【试卷】高二上期中考试数学(文科)试题及答案

合集下载

2021-2022年高二上学期期中数学试卷(文科) 含解析(VIII)

2021-2022年高二上学期期中数学试卷(文科) 含解析(VIII)

2021-2022年高二上学期期中数学试卷(文科)含解析(VIII)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线x﹣y+1=0的倾斜角是()A.B.C.D.2.双曲线﹣=1的离心率是()A.2 B.C.D.3.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x|+x2<0 D.∃x∈R,|x|+x2≥04.抛物线y2=2x的焦点到直线x﹣y=0的距离是()A.B.C.D.5.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的倍,则圆锥的高与球半径之比为()A.16:9 B.9:16 C.27:8 D.8:276.双曲线5x2﹣ky2=5的一个焦点坐标是(2,0),那么k的值为()A.3 B.5 C.D.7.一个正四棱锥的侧棱长都相等,底面是正方形,其正(主)图如图所示,则该四棱锥侧面积是()A.180 B.120 C.60 D.488.从点(1,0)射出的光线经过直线y=x+1反射后的反射光线射到点(3,0)上,则该束光线经过的最短路程是()A.B.C.D.29.已知A(﹣1,﹣1),过抛物线C:y2=4x上任意一点M作MN垂直于准线于N 点,则|MN|+|MA|的最小值为()A.5 B.C.D.10.以双曲线﹣=1的右焦点为圆心,与该双曲线渐近线相切的圆的方程是()A.x2+y2﹣10x+9=0 B.x2+y2﹣10x+16=0C.x2+y2+10x+16=0 D.x2+y2+20x+9=011.设P为双曲线x2﹣=1上的一点,F1,F2是该双曲线的两个焦点.若|PF1|:|PF2|=3:2,则△PF1F2的面积为()A.B.12 C.D.2412.已知双曲线﹣=1(a>b>0)的一条渐近线与椭圆+y2=1交于P.Q两点.F 为椭圆右焦点,且PF⊥QF,则双曲线的离心率为()A.B.C.D.二、填空题(本大题共4个小题,每小题5分,满分20分.)13.若双曲线E: =1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于.14.若抛物线y2=4x上一点M到焦点F的距离为5,则点M的横坐标为.15.已知椭圆,直线l交椭圆于A,B两点,若线段AB的中点坐标为,则直线l 的一般方程为.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|= .三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知命题p:{x|x2+4x>0},命题,则¬p是¬q的什么条件?18.(12分)已知两条直线l1:(a﹣1)x+2y+1=0,l2:x+ay+3=0.(1)若l1∥l2,求实数a的值;(2)若l1⊥l2,求实数a的值.19.(12分)已知A(2,0),B(3,).(1)求中心在原点,A为长轴右顶点,离心率为的椭圆的标准方程;(2)求中心在原点,A为右焦点,且经过B点的双曲线的标准方程.20.(12分)已知以点P为圆心的圆经过点A(﹣1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.21.(12分)如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A.B,将直线AB向左平移p个单位得到直线l,N为l上的动点.(1)若|AB|=8,求抛物线的方程;(2)在(1)的条件下,求•的最小值.22.(12分)已知椭圆C:的离心率e=,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆C的方程;(2)设F1、F2分别为椭圆C的左、右焦点,过F2作直线交椭圆于P,Q两点,求△F1PQ面积的最大值.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线x﹣y+1=0的倾斜角是()A.B.C.D.【考点】直线的倾斜角.【分析】把直线的方程化为斜截式,求出斜率,根据斜率和倾斜角的关系,倾斜角的范围,求出倾斜角的大小.【解答】解:直线y+1=0 即 y=x+1,故直线的斜率等于,设直线的倾斜角等于α,则 0≤α<π,且tanα=,故α=60°,故选B.【点评】本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出直线的斜率是解题的关键.2.双曲线﹣=1的离心率是()A.2 B.C.D.【考点】双曲线的简单性质.【分析】双曲线的离心率为==,化简得到结果.【解答】解:由双曲线的离心率定义可得,双曲线的离心率为===,故选B.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,属于容易题.3.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x|+x2<0 D.∃x∈R,|x|+x2≥0【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:根据全称命题的否定是特称命题,则命题“∀x∈R,|x|+x2≥0”的否定∃x0∈R,|x|+x2<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.抛物线y2=2x的焦点到直线x﹣y=0的距离是()A.B.C.D.【考点】抛物线的简单性质.【分析】利用抛物线的方程,求得焦点坐标,根据点到直线的距离公式,即可求得答案.【解答】解:抛物线y2=2x的焦点F(,0),由点到直线的距离公式可知:F到直线x﹣y=0的距离d==,故答案选:C.【点评】本题考查抛物线的标准方程及简单几何性质,考查点到直线的距离公式,属于基础题.5.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的倍,则圆锥的高与球半径之比为()A.16:9 B.9:16 C.27:8 D.8:27【考点】球内接多面体.【分析】利用圆锥的体积和球的体积相等,通过圆锥的底面半径与球的半径的关系,推出圆锥的高与底面半径之比.【解答】解:V圆锥=,V球=,V圆锥=V球,∵r=R∴h=R∴h:R=16:9.故选A.【点评】本题是基础题,考查圆锥的体积、球的体积的计算公式,考查计算能力.6.双曲线5x2﹣ky2=5的一个焦点坐标是(2,0),那么k的值为()A.3 B.5 C.D.【考点】双曲线的简单性质.【分析】利用双曲线的方程求出a,b,c,通过双曲线的焦点坐标,求出实数k 的值.