,利用分割法 及三角形面积公式求解;
解:如解图②,过点 P 作 PQ 垂直于 x 轴,交直线 AB 于点 Q, 则点 Q(52,32),
∴S △PAB(xB-xQ)·PQ+12(xQ-xA)·PQ
Q

=12(xB-xA)·PQ=12×2×32 =3;
y=-8,
联立
x y=1x+5-m
整理得 ,
12x
2+(5-m)x
+8=0,
2
Δ=(5-m)2-16=0,解得 m=1 或 m=9.(9 分) ∴m 的值为 1 或 9.(10 分)
第8题图
9.图,在平面直角坐标系 xOy 中,已知正比例函数 y=1x 的图象与反比 2
例函数 y=k的图象交于 A(a,-2),B 两点. x
∴不等式kx<-x+4 的解集为 x<0 或 1<x<3;
(3)连接 OA,OB,求△AOB 的面积;
第 7 题图②
(3)【思维教练】先求得直线与x轴的交点坐标,再利用和差法及三角形 面积公式求解;
解:如解图①,设直线 AB 与 x 轴交于点 C,

【中考一轮复习】反比例函数的图象及性质课件

【中考一轮复习】反比例函数的图象及性质课件

典型例题---反比例函数的图象与性质
【例1】已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数
y
6 x
的图象上,则y1、y2、y3的大小关系是( D )
A.y3<y1<y2 B.y1<y2<y3 C.y2<y1<y3 D.y3<y2<y1
方法一:求出函数值再比较函数值的大小;
方法二:利用图象比较函数值的大小;
Ox D
当堂训练---反比例函数的图象与性质
3.已知点P(a,m),Q(b,n)都在反比例函数 y 2 的图象上,且
x
a<0<b,则下列结论一定正确的是( D )
A.m+n<0 B.m+n>0
C.m<n
D.m>n
4.反比例函数 y k 的图象经过点(3,-2),下列各点在图象上的 x
是( D )
1及.如y2图=,2x直的线图l象⊥分x于别点交P于,且点与A反、比B,例连函接数OA,yO1B=,已4x 知 △AOB的面积为_1__.
yl A
B
2y.2如 图kx2 ,(x平行0)的于图x轴象的分直别线相与交函于数A,yB1两 k点x1 (,x点 0A)在与点 B的右侧,C为x轴上的一个动点,若△ABC的面积为
数的图象 对称,由于反比例函数中自变量x≠0,函数y≠0,所以,它 及性质 的图象与x轴、y轴都__没__有__交点,即双曲线的两个分支
无限接近坐标轴,但永远达不到坐标轴。
考点聚焦---反比例函数的图象与性质
函数
图象形状 图象位置 增减性 延伸性 对称性
k>0
yk x k<0
y
函数图象的 在每一支
典型例题---用待定系数法求解析式
【例3】若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则

反比例函数图象性质及应用复习课件

反比例函数图象性质及应用复习课件

04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。

反比例函数的图像和性质ppt课件

反比例函数的图像和性质ppt课件

7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B

A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x

y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎

湘教版九年级数学《反比例函数的图象及性质》PPT课件

湘教版九年级数学《反比例函数的图象及性质》PPT课件

感悟新知
知1-练
1.若双曲线 y=kx与直线 y=2x+1 的一个交点的横坐 标为-1,则 k 的值为( B )
A.-1
B.1
C.-2
D.2
感悟新知
第一章 反比例函数
1.2反比例函数的图象及性质
第1课时 反比例函数 y = k (k>0)
x
的图象与性质
学习目标
1 课时讲解 2 课时流程
会用描点的方法画反比例函数
y= k x
(k>0)的图象
理解反比例函数 y =
k
(k>0)的性质
x
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问
引出问题
我们已经学习了用“描点法”画一次函数的图
四象限内的两支曲线组成, 它们与x 轴、 y 轴都不 相交,在每个象限内,函数值 y 随自变量 x 的增大 而增大.
感悟新知
1.反比例函数 y=-4x(x>0)的图象位于( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
知1-练
感悟新知
知1-练
2.如图,函数 y=1x-(x1x>(x<0),0)的图象所在坐标系的原点是 ( A) A.点 M B.点 N C.点 P D.点 Q
知1-导
(2) 把点A,B 的坐标分别代入 y 8 ,可知点 A 的坐标
x
满足函数表达式 , 点 B 的坐标不满足函数表达式, 所以点 A 在这个函数的图象上,点B不在这个函数 的图象上.
感悟新知
知1-导
(3) 因为k>0,所以这个反比例函数的图象位于第一、 三象限,在每个象限内,函数值 y 随自变量 x 的 增大而减小.
感悟新知

