八年级数学下册三角形的证明直角三角形直角三角形的性质与判定课件北师大版
北师大版数学八年级下册第1章第2节直角三角形(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.注意引导学生围绕教学目标进行讨论,避免偏离主题。
3.关注发言不够积极的学生,鼓励他们参与讨论,提高他们的自信心。
-举例:通过几何图形的拼凑或代数方法,引导学生发现并理解勾股定理的推导。
-勾股定理的应用:将勾股定理应用于实际问题,解决如斜边长度计算等问题。
-举例:给出实际情景,如测量墙壁高度等,让学生运用勾股定理解决问题,注意单位的转换和计算过程的准确性。
-直角三角形的判定:在给定三条边长的情况下,准确判断一个三角形是否为直角三角形。
北师大版数学八年级下册第1章第2节直角三角形(教案)
一、教学内容
本节课选自北师大版数学八年级下册第1章第2节,主要内容为直角三角形。具体内容包括:
1.直角三角形的定义与性质:了解直角三角形的定义,掌握直角三角形的三个内角之和为180度,其中一个角为直角(90度)。
2.勾股定理:探讨直角三角形中,直角边与斜边的关系,推导并掌握勾股定理(a²+b²=c²)。
5.情感与价值观:激发学生对数学学习的兴趣,培养学生的数学美感,树立正确的数学价值观,认识到数学在科学、技术和社会发展中的重要作用。
三、教学难点与重点
1.教学重点
-直角三角形的定义与性质:理解直角三角形的定义,掌握直角三角形的内角和为180度,其中一个角为直角(90度)。
北师大版八年级数学(下) 第一章 三角形的证明 第5节 直角三角形的性质与判定
北师大版八年级数学(下)第一章三角形的证明第5节直角三角形的性质与判定例1:在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为()A.30°B.45°C.60°D.30°或60°解:∵在△ABC中,∠A=90°,∠B=2∠C,∴2∠C+∠C=90°,∴∠C=30°,故选:A.练习:在Rt△ABC中,∠C=90°,∠A﹣∠B=50°,则∠A的度数为()A.80°B.70°C.60°D.50°解:∵∠C=90°,∴∠A+∠B=90°,∵∠A﹣∠B=50°,∴2∠A=140°,∴∠A=70°,故选:B.作业:1.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.例2:在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C,⑤∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.2个B.3个C.4个D.5个解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠A=∠B=∠C,所以∠A+∠B+∠C=∠C+∠C+∠C=180°,则∠C=90°,所以△ABC是直角三角形;⑤因为3∠C=2∠B=∠A,∠A+∠B+∠C=∠A+∠A+∠A=180°,∠A=,所以△ABC为钝角三角形.所以能确定△ABC是直角三角形的有①②③④共4个,故选:C.练习:在下列条件中:①∠A=∠B﹣∠C,②∠A﹣∠B=90°,③∠A=∠B=2∠C,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①由∠A+∠B+∠C=180°,∠A=∠B﹣∠C得到:2∠B=180°,则∠B=90°,则△ABC是直角三角形,故符合题意;②∠A﹣∠B=90°得到:∠A>90°,则△ABC不是直角三角形,故不符合题意;③由∠A+∠B+∠C=180°,∠A=∠B=2∠C得到:5∠C=180°,则∠C=36°,则∠A =∠B=72°<90°,则△ABC不是直角三角形,故不符合题意;④由∠A+∠B+∠C=180°,∠A=∠B=∠C得到:∠C=90°,则△ABC是直角三角形,故符合题意;综上所述,是直角三角形的是①④,共2个.故选:B.作业:2. 在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,则设∠A=x,∠B=,∠C=,则x++=180°,解得x=,∴∠A=,,,∴△ABC不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个,故选:B.例3:在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2=.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:18练习:如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175B.600C.25D.625解:由勾股定理得,AB2+BC2=AC2,则S=25+400=625,故选:D.作业:3. 已知△ABC中∠C=90°,c为斜边,a、b为直角边,若a+b=17cm,c=13cm,则△ABC的面积为()A.15cm2B.30cm2C.45cm2D.60cm2解:∵a+b=17,∴(a+b)2=289,∴2ab=289﹣(a2+b2)=289﹣c2=289﹣169=120∴ab=30,故选:B.例4:如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.练习:如图,在Rt△ABD中,∠ABD=90°,AD=10,AB=8.在其右侧的同一个平面内作△BCD,使BC=8,CD=2.求证:AB∥DC.证明:∵在Rt△ABD中,∠ABD=90°,AD=10,AB=8,∴BD===6,∵BC=8,CD=2,∴62+(2)2=82,∴△BDC是直角三角形,∴∠BDC=90°,∴∠ABD=∠BDC,∴AB∥DC.