【解答】解:因为双曲线方程5x2﹣ky2=5,即x2﹣=1,所以a=1,b2=,所以c2=1+,因为双曲线的一个焦点坐标(2,0),所以1+=4,所以k=.故选:D.【点评】本题考查双曲线的基本性质,焦点坐标的应用,考查计算能力.7.一个正四棱锥的侧棱长都相等,底面是正方形,其正(主)图如图所示,则该四棱锥侧面积是()A.180 B.120 C.60 D.48【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】由题意可知,该几何体是正四棱锥,底面是正方形,所以该四棱锥侧面积是四个相等的三角形.由正视图可知该几何体的高为4,斜面高为5,正方形边长为6,则可以求侧面积.【解答】解:由题意可知,该几何体是正四棱锥,底面是正方形,所以该四棱锥侧面积是四个相等的三角形,由正视图可知该几何体的高为4,斜面高为5,正方形边长为6,那么:侧面积.该几何体侧面积为:4×15=60故选:C.【点评】本题考查了对三视图的认识能力和投影关系.属于基础题.8.从点(1,0)射出的光线经过直线y=x+1反射后的反射光线射到点(3,0)上,则该束光线经过的最短路程是()A.B.C.D.2【考点】与直线关于点、直线对称的直线方程.【分析】由题意可得,点P(1,0)关于直线x﹣y+1=0的对称点B(﹣1,2)在反射光线上,可得光线从P到Q所经过的最短路程是线段BQ,计算求得结果.【解答】解:由题意可得,点P(1,0)关于直线x﹣y+1=0的对称点B(﹣1,2)在反射光线上,故光线从P到Q(3,0)所经过的最短路程是线段BQ==2,故选:A.【点评】本题主要考查求一个点关于某直线的对称点的坐标,反射定理的应用,属于基础题.9.已知A(﹣1,﹣1),过抛物线C:y2=4x上任意一点M作MN垂直于准线于N 点,则|MN|+|MA|的最小值为()A.5 B.C.D.【考点】抛物线的简单性质.【分析】由抛物线方程求出抛物线的焦点坐标,数形结合可知,当F、M、A共线时,|MN|+|MA|的值最小为|FA|,再由两点间的距离公式得答案.【解答】解:如图,由抛物线C:y2=4x,得F(1,0),又A(﹣1,﹣1),∴|MN|+|MA|的最小值为|FA|=.故选:C.【点评】本题考查抛物线的性质,考查了数学转化思想方法,是中档题.10.以双曲线﹣=1的右焦点为圆心,与该双曲线渐近线相切的圆的方程是()A.x2+y2﹣10x+9=0 B.x2+y2﹣10x+16=0C.x2+y2+10x+16=0 D.x2+y2+20x+9=0【考点】双曲线的简单性质.【分析】求出双曲线的右焦点得到圆心,在求出圆心到其渐近线的距离得到圆的半径,从而得到圆的方程.【解答】解:右焦点即圆心为(5,0),一渐近线方程为,即4x﹣3y=0,,圆方程为(x﹣5)2+y2=16,即x2+y2﹣10x+9=0,故选A.【点评】本题考查双曲线的焦点坐标和其渐近线方程以及圆的基础知识,在解题过程要注意相关知识的灵活运用.11.设P为双曲线x2﹣=1上的一点,F1,F2是该双曲线的两个焦点.若|PF1|:|PF2|=3:2,则△PF1F2的面积为()A.B.12 C.D.24【考点】双曲线的简单性质.【分析】根据双曲线定义得|PF1|﹣|PF2|=2a=2,所以,再由△PF1F2为直角三角形,可以推导出其面积.【解答】解:因为|PF1|:|PF2|=3:2,设|PF1|=3x,|PF2|=2x,根据双曲线定义得|PF1|﹣|PF2|=3x﹣2x=x=2a=2,所以,,△PF1F2为直角三角形,其面积为,故选B.【点评】本题考查双曲线性质的灵活运用,解题时要注意审题.12.已知双曲线﹣=1(a>b>0)的一条渐近线与椭圆+y2=1交于P.Q两点.F 为椭圆右焦点,且PF⊥QF,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质;椭圆的简单性质.【分析】由题意PQ=2=4,设直线PQ的方程为y=x,代入+y2=1,可得x=±,利用弦长公式,建立方程,即可得出结论.【解答】解:由题意PQ=2=4,设直线PQ的方程为y=x,代入+y2=1,可得x=±,∴|PQ|=•2=4,∴5c2=4a2+20b2,∴e==,故选:A.【点评】本题考查椭圆的方程与性质,考查双曲线的离心率,考查弦长公式,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4个小题,每小题5分,满分20分.)13.若双曲线E: =1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于9 .【考点】双曲线的简单性质.【分析】设|PF2|=x,由双曲线的定义及性质得|x﹣3|=6,由此能求出|PF2|.【解答】解:设|PF2|=x,∵双曲线E: =1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,∴a=3,b=4.c=5,∴|x﹣3|=6,解得x=9或x=﹣3(舍).∴|PF|=9.2故答案为:9.【点评】本题考查双曲线中线段长的求法,是基础题,解题时要注意双曲线定义及简单性质的合理运用.14.若抛物线y2=4x上一点M到焦点F的距离为5,则点M的横坐标为 4 .【考点】抛物线的简单性质.【分析】求出抛物线的准线方程,利用抛物线的定义,求解即可.【解答】解:抛物线y2=4x的准线方程为x=﹣1,∵抛物线y2=4x上点到焦点的距离等于5,∴根据抛物线点到焦点的距离等于点到准线的距离,∴可得所求点的横坐标为4.故答案为:4【点评】本题给出抛物线上一点到焦点的距离,要求该点的横坐标,着重考查了抛物线的标准方程与简单性质,属于基础题.15.已知椭圆,直线l交椭圆于A,B两点,若线段AB的中点坐标为,则直线l 的一般方程为2x﹣8y﹣9=0 .【考点】椭圆的简单性质.【分析】设以点P(,﹣1)为中点的弦与椭圆交于A(x1,y1),B(x2,y2),则x1+x2=1,y1+y2=﹣2,分别把A(x1,y1),B(x2,y2)代入椭圆方程,再相减可得(x1+x2)(x1﹣x2)+2(y1+y2)(y1﹣y2)=0,(x1﹣x2)﹣4(y1﹣y2)=0,k=﹣【解答】解:设以点P(,﹣1)为中点的弦与椭圆交于A(x1,y1),B(x2,y2),则x1+x2=1,y1+y2=﹣2,分别把A(x1,y1),B(x2,y2)代入椭圆方程,再相减可得(x1+x2)(x1﹣x2)+2(y1+y2)(y1﹣y2)=0,∴(x1﹣x2)﹣4(y1﹣y2)=0,k=﹣∴点P(,﹣1)为中点的弦所在直线方程为y+1=(x﹣),整理得:2x﹣8y﹣9=0.故答案为:2x﹣8y﹣9=0.【点评】本题考查了椭圆与直线的位置关系,点差法处理中点弦问题,属于基础题.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|= 2﹣3 .【考点】圆与圆锥曲线的综合;双曲线的简单性质.