反比例函数复习课课件

反比例函数复习课课件

2023
REPORTING
THANKS
感谢观看
2023
PART 05
反比例函数的易错点与难 点解析
REPORTING
易错点的解析
混淆反比例函数与正比例函数
01
正比例函数是y=kx,而反比例函数是xy=k。学生常常将两者混
淆,导致在解题时出现错误。
忽视反比例函数的定义域
02
反比例函数的定义域是x不为0的实数,学生常常忽视这一点,
导致在解题时出错。
2023
PART 04
反比例函数的综合题解析
REPORTING
反比例函数的综合题解析
01
分析与照顾 into acts' intoic andic. of course, and will,, on the在这
பைடு நூலகம்02
saidcoupled =oman ofic ofic of and ofic and of intoic of and, and other神话 top similar 觉ungais'hipster
描述反比例函数的定义
详细描述
反比例函数是一种数学函数,其定义为 y = k/x,其中 k 是常数且 k ≠ 0。当 x 取任意非零实数时,y 的值都存在。
反比例函数的图像
总结词
描述反比例函数的图像特点
详细描述
反比例函数的图像通常在 x 轴和 y 轴上都有渐近线,即当 x 或 y 趋于无穷大时 ,函数值趋于 0。图像通常位于第一象限和第三象限。
反比例函数的性质
总结词:列举反比例函数 的性质
1. 当 k > 0 时,函数图像 在第一象限和第三象限;
3. 反比例函数是奇函数, 即 f(-x) = -f(x);

反比例函数的图像和性质复习ppt课件

反比例函数的图像和性质复习ppt课件
反比例函数的图像和性 质复习ppt课件
演讲人: 日期:
目录 CONTENT
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数在实际问题中应用举
例 • 典型例题解析与讨论 • 练习题与课堂互动环节
01
反比例函数基本概念
定义与表达式
定义
形如 $y = frac{k}{x}$ (其中 $k$ 是 常数,$k neq 0$) 的函数称为反比 例函数。
渐近线与x轴、y轴平行
反比例函数的图像有两条渐近线,分别与x轴和y轴平行。
图像对称性
原点对称
反比例函数的图像关于原点对称 ,即如果点(x,y)在图像上,那么 点(-x,-y)也在图像上。
中心对称
反比例函数的图像还关于其中心 (即原点)对称,这意味着图像 在旋转180度后保持不变。
03
反比例函数性质分析
奇偶性判断方法
奇函数定义
对于所有x,都有f(-x) = -f(x),则函数f(x)为奇函数。反比例函数满足f(-x) = f(x),因此是奇函数。
图像法
观察反比例函数的图像,可以发现图像关于原点对称,这也是奇函数的一个特征 。
周期性讨论
• 反比例函数不具有周期性。因为其图像不呈现周期性的变化规 律,即不满足f(x+T)=f(x)的性质,其中T为周期。
设生产 A 种产品 x 吨,生产 B 种产品 y 吨。根据题意可得方 程组
2x + 3y = 14
2. 利润方程
3x + 4y = z(z 为总利润)
06
练习题与课堂互动环节
练习题一:绘制反比例函数图像
题目
请绘制反比例函数 y = 1/x (x > 0) 的图像。

2020年九年级数学中考复习课件:12 反比例函数的图像与性质 (共58张PPT)

2020年九年级数学中考复习课件:12  反比例函数的图像与性质 (共58张PPT)