作业:4. 如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)判断△BCD的形状,并说明理由.解:(1)∵∠A=90°,∴BC===15;(2)△BCD是直角三角形,理由:∵BC2=152=225,BD2=82=64,CD2=172=289,∴BC2+BD2=CD2=289,∴△BCD是直角三角形.例5:如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.练习:如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.(1)连接AC,求证:△ACD是直角三角形;(2)求△ACD中AD边上的高.解:(1)证明:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=25,∴AC=5,∵CD=12,AD=13,∴AC2+CD2=AD2,∴∠ACD=90°,∴△ACD是直角三角形;(2)解:过点C作CH⊥AD于点H,则S△ACD=AD×CH=AC×CD,∴×13×CH=×5×12,∴CH=.作业:5.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=,∴h=.例6:写出命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题.该逆命题是命题(填“真”或“假”).解:“如果两个三角形全等,那么这两个三角形的周长相等.”写成它的逆命题:如果两个三角形的周长相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的周长相等,那么这两个三角形全等;假练习:“两直线平行内错角相等”的逆命题是命题.(填“真”或“假”)解:∵原命题的条件为:两直线平行,结论为:内错角相等,∴其逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,是真命题;故答案为:真.作业:6.已知命题“等腰三角形两腰上的高线相等”,它的逆命题是,该逆命题是命题.(“真”、“假”).解:命题“等腰三角形两腰上的高线相等”的逆命题是“如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形”,是真命题,故答案为:如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形;真.。
1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册
【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1
欘
,
∴∠A
= 90°,
∠
B
=
1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.
北师大版数学八年级下册.1直角三角形的性质与判定课件
新课讲授
证明:∵PE⊥OA,PF⊥OB, ∴∠OEP=∠OFP=90°. 在Rt△POE和Rt△POF中,由勾股定理易得OE=OF, ∴△POE≌△POF. ∴∠AOP=∠BOP,即OP是∠AOB的平分线. 即在角的内部,到角两边距离相等的点在这个角的 平分线上. 故定理“角平分线上的点到角的两边的距离相 等” 有逆定理.
新课讲授
(3)一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
上面每组中两个命题的条件和结论也有类似的关系吗? 与同伴交流.
新课讲授
1.在两个命题中,如果一个命题的条件和结论分别 是另一个命题的结论和条件,那么这两个命题称 为互逆命题,其中一个命题称为另一个命题的逆 命题.
分析:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论部分互换,写出原命题的逆命题,最 后判断逆命题的真假.
新课讲授
解:(1)原命题是真命题.逆命题为:如果两条直线只有 一个交点,那么它们相交.逆命题是真命题.
(2)原命题是假命题.逆命题为:如果a2>b2,那么a >b.逆命题是假命题.
新课讲授
练一练
1.小明把一副含45°,30°的直角三角尺如图摆放,其中 ∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等 于( B ) A.180° B.210° C.360° D.270°
新课讲授
知识点2 直角三角形中边角关系
勾股定理 直角三角形两条直角边的平方和等于 斜边的平方.
D.6
当堂小练
2.下列说法正确的是( B ) A.每个定理都有逆定理 B.每个命题都有逆命题 C.原命题是假命题,则它的逆命题也是假命题 D.真命题的逆命题是真命题
拓展与延伸
一直角三角形的两边长分别为3和4,则第三边的长为( D )
八年级下册数学直角三角形的性质和判定课件
图1-3
线段CD 比线段AB短.
1 我测量后发现CD = AB. 2
图1-3
1 如图1-3, 如果中线CD = AB,则有∠DCA = ∠A . 2 由此受到启发,在图1-4 的Rt△ABC中,过直角顶点C作 射线 CD交AB于D,使 ∠ DCA = ∠A , 则 CD = AD .
1.直角三角形的判定定理和性质定理;
2.应用定理进行推理论证解决有关问题.
首页
课后作业
见《学练优》本课“课后巩固提升”
1 AB. 2
图1-4
结论
由此得到:
直角三角形斜边上的中线等于斜边的一半.
例1 已知:如图1-5,CD是△ABC的AB边上的中 AB . 线,且 CD 1 2 求证:△ABC是直角三角形.