【分析】由双曲线方程,求得c=,根据三角形中位线定理和圆的切线的性质,可知|PO|=|PF′|,|PT|=|MF|﹣|FT|,并结合双曲线的定义可得|PO|﹣|PT|=|FT|﹣(|PF|﹣|PF′|)=2﹣3.【解答】解:设双曲线的右焦点为F′,则PO是△PFF′的中位线,∴|PO|=|PF′|,|PT|=|MF|﹣|FT|,根据双曲线的方程得:a=3,b=2,c=,∴|OF|=,∵MF是圆x2+y2=9的切线,|OT|=3,∴Rt△OTF中,|FT|==2,∴|PO|﹣|PT|=|PF′|﹣(|MF|﹣|FT|)=|FT|﹣(|PF|﹣|PF′|)=2﹣3,故答案为:2﹣3.【点评】本题考查了双曲线的定义标准方程及其性质、三角形的中位线定理、圆的切线的性质、勾股定理,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(xx秋•九龙坡区校级期中)已知命题p:{x|x2+4x>0},命题,则¬p是¬q的什么条件?【考点】必要条件、充分条件与充要条件的判断.【分析】化简p:{x|x2+4x>0}={x|x<﹣4或x>0}, ={x|x<﹣4或0<x<4},可得¬p;¬q,即可判断出结论.【解答】解:p:{x|x2+4x>0}={x|x<﹣4或x>0}, ={x|x<﹣4或0<x<4},∴¬p:x∈[﹣4,0];¬q:x∈[﹣4,0]∪[4,+∞).∴¬p是¬q的充分不必要条件.【点评】本题考查了不等式的解法、充要条件的判定方法、复合命题,考查了推理能力与计算能力,属于中档题.18.(12分)(xx秋•九龙坡区校级期中)已知两条直线l1:(a﹣1)x+2y+1=0,l2:x+ay+3=0.(1)若l1∥l2,求实数a的值;(2)若l1⊥l2,求实数a的值.【考点】直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系.【分析】(1)若l1∥l2,则a(a﹣1)﹣2×1=0,得a=2或﹣1,即可求实数a的值;(2)若l1⊥l2,则(a﹣1)×1+2a=0,即可求实数a的值.【解答】解:(1)由a(a﹣1)﹣2×1=0,得a=2或﹣1,经检验,均满足.(2)由(a﹣1)×1+2a=0,得.【点评】本题考查两条直线平行、垂直关系的运用,考查学生的计算能力,比较基础.19.(12分)(xx秋•九龙坡区校级期中)已知A(2,0),B(3,).(1)求中心在原点,A为长轴右顶点,离心率为的椭圆的标准方程;(2)求中心在原点,A为右焦点,且经过B点的双曲线的标准方程.【考点】双曲线的标准方程;椭圆的标准方程.【分析】(1)利用A为长轴右顶点,离心率为,确定椭圆的几何量,即可得到标准方程.(2)利用双曲线的定义,求出a,可得b,即可得到标准方程.【解答】解:(1)由题意,a=2,c=,b=1,∴椭圆的标准方程为=1;(2)由题意﹣=7﹣5=2a,∴a=1,∵c=2,∴b==,∴双曲线的标准方程是=1.【点评】本题考查椭圆、双曲线的方程与性质,考查学生的计算能力,确定椭圆、双曲线的几何量是关键.20.(12分)(xx秋•南京期末)已知以点P为圆心的圆经过点A(﹣1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.【考点】直线和圆的方程的应用.【分析】(1)直接用点斜式求出直线CD的方程;(2)根据条件得知|PA|为圆的半径,点P在直线CD上,列方程求得圆心P坐标,从而求出圆P的方程.【解答】解:(1)直线AB的斜率k=1,AB中点坐标为(1,2),…∴直线CD方程为y﹣2=﹣(x﹣1)即x+y﹣3=0 …(2)设圆心P(a,b),则由点P在直线CD上得:a+b﹣3=0 ①…(8分)又直径|CD|=,∴∴(a+1)2+b2=40 ②…(10分)由①②解得或∴圆心P(﹣3,6)或P(5,﹣2)…(12分)∴圆P的方程为(x+3)2+(y﹣6)2=40 或(x﹣5)2+(y+2)2=40…(14分)【点评】此题考查直线方程的点斜式,和圆的标准方程.21.(12分)(xx秋•九龙坡区校级期中)如图,斜率为1的直线过抛物线y2=2px (p>0)的焦点,与抛物线交于两点A.B,将直线AB向左平移p个单位得到直线l,N为l上的动点.(1)若|AB|=8,求抛物线的方程;(2)在(1)的条件下,求•的最小值.【考点】直线与抛物线的位置关系.【分析】(1)根据抛物线的定义得到|AB|=x1+x2+p=4p,再由已知条件,得到抛物线的方程;(2)设直线l的方程及N点坐标和A(x1,y1),B(x2,y2),利用向量坐标运算,求得•的以N点坐标表示的函数式,利用二次函数求最值的方法,可求得所求的最小值.【解答】解:(1)由条件知lAB:y=x﹣,则,消去y得:x2﹣3px+p2=0,则x1+x2=3p,由抛物线定义得|AB|=x1+x2+p=4p又因为|AB|=8,即p=2,则抛物线的方程为y2=4x.(2)直线l的方程为:y=x+,于是设N(x0,x+),A(x1,y1),B(x2,y2)则=(x1﹣x,y1﹣x﹣),=(x2﹣x,y2﹣x﹣)即•=x1x2﹣x(x1+x2)++y1y2﹣(x+)(y1+y2)+(x+)2,由第(1)问的解答结合直线方程,不难得出x1+x2=3p,x1x2=p2,且y1+y2=x1+x2﹣p=2p,y1y2=(x1﹣)(x2﹣)=﹣p2,则•=2﹣4px0﹣p2=2(x﹣p)2﹣p2,当x=时,•的最小值为﹣p2.【点评】此题考查抛物线的定义,及向量坐标运算.22.(12分)(xx秋•九龙坡区校级期中)已知椭圆C:的离心率e=,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆C的方程;(2)设F1、F2分别为椭圆C的左、右焦点,过F2作直线交椭圆于P,Q两点,求△F1PQ面积的最大值.【考点】椭圆的简单性质.【分析】(1)写出直线方程的截距式,化为一般式,由点到直线的距离公式得到关于a,b的方程,结合椭圆离心率及隐含条件求解a,b的值,则椭圆方程可求;(2)由题意设直线方程,与椭圆方程联立,化为关于y的一元二次方程,利用根与系数的关系可得P、Q的纵坐标的和与积,代入三角形面积公式,换元后利用基本不等式求得△F1PQ面积的最大值.【解答】解:(1)直线AB的方程为,即bx﹣ay﹣ab=0,原点到直线AB的距离为,即3a2+3b2=4a2b2…①,…②,又a2=b2+c2…③,由①②③可得:a2=3,b2=1,c2=2.故椭圆方程为;(2),设P(x1,y1),Q(x2,y2),由于直线PQ的斜率不为0,故设其方程为:,联立直线与椭圆方程:.则…④,…⑤,将④代入⑤得:,令,则≤,当且仅当,即,即k=±1时,△PQF1面积取最大值.【点评】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了利用基本不等式求最值,是中档题.21672 54A8 咨36768 8FA0 辠x28731 703B 瀻26499 6783 枃f=31326 7A5E 穞33196 81AC 膬* 30602 778A 瞊L。