2.如图 1.12-13,已知动点 A 在反比例函数 y =6x(x>0)的图像上,直线 PQ 与 x 轴、y 轴分别交于 P,Q 两点,过点 A 作 CD∥x 轴,交 y 轴于点 C, 交直线 PQ 于点 D,过点 A 作 EB∥y 轴交 x 轴于点 B,交直线 PQ 于点 E,若 CE∥BD 且 CA∶AE=1∶ 2,QE∶DP=1∶9,则阴影部分的面积为__1__0____.
∴OC=33-aa,同理可得 OD=33-bb, ∴S△COD=12·OC·DO=12·(3-a)9a(b 3-b)= 12·9-3a9-ab3b+ab=12·-129aabb+ab=9.
(3)△AOB 的面积是否存在最大值?若存在,求 出最大面积;若不存在,请说明理由.
解:设 OA=a,OB=b,则 AM=AH=3-a, BN=BH=3-b,
D.5
图 1.12-11
跟踪训练
1.如图 1.12-12,函数 y=1x(x>0)和 y=3x (x>
0)的图像分别是 l1 和 l2.设点 P 在 l2 上,PA∥y 轴交
l1 于点 A,PB∥x 轴,交 l1 于点 B,△PAB 的面积为
(B )
A.12
B.23
C.13
D.34
图 1.12-12
D.-2<x<0 或 x>4
图1.122
重难点3 反比例函数与几何的综合
【例 3】 (2019·重庆 A)如图 1.12-3,在平面直
角坐标系中,矩形 ABCD 的顶点 A,D 分别在 x 轴、
y 轴上,对角线 BD∥x 轴,反比例函数 y=kx(k>0,
x>0)的图像经过矩形对角线的交点 E.若点 A(2,0),
B.不变
C.减小

反比例函数的图像与性质的复习课可用课件

反比例函数的图像与性质的复习课可用课件

挑战练习题
总结词
挑战思维极限
详细描述
设计一些难度较高的练习题,如综合性较强的题目和开放性问题,旨在激发学生的思维 能力和创新能力,培养他们解决复杂问题的能力。
感谢观看
THANKS
函数的奇偶性
总结词
反比例函数是奇函数
详细描述
反比例函数$f(x) = frac{k}{x}$($k neq 0$)满足$f(-x) = -f(x)$,因此是奇函数 。这意味着其图像关于原点对称。
函数的最值问题
总结词
反比例函数有无限大和无限小的最值点
详细描述
由于反比例函数的定义域是除原点外的所有实数,其值域是除0以外的所有实数。因此,反比例函数 在$x=0$处取得最小值0,在无穷远处取得最大值无穷大,但这两个最值点都是不连续的。
渐近线
反比例函数的图像分别向x轴和y轴无 限延伸,并逐渐接近但不会触及这两 条轴,形成渐近线。
03
反比例函数的性质研究
函数的单调性
总结词
反比例函数在各自象限内单调递减
详细描述
反比例函数$f(x) = frac{k}{x}$($k neq 0$)的单调性由系数$k$的正负决定。当$k > 0$时,函数在第一象限和 第三象限内单调递减;当$k < 0$时,函数在第二象限和第四象限内单调递减。
投资回报率
投资者在考虑投资回报率时,通常会 选择反比例函数来描述投资额与回报 率之间的关系。
在日常生活中的应用
药物剂量与疗效的关系
在药物治疗中,药物剂量与疗效之间存 在反比例关系,即当药物剂量增加时, 疗效可能并不会相应提高,反而可能产 生副作用。
VS
运动与减肥的关系
运动量与减肥效果之间也存在反比例关系 ,过度运动可能导致肌肉疲劳和身体损伤 ,而适当的运动则有助于减肥和保持健康 。

中考数学反比例函数复习公开课一等奖课件省赛课获奖课件

中考数学反比例函数复习公开课一等奖课件省赛课获奖课件
可得解,难度适中.
反比例函数的综合运用Fra bibliotek例题:(2013 年湖南张家界)如图 3-3-4,直线 x=2 与反比 例函数 y=2x和 y=-1x的图象分别交于 A,B 点,若点 P 是 y 轴
上任意一点,求△PAB 的面积. 思路分析:先分别求出 A,B 两
点的坐标,得到 AB 的长度,再根据 三角形的面积公式即可得出△PAB 的 面积.
3.(2014 年宁夏)已知两点 P1(x1,y1),P2(x2,y2)在函数 y
= —5x 的图象上,当 x1>x2>0 时,下列结论对的的是( A )
A.0<y1<y2
B.0<y2<y1
C.y1<y2<0
D.y2<y1<0
名师点评:运用反比例函数的图象解题时,核心是先根据
k 的值拟定其图象分布在哪几个象限,或根据图象的分布象限
y=—k (k≠0) 定义:形如________x___的函数称为反比例函数,其中 x 是
自变量,y 是函数,自变量的取值范畴是不等于 0 的一切实数.
注意:另外两种形式为y=kx-1(k≠0),k=xy(k≠0).
2.反比例函数的图象和性质. (1)图象特性: ①由两条曲线构成,叫做__________双;②曲图线象的两个分支
名师点评:反比例函数与一次函数的交点问题,是考试的 一种热点.核心是拟定它们一种交点的坐标,然后就能够用待 定系数法求解析式,最后解决问题.
图3-3-4
解:∵把 x=2 分别代入 y=2x,y=-1x,得 y=1 或-12. ∴A(2,1),B2,-12.∴AB=1--12=32. ∵P 为 y 轴上的任意一点,∴点 P 到直线 AB 的距离为 2. ∴△PAB 的面积为12AB×2=12×32×2=32.