图1-5
证明:因为 CD 1 AB= BD= AD , 2 所以 ∠1=∠A,(等边对等角) ∠2=∠B .
3.如图所示,在锐角三角形ABC中,CD,BE分别是AB, AC边上的高,且CD,BE交于一点P,若∠A=50°,则∠BPC的 度数是( B ). A.150° B.130° C.120° D.100° 解 因为BE,CD是ABC的高, 所以∠BDP=90°,∠BEA=90°. 又∠A=50° , 所以∠ABE=90°-∠A=90°-50°= 40°. 所以∠BPC =∠ABE +∠BDP = 90° + 40°= 130°. 故应选择B.
1 是否对于任意一个Rt△ABC,都有 CD = AB 成立呢? 2
图1-3
图1-4
又∵ ∠A +∠B=90° , DCA+ DCB 90 ,
∴ B DCB.
故得 CD = AD = BD = 1 AB. 2
八年级数学北师大版初二下册--第一单元 1.2 直角三角形课件
作业:
1,下列各组数中,是勾股数的是( )
A 2,3,4
B 1.5, 2,3
C 9, 12, 15
D 7, 8, 9
2,在△ABC中,三边长分别是8,15,17,则这个三角形是__
它的面积是__。
3,若三角形的三边长分别为n+1,n+2,n+3,当n=__时,此三 角形是直角三角形。
4, 在△ABC中,BC=6,AC=5,BC边上中线长为4,则S△ABC=____ 5,已知:在△ABC中,AB=15cm,AC=20cm,BC=25cm
??? 那么这个三角形是直角三角形吗
你知道吗
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
* * * * * *据说*,古埃*及人*曾用*下面*的方*法画*直角:
他们用13个等距离的结把一根绳
子分成等长的12段,一个工匠同时握
住绳子的第1个结和第13个结,两个
(13) (1)
* * (2) * * (3)
(12) (11)
助手分别握住第4个结和第8个结,拉 紧绳子,就会得到一个直角三角形,其
(10) 直角在第4个结处. (9)
* * * (4)
* * * * * (5) (6)
(7) (8)
你想知道这是什么道理吗?
探究1
动
分别以下列两组数据为三
手
角形的边长,画出两个三角形.
画
(单位:cm)
一 画
(1) a=6, b=8, c=10; (2) a=5, b=12, c=13
(3) a=4, b=6, c=8;
(4) a=6, b=7, c=8.
北师大版八年级数学下册1.1等边三角形的判定及含30°角的直角三角形的性质课件
1.1 等腰三角形
等边三角形的判定及含30°角的直角 三角形的性质
复习 导入
合作 探究
课堂 小结
随堂 训练
复习导入
图形
等腰三角形
两条边相等
性
两个角相等
质
三线合一
轴对称图形(1条)
等边三角形
三边都相等 三个角都是等边三角形?一个等腰三角形满足什么 条件时是等边三角形?请证明自己的结论,并与同伴交流.
三边相等(定义)含30°角的直角三角形的性质
定理 在直角三角形中,如果一个锐角等于30°,那 么它所对的直角边等于斜边的一般
随堂训练
1.已知△ABC中,∠A=∠B=60°,AB=3cm,则 △ABC的周长为_9_____cm.
2.三角形的三条边长a,b,c满足(a b)2 | b c | 0
(只填写一个条件)
A
B
C
3.在△ABC,∠A=60°。AB=AC=10cm,则 BC=10cm .
例1.如图,E、F是△ABC中BC边上的点,且 BE=EF=CF=AE=AF,求∠BAC.
A
B
E
F
C
注:边相等可转换为角相等
BD=CE
例2:如图, △ABC是等边三角形,DE∥BC ,请问△ADE 是等边三角形吗?试说明理由.