高二上学期期中考试数学(文)试题 Word版含答案

高二上学期期中考试数学(文)试题 Word版含答案

秘密★启用前云天化中学2020~2021学年秋季学期半期测试题高二文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知集合{|22}A x x =-,{|1}B x x =∈N ,则A B ⋂=( ) A .{2,1}-- B .{2,1,0}-- C .{0,1} D .{1}2.平面向量a 与b 的夹角为60°,(2,0)a =,||1b =,则|2|a b +等于( )A .B .C .12D 3.下列有关命题的说法正确的是( )A .若命题p :0x ∃∈R ,01xe <,则命题p ⌝:x ∀∈R ,1xeB .“sin x =3x π=” C .若||||||a b a b +=-,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,//n β,那么αβ⊥ 4.设{}n a 是等差数列,若23a =,713a =,则数列{}n a 前8项的和为( ) A .128 B .80 C .64 D .565.已知某几何体的三视图如图所示,则该几何体的体积为( )A .12πB .18πC .24πD .36π6.设双曲线22221(0)x y a b a b-=>>的虚轴长为2,焦距为 )A .y =B .2y x =±C .2y x =±D .12y x =±7.已知()f x 是定义在R 上的偶函数,且在区间(,0)-∞上单调递增,若实数a 满足()|1|2(a f f ->,则a 的取值范围是( )A .(,2)-∞B .(0,2)C .(1,2)D .(2,)+∞ 8.已知1sin 35πθ⎛⎫-= ⎪⎝⎭,则sin 26πθ⎛⎫-= ⎪⎝⎭( ) A .225-B .2325-C .225D .23259.已知直线:(21)(1)10()l k x k y k ++++=∈R 与圆22(1)(2)25x y -+-=交于A ,B 两点,则弦长||AB 的取值范围是( )A .[4,10]B .[3,5]C .[8,10]D .[6,10] 10.函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,若其图象向右平移6π个单位后得到函数为奇函数,则函数()f x 的图象( )A .关于点,03π⎛⎫⎪⎝⎭对称 B .在,22ππ⎛⎫- ⎪⎝⎭上单调递增C .关于直线3x π=对称 D .在6x π=处取最大值11.在如图所示的三棱锥V ABC -中,已知AB BC =,90VAB VAC ABC ∠=∠=∠=,P 为线段VC 的中点,则( )A .PB 与AC 不垂直 B .PB 与VA 平行C .点P 到点A ,B ,C ,V 的距离相等D .PB 与平面ABC 所成的角大于VBA ∠ 12.已知函数3log ,03,()|4|,3,x x f x x x <⎧=⎨->⎩若函数()()2h x f x mx =-+有三个不同的零点,则实数m 的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .1,(1,)2⎛⎫-∞⋃+∞ ⎪⎝⎭C .1,[1,)2⎛⎫-∞⋃+∞ ⎪⎝⎭ D .1,12⎛⎤⎥⎝⎦第Ⅱ卷(非选择题,共90分)注意事项:第Ⅱ卷用黑色碳素笔在答题卡上各题的答题区城内作答,在试题卷上作答无效. 二、填空题(本大题共4小题,每小题5分,共20分)13.设x ,y 满足约束条件220,10,240,x y x y x y +-⎧⎪--⎨⎪+-≤⎩则目标函数2z x y =-的最大值是_________.14.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,sin cos 3B b A π⎛⎫=- ⎪⎝⎭,2bc =,则ABC 的面积是_________.15.已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为________.16.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C的一条渐近线的垂线,垂足为P.若1|PF OP =,则C 的离心率为_________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 求下列椭圆的标准方程: (Ⅰ)焦点在x 轴上,离心率35e =,且经过点A ; (Ⅱ)以坐标轴为对称轴,且长轴长是短轴长的3倍,并且与双曲线22135y x -=有相同的焦点. 18.(本小题满分12分)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(Ⅰ)求角C ;(Ⅱ)若c =ABCS=,求ABC 的周长. 19.(本小题满分12分)如图所示,在梯形ABCD 中,//,,1,AD BC AB BC AB BC PA ⊥==⊥平面ABCD ,CD PC ⊥.(Ⅰ)设M 为PC 的中点,证明:CD AM ⊥; (Ⅱ)若2PA AD ==,求点A 到平面PCD 的距离. 20.(本小题满分12分)在数列{}n a 中,112a =,()1122nn n a a n *+⎛⎫=-∈ ⎪⎝⎭N ,数列{}n b 满足()2n n n b a n *=⋅∈N .(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式; (Ⅱ)设2log n nnc a =,求数列12n n c c +⎧⎫⎨⎬⎩⎭的前n 项和n T . 21.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PAD 为正三角形,平面PAD ⊥平面ABCD ,E ,F 分别是,AD CD 的中点.(Ⅰ)证明:BD ⊥平面PEF ;(Ⅱ)若M 是PB 棱上一点,且3MB PM =,求三棱锥M PAD -与三棱锥P DEF -的体积之比. 22.(本小题满分12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为()2,0. (Ⅰ)当l 与x 轴垂直时,求直线AM 的方程; (Ⅱ)设O 为坐标原点,证明:OMA OMB ∠=∠.云天化中学2020~2021学年秋季学期半期测试题高二文科数学参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)解:(Ⅰ)因为焦点在x 轴上,即设椭圆的标准方程为22221(0)x y a b a b+=>>,∵椭圆经过点A ,∴2256415a b +=, ① 由已知35e =,∴35c a =,∴35c a =,∴2222235b a c a a ⎛⎫=-=- ⎪⎝⎭,即221625b a =, ② 把②代入①,得225201a a+=,解得225a =,∴216b =, ∴椭圆的标准方程为2212516x y +=. (5分) (Ⅱ)依题意知椭圆的焦点在y 轴上,设方程为22221(0)y x a b a b+=>>,且2222232,9,81,a b a a b b ⎧=⨯⎧=⎪⇒⎨⎨-==⎪⎩⎩∴椭圆的标准方程为2219y x +=. (10分) 18.(本小题满分12分)解:(Ⅰ)由已知及正弦定理可得2cos (sin cos sin cos )sin C A B B A C +=, ∴2cos sin()sin C A B C +=,∵A B C π++=,∴sin()sin A B C +=,∴2cos sin sin C C C =,又∵(0,)C π∈,∴sin 0C >,∴12cos 1cos 2C C =⇒=,∵(0,)C π∈,∴3C π=. (6分)(Ⅱ)11sin 6222ABCSab C ab ab =⇒=⋅⇒=, 又∵2222cos a b ab C c +-=,∴2213a b +=,∴2()255a b a b +=⇒+=,∴ABC 的周长为5+ (12分) 19.(本小题满分12分)(Ⅰ)证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA CD ⊥.又PC CD ⊥,PA PC P ⋂=,PA ⊂平面PAC ,PC ⊂平面PAC , ∴CD ⊥平面PAC .又M 为PC 的中点,所以AM ⊂平面PAC ,所以CD AM ⊥. (5分) (Ⅱ)解:如图,取AD 的中点K ,连接CK .∵,2,1AD BC AD AB BC ===∥,∴1AK KD ==,AK BC ∥, 故四边形ABCK 为平行四边形, 又AB BC ⊥,∴ABCK 为矩形,则1AC CK AB ===.所以CD =,在Rt PAC 中,∵2PA AD ==,∴PC =设A 到平面PCD 的距离为h ,由P ACD A PCD V V --=, 所以1133ACDPCDPA Sh S ⨯⨯=⨯⨯,所以11112213232h ⨯⨯⨯⨯=⨯⨯h =,所以A 与平面PCD . (12分) 20.(本小题满分12分)(Ⅰ)证明:由1122nn n a a +⎛⎫=- ⎪⎝⎭,即11221n n n n a a ++=-,而2n n n b a =,∴11n n b b +=-,即11n n b b +-=, 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是1(1)12nn n b n n a =+-⨯==,∴2n n na =. (6分) (Ⅱ)解:∵22log log 2n n n n c n a ===,∴122112(1)1n n c c n n n n +⎛⎫==- ⎪++⎝⎭.∴111111111212233411n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-=⎪++⎝⎭. (12分) 21.(本小题满分12分)(Ⅰ)证明:如图,连接AC ,∵PA PD =且E 是AD 的中点,∴PE AD ⊥.又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PE ⊂平面PAD , ∴PE ⊥平面ABCD .又BD ⊂平面ABCD ,∴BD PE ⊥.又ABCD 为菱形,且E ,F 分别为棱AD ,CD 的中点,∴//EF AC , ∵BD AC ⊥,∴BD EF ⊥,又BD PE ⊥,PE EF E ⋂=,∴BD ⊥平面PEF . (6分) (Ⅱ)解:如图,连接MA ,MD ,∵3MB PM =,∴14PM PB =,∴1144M PAD B PAD P ABD V V V ---==,又底面ABCD 为菱形,E ,F 分别是AD ,CD 的中点. ∴11112444PDEF F PED C PED C PAD P ADC P ABD V V V V V V ------=====,故1M PAD P DEF V V --=.∴三棱锥M PAD -与三棱锥P DEF -的体积之比为1∶1. (12分)22.(本小题满分12分)(Ⅰ)解:由已知得(1,0)F ,l 的方程为1x =.由己知可得,点A的坐标为⎛ ⎝⎭或1,2⎛- ⎝⎭. 所以AM的方程为2y x =-+2y x =- (4分) (Ⅱ)证明:当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,()11,A x y ,()22,B x y ,则12x x <<MA ,MB 的斜率之和为121222MA MB y y k k x x +=+--. 由11y kx k =-,22y kx k =-,得()()()12121223422MA MBkx x k x x k k k x x -+++=--.将(1)y k x =-代入2212x y +=,得()2222214220k x k x k +-+-=. 所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+, 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. (12分)。