反比例函数的图像和性质 复习课件

反比例函数的图像和性质 复习课件
B
y
C.x1>x2>x3
D.x1>x3>x2
一、结合函数图像和性质比较函数值或自变量的大小 1 3m 变式四 已知反比例函数 y x 图像上有两个点 A(x1,y1),B(x2,y2),当 x1<0<x2时,有 y1<y2
则m的取值范围为( C ) 1 A.m<0 B.m>0 ຫໍສະໝຸດ .m< 3 yAB
C
D
反比例函数与正比例函数的图像的 位置由比例系数k的正负性决定的.
典型题探究:
一、结合函数图像和性质比较函数值或自变量的大小 例1 (1)点A(-2,y1)与点B(-1,y2)都在反比例函数 2 y 的图像上,则y1与y2的大小关系为( A ) x A.y1<y2 B.y1>y2 C.y1=y2 D.无法确定
B C O D E F x
二、反比例函数的系数k的几何意义
一反比例函数在第二像限的图像如图所示, y 点A是图像上的任意一点, AM⊥x轴,若△AOM的面 A 积为2,则这个反比例函数 4 y=- x 的解析式为_____________
M O x
如图:A,B是函数 1 y 的图像上关于原点O对称 x 的任意两点,AC平行于y轴, BC平行于x轴,则△ABC的面 积是 2 .
一、结合函数图像和性质比较函数值或自变量的大小
例1(3)若点A(-2,a),B(-1,b),C(1,c)在反比例 k 函数 y (k 0) 的图像上,则a,b,c的 x 大小关系为( C ) A.a>b>c B.b>c>a C.c>a>b D.b>a>c
变式三
已知(x1,y1),(x2,y2),(x3,y3)是 2 C c 图像上的三点,且y >y >y >0, 反比例函数 y 1 2 3 -2 -1 x 则x1,x2,x3的大小关系是( A ) O a x 1 A b B.x3>x1>x2 A.x1<x2<x3

反比例函数图像和性质课件

反比例函数图像和性质课件

4 4.反比例函数 y x
k 的图象经过点(2,-3), 则它的表 5.反比例函数 y 6 x y x _____. 达式为__________
复习回顾
1.反比例函数是一个怎样的图 象?
反比例函数的图象是双曲0时,两支曲线分别位于第一、三象限内; 当k<0时,两支曲线分别位于第二、四象限内.
的图象有又什么共同特征?
(1)函数图象分别位于哪个象限内?
x>0时,图象在第四象限;x<0 时,图象在第二象限
(2)在每个象限内,随着x值的增大,y的值怎样变化?
在每一个象限内,y随x的增大而增大
知识归纳:
反比例函数
k y x
的图象,
当k>0时,在每一象限内,y的值随x值的增大而减 小; 当k<0时,在每一象限内,y的值随x值的增大而增 大。
o
P1 Q
x
4.如图所示:比较k1,k2,k3,k4的大小.
y=k4/x
y=k1/x
k1>k2>k3>k4
思考:
y=k3/x
y=k2/x
反比例函数y=m/x与一次函数y=kx+b交 于点A(1,8),和B(4,2),则三角形AOB的面 15 积是________
y
A B
双曲线离原点越远 k的绝对值越大 双曲线离原点越近 k的绝对值越小
在每一象限内,y随x的增大而增大
5.下列函数中y随x的值增大而减小的有( BD ) A.y=3x B.y=3/x C.y=-3/x D.y=-3x
一 象限, y随x的值增大 6.y=3/x,当x>0时图象在第______ 减小 当x<0时图象在第______ 而_____, 三 象限, y随x的值增 大而减小 ______
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档