判定1.三边相等(定义)
A
∵AB=BC=AC
∴△ABC是等边三角形
判定2:三个角相等
B
C
∵ ∠A= ∠ B= ∠ C
∴△ABC是等边三角形
判定3:一个角是60°的等腰三角形 ∵ ∠A=600 , AB=BC ∴△ABC是等边三角形
2.在△ABC中,AB=AC,若要使△ABC为等边三角
北师大版八年级数学下册等腰三角形和直角三角形复习课件
选一选 你真棒
6.下列关于直角三角形的判定,正确的有( D) (1)有一个角是直角的三角形是直角三角形. (定义) (2)两内角互余的三角形是直角三角形。 (3)一条边上的中线等于该边的一半,这条边所对的
角是直角,则这个三角形是直角三角形。 (4)较小两边的平方和等于较大边的平方的三角形是
直角三角形. (勾股定理的逆定理)
则底角度数为______顶角度数为_______。
2 如图,已知在直角△ABC中, ∠C=90 °, BD平分∠ABC交AC于D;
(1)若∠BAC=30 °,则AD=——; A
D
B
C
例1.如图,已知在△ABC中,AB=AC,BD⊥AC于D,
CE⊥AB于E,BD与CE相交于M点。求证:
BM=CM。 A
▪ 证明:∵AB=AC
▪ ∴∠ABC=∠ACB(等边对等角)
▪ ∵ BD⊥AC于D,CE⊥AB于E ▪ ∴∠BEC=∠CDB=90° ▪ ∴∠1+∠ACB=90°,
∠2+∠ABC=90°(直角三角形 两个锐角互余)
E
Mபைடு நூலகம்
D
1 B
2 C
说明:本题易习惯性地用全等来
▪ ∴∠1=∠2(等角的余角相等) ▪ ∴BM=CM(等角对等边)
(1)求证ME=MF;
课后思考 (2)若CD为AB边上的高, ME+MF与CD有什
么数量关系?
(3)若M在BC上移动,ME+MF为定值吗?试说明理由。
总结:许多问题可以用基本的性质、判定解决,
用探讨研究的精神去看待
3. 如图,线段OD的一个端点O在直线a上,以 OD为一边画等腰三角形,并且使另一个顶点在直 线a上,这样的等腰三角形能画多少个?
最新北师大版八年级数学下册第一章三角形的证明回顾与思考PPT课件
新课标 [北师]
第一章 三角形的证明
考点解析
典型例题
考点解析
三角形的证明是中考的必考点,考查方式以填
空题、选择题和中档解答题为主.主要考查等腰三 角形、直角三角形中角度、边长的计算或证明角、 线段相等或推导角之间的关系及线段之间的关系, 利用线段的垂直平分线、角的平分线的性质作图也 是常见的题型.本章考点可概括为:三个概念,六 个性质,四个判定,四个技巧,一个应用.
∵∠DAC=10°,∴∠BAD=60°.
∵∠D=∠B,∠FMD=∠AMB, ∴∠DFB=∠BAD=60°.
性质2
等腰三角形的性质
7.在△ABC中,AB=AC,D为直线BC上一点,E 为直线AC上一点,AD=AE,设∠BAD=α, ∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α= 20° ,β=________. 10° ________ ②求α,β之间的关系式. (2)是否存在不同于以上②中的α,β之间的关系式? 若存在,求出这个关系式(求出一个即可);若不 存在,请说明理由.
考点
概念1
1
三个概念
反证法
1.用反证法证明命题“在直角三角形中,至少 有一个锐角不大于45°”时,应先假设( D ) A.有一个锐角小于45°
B.每一个锐角都小于45°
C.有一个锐角大于45° D.每一个锐角都大于45°
2.求证:在一个三角形中,如果两个角不相等,
那么它们所对的边也不相等.
证明:假设两个不相等的角所对的边相等,则根 据等腰三角形的性质定理“等边对等角”, 知它们所对的角也相等,这与题设两个角
解:(1)由于③的题设是a+b>0,而⑤的结论是 ab>0,故⑤不是由③交换命题的题设和结 论得到的,所以③和⑤不是互逆命题. (2)③的逆命题是如果a>0,b>0,那么a+b>0.
北师大版 八年级数学下册1.2直角三角形 直角三角形全等的判定(HL)-讲练课件-(共28张PPT)
A.HL
B.SAS
C.ASA
D.SSS
2.如图,在△ABC中,∠C=90°,AD=AC,DE⊥AB于点D.若
∠B=28°,则∠AEC=( B )
A.28°
B.59°
C.60°
D.62°
3.如图,在△ABC中,∠BAC=90°,ED⊥BC于点D,AB=
BD,若AC=8,DE=3,则EC的长为 5 .
B.AB=AB
C.∠ABC=∠ABD
D.∠BAC=∠BAD
3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若
AC=6 cm,则AE+DE等于( C )
A.4 cm
B.5 cm
C.6 cm
D.7 cm
4.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.
( 1 )若以“SAS”为依据,需添加的一个条件为 AB=CD ;
6.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ
=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当
AP= 5或10 时,△ABC和△PQA全等.
7.【教材P35复习题T13变式】如图,AC⊥BC,AD⊥BD,垂足分别
为点C,D,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F.求证:
= ,
∴Rt△ABC≌Rt△BAD(HL).