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了第一学期期中考试高二数学,希望大家喜欢。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置上.1.已知命题,则 : .2.已知函数的导函数为,且满足,则 = .3.已知,,,为实数,且 .则是 - - 的条件.( 充分而不必要、必要而不充分、充要、既不充分也不必要)4. 有下列四个命题:(1)若,则的逆命题;(2)全等三角形的面积相等的否命题;(3)若,则有实根的逆命题;(4)若,则的逆否命题。

其中真命题的个数是_______.5.若是纯虚数,则的值是。

6.已知数列{an}的前n项和,则数列{an}成等比数列的充要条件是r= .7.计算8.函数,的单调递增区间是 .9.已知复数满足 =2,则的最大值为 .10.已知函数在处有极大值,则 = 。

11. 右图是函数的导函数的图象,给出下列命题:① 是函数的极值点;② 是函数的极小值点;③ 在处切线的斜率小于零;④ 在区间上单调递增.则正确命题的序号是 .12.观察下列等式: ,,根据上述规律,第五个等式为____________.13.已知扇形的圆心角为 (定值),半径为 (定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为,则按图二作出的矩形面积的最大值为 .14.若存在过点的直线与曲线和都相切,则等于 .二、解答题15.(本小题满分14分)已知为复数,和均为实数,其中是虚数单位.(Ⅰ)求复数 ;(Ⅱ)若复数在复平面上对应的点在第一象限,求实数的取值范围.16.(本小题满分14分)已知 p:,q: .⑴ 若p是q充分不必要条件,求实数的取值范围;⑵ 若非p是非q的充分不必要条件,求实数的取值范围.17.(本题满分15分) 已知二次函数在处取得极值,且在点处的切线与直线平行.(1)求的解析式;(2)求函数的单调递增区间.18. (本题满分15分) 已知a、b(0,+),且a+b=1,求证:(1) ab (2) + (3) + . (5分+5分+5分)19.(本小题满分16分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)按下列要求建立函数关系式:(i)设 (rad),将表示成的函数;并写出函数的定义域. (5分)(ii)设 (km),将表示成的函数;并写出函数的定义域. (5分)(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小? (6分)20.(本小题满分16分)已知函数的图象过点,且在点处的切线与直线垂直.(1) 求实数的值;(6分)(2) 求在 ( 为自然对数的底数)上的最大值;(10分) 2019~2019学年度第一学期期中考试高二数学试题(文科)参考答案一、填空题:本大题共14小题,每小题5分,共70分。

高二上学期期中考试数学(文科)试卷及参考答案

高二上学期期中考试数学(文科)试卷及参考答案

上学期期中考试卷 高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =+>,{}2,1,0,1B =--,则()A B R 等于( ). A .{}2,1-- B .{}2- C .{}1,0,1- D .{}0,1 2.已知命题:p x ∀∈R ,2210x +>,则p ⌝是( ). A .x ∀∈R ,2210x +≤B .x ∃∈R ,2210x +>C .x ∃∈R ,2210x +<D .x ∃∈R ,2210x +≤3.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)(1,2,,)i i x y i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( ).A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg4.设α,β是两个不同的平面,l 是一条直线,下列命题中:①若l α⊥,αβ⊥,则l β∥;②若l α∥,αβ∥,则l β∥;③若l α⊥,αβ∥,则l β⊥;④若l α∥,αβ⊥,则l β⊥.其中正确命题的个数是( ). A .1B .2C .3D .45.已知两条直线2y ax =-和3(2)10x a y -++=互相平行,则a 等于( ). A .1或3-B .1-或3C .1或3D .1-或3-6.已知θ为第一象限角,设(3,sin )a θ=-,(cos ,3)b θ=,且a b ⊥,则θ一定为( ). A .ππ()3k k +∈Z B .π2π()6k k +∈Z C .π2π()3k k +∈Z D .ππ()6k k +∈Z 7.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35B .33C .31D .298.若正三棱锥的正视图与俯视图如右图所示,底面是正三角形,则它的侧视图的面积为( ).A 3B .34C 3D .329.已知a ,b ,c 为集合{}1,2,3,4,5A =中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a ,则输出的数5a =的概率是( ).否a=ca=b 是a >b ?开始结束输入a ,b ,c 输出a a >c ?是否A .15B .25 C .35D .4510.已知实数x ,y 满足约束条件10,40,,x y x y y m +-⎧⎪+-⎨⎪⎩≥≤≥,若目标函数2z x y =+的最大值与最小值的差为2,则实数m 的值为( ). A .4B .3C .2D .12-11.函数()sin f x x =在区间(0,10π)上可找到n 个不同数1x ,2x ,,n x ,使得1212()()()n nf x f x f x x x x ===,则n 的最大值等于( ).A .8B .9C .10D .1112.已知奇函数4()f x x t x =++(t 为常数)和函数1()2xg x a ⎛⎫=+ ⎪⎝⎭,若对11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[1,0]x ∃∈-,使得12()()f x g x ≥,则a 实数的取值范围是( ).A .(,4]-∞B .(,3]-∞C .[4,)+∞D .[3,)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如果角α的终边过点(4sin30,4cos30)︒-︒,则sin α=__________.14.如图是甲、乙两人在5次综合测评中的成绩的茎叶图,其中一个数字被污损;则甲平均成绩超过乙的平均成绩的概率为__________.甲乙3388991207915.设13log 5a =,5log 9b =,0.315c ⎛⎫= ⎪⎝⎭,a ,b ,c 的大小关系(用“<”连接)是__________.16.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+. (1)求角A 的大小.(2)若1b =,ABC △,求c . 18. 已知各项为正数的数列}{n a 的前n 项和为n S ,并且满足:n S ,n a ,2成等差数列. (1)求数列}{n a 的通项公式.(2)若n n c n a =⋅,求数列}{n c 的前n 项和n T .19. 某校高二文科分四个班,各班人数恰好成等差数列,高二数学调研测试后,对四个文科班的学生试卷按每班人数进行分层抽样,对测试成绩进行统计,人数最少的班抽取了22人,抽取的所有学生成绩分为6组:[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),得到如图所示的频率分布直方图,其中第六组分数段的人数为5人.(1)求a 的值,并求出各班抽取的学生数各为多少人?(2)在抽取的学生中,任取一名学生,求分数不小于90分的概率(视频率为概率).(3)估计高二文科四个班数学成绩的平均分20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点,四面体E ACD -的体积为163. ECBAPD(1)求证:PB ∥平面ACE . (2)若四面体E ACD -的体积为23.求AB 的长. 21.已知⊙M 的半径为1,圆心M 的坐标为(,0)m ,其中24m ≤≤.OA ,OB 为该圆的两条切线,O 为坐标原点,A ,B 为切点,A 在第一象限,B 在第四象限. (1)若2m =时,求切线OA ,OB 的斜率. (2)若4m =时,求AMB △外接圆的标准方程.(3)当M 点在x 轴上运动时,将MA MB ⋅表示成m 的函数()m ϕ,并求函数()m ϕ的最小值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.已知函数22||,2,()(2), 2.x x f x x x -<⎧=⎨-⎩≥. (1)在给定的平面直角坐标系中,画出函数()f x 的草图,并写出函数()f x 的单调区间(不必写作图过程,单调性不必证明).(2)当2x ≥时,不等式()f x kx ≥恒成立,求实数k 的取值范围.上学期期中考试卷 高二数学(文科)答案一、选择题1-5:ADDAA 6-10:BCBCC 11、12:CB 二、填空题13. 14.45 15. a c b << 16.2三、解答题17.(1)在ABC △中,2222cos b c a bc A +-=, 又222b c a bc +=+, ∴1cos 2A =, ∵0πA <<, ∴π3A =. 综上所述:π3A =.(2)由1sin 2S bc A =,得3bc =, ∵1b =, ∴3c =. 综上所述:3c =.18.(1)∵2,n a ,n S 成等差数列, ∴22n n a S =+,∴1n =,1122a a =+,计算得出12a =. 当2n ≥时,1122n n a S --=+, ∴122n n n a a a --=,化为12n n a a -=,∴数列{}n a 成等比数列,首项为2,公比为2, ∴2n n a =.(2)2n n n c n a n =⋅=⋅, ∴数列{}n c 的前n 项和 22222322n n T n =+⨯+⨯++⋅,2312222(1)22n n n T n n +=+⨯++-⋅+⋅,∴231112(21)222222(1)2221n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,∴1(1)22n n T n +=-⋅+.19.(1)由频率分布条形图知,抽取的学生总数为51000.05=人. ∵各班被抽取的学生人数成等差数列,设其公差为d , 由4226100d ⨯+=,解得2d =.∴各班被抽取的学生人数分别是22人,24人,26人,28人.(2)在抽取的学生中,任取一名学生,则分数大小于90分的概率为0.350.250.10.050.75+++=.(3)750.05850.20950.351050.251150.101250.0598⨯+⨯+⨯+⨯+⨯+⨯=,平均成绩为98分.20.(1)证明:连接BD 交AC 于点O ,连接EO , ∵ABCD 是正方形, ∴点O 是BD 的中点, 又∵点E 是PD 的中点, ∴EO 是DPB △的中位线, ∴PB EO ∥,又∵EO ⊂平面ACE ,PB ⊄平面ACE , ∴PB ∥平面ACE .(2)取AD 的中点H ,连接EH , ∵点E 是PD 的中点, ∴EH PA ∥,又∵PA ⊥平面ABCD , ∴EH ⊥平面ABCD .设AB x =,则PA AD CD x ===,且1122EH PA x ==,所以3111111233262123E ACD ACD V S EH AD CD EH x x x x -=⨯=⨯⨯⨯⨯=⋅⋅⋅==△,解得2x =, 故AB 的长为221.(1)2m =时,圆M 为:22(2)1x y -+=.由题意设过O 点,圆M 的切线方程为y kx =,(k 不存在不成立),1=,解得k =. 所以OA,OB(2)由题意AMB △外接圆,圆心在x 轴上,设(,0)xP t , 由题意QM AM AM OM =,得14QM =,AQ =. 所以:222PQ AQ PM +=, 解得2t =.所以AMB △外接圆圆心为(2,0)P , 半径为2PM =.所以圆22:(2)4P x y -+=.(3)由(2)知2AM QM OM =得1QM m =,AQ =,所以1A m m ⎛-⎝⎭,1,B m m ⎛- ⎝⎭,(,0)M m ,所以222111(1),m MA MB m m m m ⎛⎛-⋅=-⋅-=- ⎝⎝⎭221m =-+. 所以22()1(24)m m m ϕ=-+≤≤, 所以当4m =时,()m ϕ取得最小值为78-.22.(1)()f x 在(,0)-∞和(2,)+∞上单调递增, 在(0,2)上单调递减.(2)由题意2(2)x kx -≥,在2x ≥上恒成立, 即kx 图像在2(2)x -下方(2)x ≥, 由题意得0k ≤.(3)∴22|2|,0(2),0x x f x x x --⎧-⎨<⎩≥,∵函数()()y f x g x =-恰好有四个零点, ∴方程()()0f x g x -=有四个解, 即()(2)0f x f x b +--=有四个解,即函数()(2)y f x f x =+-与y b =的图象有四个交点,222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩≤≤,作函数()(2)y f x f x =+-与y b =的图象如下:115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+-=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,结合图象可知,724b <<.。