∴∠ABC=∠BAD.
3.如图,△ABC和△DEF为直角三角形,∠ABC=∠DEF=90°,边
BC,EF在同一条直线上,斜边AC,DF交于点G,且BF=CE,AC=DF.
求证:GF=GC.
证明:∵BF=CE,∴BF+FC=CE+FC.∴BC=EF.
北师大版八年级数学下册第一章 三角形的证明1第4课时 等边三角形的判定及含30°角的直角三角形的性质
B
∵∠ACB=90°,∠A=30°.
A 30° C
∴ BC = AB.(在直角三角形中, 30° 角所对的直
角边等于斜边的一半)
拓展推论:BC∶AC∶AB =
例2 求证:如果等腰三角形的底角为15°,那么腰上
的高是腰长的一半.
已知:如图,在△ABC 中,AB = AC ,∠B =15°,
CD 是腰 AB 上的高, 求证:CD = 1 AB.
∴ CD= 1 AB. 2
D A
B
C
例3 已知:如图,在△ABC 中,∠ACB=90°,∠A=
30°,CD ⊥ AB 于 D.求证:BD= AB . 4
证明:∵∠A = 30°,CD⊥AB ,∠ACB = 90°
∴ BC = AB, ∠B = 60°. 2
∴∠BCD = 30°. ∴ BD = CB .
且 DF 平分∠CDE.
求证:△ABC 是等边三角形.
证明:∵ AB=BC, ∴△ABC 是等腰三角形, 又∵∠CDE=120°,DF 平分∠CDE, ∴∠EDF=∠FDC=60°. 又∵ DF∥ BA, ∴∠FDC=∠ABC= 60°. ∴△ABC 是等边三角形.
1
求证: BC = 2 AB.
A
分析:突破如何证明“线段的倍、分”问题
30°
30° 30°
转化
B
C
“线段相等”问题
证明:延长 BC 至点 D,使 CD=BC,连接 AD.
∵∠ACB=90°,∠BAC=30°,
A
∴∠ACD=90°,∠B=60°.
∵ AC=AC,
30°
∴△ABC≌△ADC (SAS).
三角形 的证明
新知一览
北师版八年级数学下册 1.1 第1课时 直角三角形的性质和判定
∵∠AOB=∠COD,
∴∠A=∠C.
与图有哪 些共同点与 不同点?
B o
D
C 图
例2 如图, ∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与∠DBE有什么关系?为什么?
解:在Rt△ACE中, ∠CAE=90 °- ∠AEC. 在Rt△BDE中,
∠DBE=90 °- ∠BED. A ∵ ∠AEC= ∠BED,
∠A .
2
由此受到启发,在图1-4 的Rt△ABC中,过直
角顶点C作射线CD交AB于D,使 ∠DCA= ∠A ,
则 CD= AD.
图1-3
图1-4
又∵ ∠A +∠B=90° ,DCA+DCB 90 ,
∴ BDCB. ∴ CD= BD.
故得
CD=
AD=
BD=
∴ ∠CAE= ∠DBE.
C E
D
B
【变式题】如图,△ABC中,CD⊥AB于D,BE⊥AC 于E,CD,BE相交于点F,∠A与∠BFC又有什么关 系?为什么? 解:∵CD⊥AB于点D,BE⊥AC于点E,
∴∠BEA=∠BDF=90°, ∴∠ABE+∠A=90°, ∠ABE+∠DFB=90°. ∴∠A=∠DFB. ∵∠DFB+∠BFC=180°, ∴∠A+∠BFC=180°.
问题: 如图,画一个Rt△ABC, 并作出斜边AB上 的中线CD,比较线段CD 与线段AB 之间的数量关 系,你能得出什么结论?
线段CD 比线段 AB短.
我测量后发现
1
CD = 2 AB.
试给出 数学证
明.
猜想:直角三角形斜边上的中线等于斜边的一半.
证一证
如图1-3, 如果中线CD = 1 AB,则有∠DCA =
北师大版八年级下册数学练习课件-第1章-三角形的证明 复习与巩固1
12
▪ ★考点2 等边三角形 ▪ 1.如图,在等边三角形ABC中,AB=2,点D为BC的中点,
的关键.
5
▪ 考点4 线段的垂直平分线
▪ 【典例4】如图,等腰△ABC中,AB=AC=8,BC=5,AB 的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周
长为( )
▪ A.13
B.14
▪ C.15
D.16
6
▪ 分析:∵DE是AB的垂直平分线, ▪ ∴AE=BE, ▪ ∴△BEC的周长=BE+CE+BC=AE+CE+BC=AC+BC. ▪ ∵AC=8,BC=5, ▪ ∴△BEC的周长=8+5=13. ▪ 答案:A
20
▪ ★考点5 角平分线
▪ 1.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N 是OB上的任意一点,C则线段PN的取值范围为( )
▪ A.PN<3
B.PN>3
▪ C.PN≥3
D.PN≤3
21
2.【2018·山西中考】如图,直线 MN∥PQ,直线 AB 分别与 MN、PQ 相交于点 A、B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C、D 为圆心,以大于12CD 长为半径作弧,两 弧在∠NAB 内交于点 E;③作射线 AE 交 PQ 于点 F.若 AB=2,∠ABP=60°,则线 段 AF 的长为__2__3____.
C.22 cm
D.25 cm
八年级数学下册直角三角形的性质和判定ppt课件
方形,得到三个大小不同的正方形,那么这三个正方形的面
积S1、S2、S3之间有什么关系呢?
S3
4 B 3 C A
S2
S1
3
S3
4 B 3
A
S2
C
S1
由图可知,S1=32,S2=42, 为了求S3,我们可以先算 出红色区域内大正方形 的面积,再减去4个小三 角形的面积,得S3=52. ∵32+42=52, ∴S1+S2=S3.
c
A
b
a),于是它们全等(SAS),从而它们的斜边长
相等.设斜边长为c.
B
a
C
5
步骤2:再剪出1个边长为c的正方形,如下图所示.
c
6
步骤3:把步骤1和步骤2中剪出来的图形拼成如图所示的 图形.
由于△DHK≌△EIH,
∴∠2=∠4. 又∵∠1+∠2=90°, ∴∠1+∠4=90°. 又∠KHI=90°, ∴∠1+∠KHI+∠4=180°,即D,H,E在一 条直线上. D
B
D
C
10
练习
1.在Rt△ABC中,∠C=90°. (1)已知a=25,b=15,求c; (2)已知a=5,c=9,求b; (3)已知b=5,c=15,求a.
答案:(1)5 34 ;
(2)2 14 ;
( 3) 10 2 .
11
思考
如图,电工师傅把4m长的梯子AC靠在墙 上,使梯脚C离墙角B的距离为1.5m,准 备在墙上安装电灯.当他爬上梯子后发现 高度不够,于是将梯脚往墙角移近0.5m, 即移动到C'处.那么,梯子顶端是否往上移 动0.5m呢?
12
如图,是由实物图抽象出来的示意图.在Rt△ABC中,计 算出AB;在Rt△A'BC'中,计算出A'B,则可得出梯子往 上移动的距离为(A'B-AB)m. 在Rt△ABC中,AC=4m,BC=1.5m, 由勾股定理得, AB 42 1.52
北师大版八年级下册数学《直角三角形的性质与判定》课件(5)
勾股定理的逆定理
如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形.
已知:如图,在△ABC中, AC2+AB2=BC2 求证:△ABC是直角三角形.
勾股定理的逆定理
已知:如图,在△ABC中, AC2+AB2=BC2 求证:△ABC是直角三角形.
跃跃欲试
4、如果一个三角形的三边分别是5、 12、13,则这个三角形是 三角 形。
跃跃欲试
5.(游戏)判断对错。 1)对顶角相等 2)内错角相等,两直线平行
43))全如等x三角y形,对则应x角2 相y2等
跃跃欲试
1.如图,已知∠α=130°,则∠β 的度数为( )
A.30 B.40° C.50° D.65°
十任总统, 利用了梯形面积公式证明.
梯形的面积可以表示为
;
也可以表示为
.
验证方法四:青朱出入图
青出
青入 c
b
朱出
青方
朱方
青 出
a
朱入 青入
验证方法五:达·芬奇
A
a
B
F
O
Cb E D
Ⅰ
Ⅱ
Ⅱ
A′ F′
B′
E′ C′
D′
Ⅰ
勾股定理: 直角三角形两条直角边的平方和 等于斜边的平方。
如果将条件和结论反过来,命题还成立吗?
北师大版教材数学八年级下册第一章
1.2.1直角三角形(1)
直角三角形的两个锐角互余。
A
已知:在Rt △ABC中,
∠C=90°.