高二第一学期期中测试数学试题(文科)及答案doc

高二第一学期期中测试数学试题(文科)及答案doc

高二第一学期期中测试数学试题(文科)参考公式:回归直线方程a x by ˆˆ+=∧,其中∑∑==∧--=n i i ni ii xn x yx n yx b 1221,x b y aˆˆ-= 一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合要求的) 1.设,a b 为非零实数,若a b <,0c ≠ 则下列不等式成立的是A. ac bc <B. 22a b < C. 22ac bc < D. a c b c -<+ 2.要完成下列两项调查:宜采用的抽样方法依次为①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.A .①随机抽样法,②系统抽样法B .①分层抽样法,②随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立......的两个事件是 A .至少有1个白球,都是白球 B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球4.一组数据的平均数是2 .8 ,方差是3 .6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是A .57.2 ,3.6B .57.2 ,56.4C .62.8 ,63.6D .62.8 ,3.65.当1x >时,关于函数 下列叙述正确的是A.函数()f x 有最小值2B.函数()f x 有最大值2C.函数()f x 有最小值3D.函数()f x 有最大值3 6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90% , 则甲、乙二人下成和棋的概率为A. 50%B. 30%C. 10%D. 60% 7.如右图所示的程序框图输出的结果是S =120 ,则判断框内应填写的条件是A. i ≤5?B. i>5?C. i ≤6?D. i>6?,11)(-+=x x x f354555658.已知回归直线斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是 A. 1.230.08y x ∧=+ B. 1.235y x ∧=+ C. 1.234y x ∧=+ D.0.08 1.23y x ∧=+9.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c ,若 A=2B ,则cosB 等于A. B. C. D.10.ABCD 为长方形,AB=2 ,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到点O 的距离大于1的概率为 A .4π B . 14π- C . 8π D .18π- 二、填空题(本大题共4小题,每小题5分,共20分)11.把5进制数4301(5)化为十进制数:4301(5)= 。

2021-2022年高二上学期期中数学试卷(文科) 含解析(V)

2021-2022年高二上学期期中数学试卷(文科) 含解析(V)