求证:∠A+∠B=90° B
C
北师大版数学八年级下册第1课时直角三角形的性质与判定课件(共21张)
问题1:直角三角形的两个锐角有怎样的关系?为什么?
△ABC 是直角三角形, ∵∠A +∠B +∠C = 180°, ∴∠A +∠B = 90°. 又∵∠C = 90°,
问题2:如果一个三角形有两个角互余,那 么这个三角形是直角三角形吗? 为什么?
∵∠A +∠B +∠C = 180°, 又∵∠A +∠B = 90°, ∴∠C = 90°. ∴△ABC 是直角三角形 定理1 直角三角形的两个锐角互余.
b ca
S大正方形 = 4S直角三角形 + S小正方形 = 4× 1 ab + c2
2
cb a
= c2 + 2ab, ∴ a2 + b2 + 2ab = c2 + 2ab, ∴ a2 +b2 = c2.
证法2 赵爽弦图
大正方形的面积可以表示为 c 2 ;
也可以表示为
4×1
2
ab
+
(
b
-
a
)
2
.
a
c
一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
视察上面三组命题,你发现了什么?
归纳总结
在两个命题中,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么这两个命 题称为互逆命题.
如果把其中一个命题叫做原命题,那么另一个命题 就叫做它的逆命题.
想一想
你能写出命题“如果两个有理数相等,那么它们
上面两个定理的条件和结 论有什么关系?
3 互逆命题与互逆定理
合作探究
视察上面第一个定理和第二个定理,它们的条件 和结论之间有怎样的关系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3 举例说明下列命题的逆命题是假命题. (1)如果一个整数的个位数字是5 ,那么这个整数
能被5整除. 逆命题:如果一个整数能被5整除,那么这个整数 的个位数字是5. 例如10能被5整除,但它的个位数是0. (2)如果两个角都是直角,那么这两个角相等. 逆命题:如果两个角相等,那么这两个角是直角. 例如60°= 60°,但这两个角不是直角.
逆命题:如果一个三角形是等腰三角形,那
么它有两个角相等.
真
课堂小结
角的性质 直角三角形
边的性质
定理1:直角三角形的两个锐 角互余; 定理2:有两个角互余的三角 形是直角三角形.
勾股定理:直角三角形两条直 角边的平方和等于斜边的平方; 逆定理:如果三角形两边的平 方和等于第三边的平方,那么 这个三角形是直角三角形
三角形内角和等于180°. 问题3 前面我们探究过直角三角形的哪些性质?
直角三角形的两个锐角互余. 在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 在直角三角形中,如果一条直角边等于斜边的 一半,那么这条直角边所对的锐角等于30°. 这节课我们一起来证明直角三角形的判定与性质.
二 勾股定理与逆定理
知识回顾
勾股定理:直角三角形两条直角边的平方和等于斜边 的平方.即a2+b2=c2.勾股定理在西方文献中又称为毕 达哥拉斯定理.
c a
b
弦 勾
股
证明欣赏
1.美国第二十任总统的证法:
c
b a
s1
1 2
(a
b)(a
b)
1 2
(a2
2ab
b2
)
a
1 2
a2
1 2
b2
ab,
s2Байду номын сангаас
1 2
A.4 cm C.6 cm
B.5 cm D.10 cm
【解析】Rt△ABC中,AB2=AC2+BC2=100,
∴AB=10cm.BE=
1
2AB=5cm.
2.在你学过的定理中,有哪些定理的逆命题是 真命题?试举出几个例子说明.
(1)同旁内角互补,两直线平行.
逆命题:两直线平行,同旁内角
真
互补.
(2)有两个角相等的三角形是等腰三角形.
讲授新课
一 直角三角形的性质与判定
问题引入 问题:直角三角形的两锐角互余,为什么?
根据三角形的 内角和定理, 即可得到“直 角三角形的两 锐角互余”.
如果一个三角形中 有两个锐角互余, 那么这个三角形是
直角三角形吗?
如图,在△ABC中, ∠A +∠B=90°,那么△ABC是 直角三角形吗?
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以 ∠C=90°. 于是△ABC是直 角三角形.
ab
1 2
ab
1 2
c2
ab
1 2
c2
b s1 s2,
1 2
a2
1 2
b2
ab
ab
1 2
c2,
a2 b2 c2.
2.利用正方形面积拼图证明:
a
c
c a
b
大正方形的面积可以表示
b
为 (a+b)2 ;
c
也可以表示为
c2+4
1 2
ab
;
∵
(a+b)2
=
c2+4
1 2
ab
,
c
b a2+2ab+b2 = c2+2ab,
那么这个三角形是等边三角形. (3)全等三角形的对应角相等.
条件:两个三角形是全等三角形. 结论:它们的对应角相等. 逆命题:如果两个三角形的对应角相等,那
么这两个三角形全等.
知识归纳 每一个命题都有逆命题,只要将原命题的条件改
成结论,并将结论改成条件,便可得到原命题的逆命 题.但是原命题正确,它的逆命题未必正确.
互逆命题与 互逆定理
互逆命题
概念
第一个命题的条件是第二个命 题的结论;
第一个命题的结论是第二个命
题的条件.
互逆定理
概念 一个定理的逆命题也是定理, 这两个定理叫做互逆定理
∵AC2+BC2=AB2(已知), DE=AC,FE=BC(作图),
∴AB2=DF2,
∴AB=DF,
D
∴△ABC≌△DFE(SSS).
┏
∴∠C=∠E=90°,
∴△ABC是直角三角形.
E
F
归纳总结
定理:如果一个三角形两边的平方和等于第三边的 平方,那么这个三角形是直角三角形.
勾股定理:直角三角形两条直角边的平方和等于斜 边的平方.
a
∴a2+b2=c2.
3.赵爽弦图
大正方形的面积可以表示为 c2 ;
也可以表示为
4
1 2
ab
+(b-a)2.
c a
b
b
b
b
c
c
∵ c2=4 1 ab +(b-a)2,
2
c2 =2ab+b2-2ab+a2, c2 =a2+b2, ∴ a2+b2=c2.
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方, 那么这个三角形是直角三角形.
典例精析
例2 指出下列命题的条件和结论,并说出它们 的逆命题. (1)如果一个三角形是直角三角形,那么它的两个 锐角互余.
条件:一个三角形是直角三角形. 结论:它的两个锐角互余.
逆命题:如果一个三角形的两个锐角互余,那
么这个三角形是直角三角形.
(2)等边三角形的每个角都等于60°.
条件:一个三角形是等边三角形; 结论:它的每个角都等于60°. 逆命题:如果一个三角形的每个角都等于60°,
第一章 三角形的证明
1.2 直角三角形
第1课时 直角三角形的性质与判定
学习目标
1.复习直角三角形的相关知识,归纳并掌握直角三 角形的性质和判定.
2.学习并掌握勾股定理及其逆定理,能够运用其解 决问题.(重点、难点)
导入新课
复习引入 问题1 直角三角形的定义是什么?
有一个是直角的三角形叫直角三角形. 问题2 三角形内角和的性质是什么?
观察上面三组命题,你发现了什么?
归纳总结
上面每两个命题的条件和结论恰好互换了位置. 在两个命题中,如果第一个命题的条件是第二个 命题的结论,而第一个命题的结论是第二个命题的条 件,那么这两个命题叫做互逆命题.
如果把其中一个命题叫做原命题,那么另一个 命题就叫做它的逆命题.
命题“两直线平行,内错角相等”的条件和 结论为: 条件为:两直线平行; 结论为:内错角相等. 因此它的逆命题为:内错角相等,两直线平行.
这个命题是真命 题吗?为什么?
例1 证明此命题: A
C
B
已知:如图,在△ABC中,AC2+BC2=AB2. 求证:△ABC是直角三角形. 分析:构造一个直角三角形与△ABC全等,你能自 己写出证明过程吗?
A
证明:作Rt△DEF,使∠E=90°,
DE=AC,FE=BC,
C
B
则DE2+EF2=DF2(勾股定理).
三 互逆命题与互逆定理
议一议
下面两个定理的条件和结论有什么样的关系?
勾股定理:直角三角形两条直角边的平方和等于斜 边的平方.
定理:如果一个三角形两边的平方和等于第三边的 平方,那么这个三角形是直角三角形.
一个命题的条件和结论分别是另一个命题的结论和条件.
说出下列命题的条件和结论: 1.两直线平行,内错角相等; 2.内错角相等,两直线平行; 3.如果小明患了肺炎,那么他一定会发烧; 4.如果小明发烧,那么他一定患了肺炎; 5.一个三角形中相等的边所对的角相等; 6.一个三角形中相等的角所对的边相等;
知识归纳
如果一个定理的逆命题也是定理,那么这两 个定理叫做互逆定理,其中的一个定理叫做另一 个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
当堂练习
1.如图是一张直角三角形的纸片,两直角边AC=6 cm, BC=8 cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为( B )