2021-2022年高二上学期期中数学试卷(文科)含解析(V)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.直线x﹣y+1=0的倾斜角为()A.B.C.D.2.命题:“∀x≥0,x2≥0”的否定是()A.∀x<0,x2<0 B.∀x≥0,x2<0 C.∃x<0,x2<0 D.∃x≥0,x2<0 3.若p是假命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.¬p是假命题D.¬q是假命题4.已知两平行直线3x﹣4y+1=0和3x﹣4y﹣4=0,则两直线的距离为()A.1 B.2 C.3 D.45.若三点A(﹣1,0),B(2,3),C(0,m)共线,则m的值为()A.1 B.﹣1 C.±1 D.26.已知命题p:x=1且y=1,命题q:x+y=2,则命题p是命题q的()条件.A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件7.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面8.若已知A(1,1,1),B(﹣3,﹣3,﹣3),则线段AB的长为()A.4 B.2 C.4 D.39.已知F1、F2是椭圆的两焦点,过点F2的直线交椭圆于A、B两点,在△AF1B中,若有两边之和是10,则第三边的长度为()A.6 B.5 C.4 D.310.如图是一个几何体的三视图,根据图中的数据可得该几何体的体积为()A.36πB.34πC.32πD.30π11.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.212.已知圆M:(x+)2+y2=36,定点N(,0),点P为圆M上的动点,点Q在NP 上,点G在线段MP上,且满足=2,•=0,则点G的轨迹方程为()A. +=1 B. +=1C.﹣=1 D.﹣=1二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.命题“若x2<2,则”的逆否命题是.14.已知直线过点(2,0)与(0,﹣3),则该直线的方程为.15.已知正三棱锥V﹣ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=2,则由该三棱锥的表面积为.16.如图,在平面直角坐标系xOy中,点A为椭圆E: +=1 (a>b>0)的左顶点,B,C在椭圆E上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆E 的离心率等于.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知直线的方程为3x﹣4y+2=0.(1)求过点(﹣2,2)且与直线l垂直的直线方程;(2)求直线x﹣y﹣1=0与2x+y﹣2=0的交点,且求这个点到直线的距离.18.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD.19.命题p:A={x||x﹣a|≤4},命题q:B={x|(x﹣2)(x﹣3)≤0}(1)若A∩B=∅,求实数a的取值范围.(2)若q是p的充分不必要条件,求实数a的取值范围.20.如图,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.(1)求证:BG⊥平面PAD;(2)求点G到平面PAB的距离.21.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为,(1)求圆C的方程;(II)从圆C外一点p(2,3)向圆引切线,求切线方程.22.已知椭圆C:的离心率为,且过点P(1,),F为其右焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点A(4,0)的直线l与椭圆相交于M,N两点(点M在A,N两点之间),若△AMF与△MFN的面积相等,试求直线l的方程.参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.直线x﹣y+1=0的倾斜角为()A.B.C.D.【考点】直线的倾斜角.【分析】x﹣y+1=0变为:y=x+1,求出它的斜率,进而求出倾斜角.【解答】解:将x﹣y+1=0变为:y=x+1,则直线的斜率k=1,由tan=1得,所求的倾斜角是,故选A.2.命题:“∀x≥0,x2≥0”的否定是()A.∀x<0,x2<0 B.∀x≥0,x2<0 C.∃x<0,x2<0 D.∃x≥0,x2<0【考点】命题的否定.【分析】将全称命题改为特称命题,即可得到结论.【解答】解:由全称命题的否定为特称命题,命题:“∀x≥0,x2≥0”的否定是“∃x≥0,x2<0”,故选:D.3.若p是假命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.¬p是假命题D.¬q是假命题【考点】复合命题的真假.【分析】利用复合命题的真假写出结果即可.【解答】解:p是假命题,q是假命题,¬p是真命题,¬q是真命题,可得p ∨q是假命题.故选:B.4.已知两平行直线3x﹣4y+1=0和3x﹣4y﹣4=0,则两直线的距离为()A.1 B.2 C.3 D.4【考点】两条平行直线间的距离.【分析】直接利用两平行直线间的距离公式,求得结果.【解答】解:两平行直线3x﹣4y+1=0和3x﹣4y﹣4=0间的距离为d==1,故选:A.5.若三点A(﹣1,0),B(2,3),C(0,m)共线,则m的值为()A.1 B.﹣1 C.±1 D.2【考点】三点共线.【分析】由三点A(﹣1,0),B(2,3),C(0,m)共线,可得,即(1,m)=λ•(3,3),由此求得m的值.【解答】解:∵三点A(﹣1,0),B(2,3),C(0,m)共线,∴,∴(1,m)=λ•(3,3)=(3λ,3λ),解得 m=1,故选A.6.已知命题p:x=1且y=1,命题q:x+y=2,则命题p是命题q的()条件.A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立,即可判断出结论.【解答】解:由p⇒q,反之不成立,例如取x=3,y=﹣1.∴命题p是命题q的充分不必要条件.故选:B.7.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【考点】平面的基本性质及推论;空间中直线与直线之间的位置关系.【分析】通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.【解答】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.8.若已知A(1,1,1),B(﹣3,﹣3,﹣3),则线段AB的长为()A.4 B.2 C.4 D.3【考点】空间两点间的距离公式.【分析】利用两点之间的距离求得AB的长.【解答】解:|AB|==4故选A9.已知F1、F2是椭圆的两焦点,过点F2的直线交椭圆于A、B两点,在△AF1B中,若有两边之和是10,则第三边的长度为()A.6 B.5 C.4 D.3【考点】椭圆的简单性质.【分析】由椭圆的定义得,所以|AB|+|AF2|+|BF2|=16,由此可求出|AB|的长.【解答】解:由椭圆的定义得两式相加得|AB|+|AF2|+|BF2|=16,又因为在△AF1B中,有两边之和是10,所以第三边的长度为:16﹣10=6故选A.10.如图是一个几何体的三视图,根据图中的数据可得该几何体的体积为()A.36πB.34πC.32πD.30π【考点】由三视图求面积、体积.【分析】根据几何体的三视图得出该几何体是半球体与圆锥体是组合体,结合图中数据求出几何体的体积.【解答】解:根据几何体的三视图知,该几何体是半球体与圆锥体是组合体,结合图中数据可得,球的半径R==3;所以该几何体的体积为=×πR3+πR2hV几何体=×π×33+π×32×4=30π.故选:D.11.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.2【考点】圆的一般方程;点到直线的距离公式.【分析】求出圆心坐标,代入点到直线距离方程,解得答案.【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.12.已知圆M:(x+)2+y2=36,定点N(,0),点P为圆M上的动点,点Q在NP 上,点G在线段MP上,且满足=2,•=0,则点G的轨迹方程为()A. +=1 B. +=1C.﹣=1 D.﹣=1【考点】轨迹方程.【分析】由=2,•=0,知Q为PN的中点且GQ⊥PN,可得|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,从而可求方程.【解答】解:由=2,•=0,知Q为PN的中点且GQ⊥PN,∴GQ为PN的中垂线,∴|PG|=|GN|∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距c=,∴短半轴长b=2,∴点G的轨迹方程是+=1.故选:A.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.命题“若x2<2,则”的逆否命题是“若|x|≥,则x2≥2”.【考点】四种命题.【分析】根据命题“若p则q”的逆否命题是“若¬q则¬p”,写出即可.【解答】解:命题“若x2<2,则”的逆否命题是“若|x|≥,则x2≥2”.故答案为:“若|x|≥,则x2≥2”.14.已知直线过点(2,0)与(0,﹣3),则该直线的方程为=1 .【考点】直线的两点式方程.【分析】由截距式,可得直线的方程.【解答】解:由截距式,可得直线的方程为=1.故答案为=1.15.已知正三棱锥V﹣ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=2,则由该三棱锥的表面积为 6 .【考点】由三视图求面积、体积.【分析】由题意:该三棱锥的底面正三角形的边长为2,侧棱长为2,求出各个面的面积,相加即可.【解答】解:正三棱锥V﹣ABC中,侧棱长VA=2,底面三角形的边长AC=2,可得底面面积为:×2×2×sin60°=3,侧面的侧高为: =1,故每个侧面的面积为:×2×1=,故该三棱锥的表面积为3+3×=6.故答案为:6.16.如图,在平面直角坐标系xOy中,点A为椭圆E: +=1 (a>b>0)的左顶点,B,C在椭圆E上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆E 的离心率等于.【考点】椭圆的简单性质.【分析】首先利用椭圆的对称性和OABC为平行四边形,可以得出B、C两点是关于Y轴对称,进而得到BC=OA=a;设B(﹣,y)C(,y),从而求出|y|,然后由∠OAB=∠COD=30°,利用tan30°=b/=,求得a=3b,最后根据a2=c2+b2得出离心率.【解答】解:∵AO是与X轴重合的,且四边形OABC为平行四边形∴BC∥OA,B、C两点的纵坐标相等,B、C的横坐标互为相反数∴B、C两点是关于Y轴对称的.由题知:OA=a四边形OABC为平行四边形,所以BC=OA=a可设B(﹣,y)C(,y)代入椭圆方程解得:|y|=b,设D为椭圆的右顶点,因为∠OAB=30°,四边形OABC为平行四边形所以∠COD=30°对C点:tan30°==解得:a=3b根据:a2=c2+b2得:a2=c2+e2=e=故答案为:.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知直线的方程为3x﹣4y+2=0.(1)求过点(﹣2,2)且与直线l垂直的直线方程;(2)求直线x﹣y﹣1=0与2x+y﹣2=0的交点,且求这个点到直线的距离.【考点】待定系数法求直线方程;点到直线的距离公式.【分析】(1)设与直线3x﹣4y+2=0垂直的直线方程为4x+3y+c=0,把点(﹣2,2)代入,能求出所求直线方程.(2)联立,得到直线x﹣y﹣1=0与2x+y﹣2=0的交点,再由点到直线的距离公式能求出这个点到直线的距离.【解答】解:(1)设与直线3x﹣4y+2=0垂直的直线方程为4x+3y+c=0,把点(﹣2,2)代入,得:﹣8+6+c=0,解得c=2,∴所求直线方程为4x+3y+2=0.(2)联立,得,∴直线x﹣y﹣1=0与2x+y﹣2=0的交点为A(1,0),点A(1,0)到直线3x﹣4y+2=0的距离:d==1.18.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD.【考点】空间中直线与直线之间的位置关系;直线与平面平行的判定.【分析】(1)推导出BC∥AD,由此能证明BC∥平面PDA.(2)推导出BC⊥CD,从而BC⊥平面PDC,由此能证明BC⊥PD.【解答】证明:(1)因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD.19.命题p:A={x||x﹣a|≤4},命题q:B={x|(x﹣2)(x﹣3)≤0}(1)若A∩B=∅,求实数a的取值范围.(2)若q是p的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断;交集及其运算.【分析】(1)命题p:A=[a﹣4,a+4],命题q:B=[2,3].根据A∩B=∅,可得a+4<2,或a﹣4>3,解得a范围.(2)q是p的充分不必要条件,则a﹣4≤2,3≤a+4,解得a范围.【解答】解:(1)命题p:A={x||x﹣a|≤4}=[a﹣4,a+4],命题q:B={x|(x ﹣2)(x﹣3)≤0}=[2,3].∵A∩B=∅,∴a+4<2,或a﹣4>3,解得a<﹣2,或a>7.∴实数a的取值范围是(﹣∞,﹣2)∪(7,+∞).(2)q是p的充分不必要条件,则a﹣4≤2,3≤a+4,解得1≤a≤6,∴实数a的取值范围是[1,6].20.如图,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.(1)求证:BG⊥平面PAD;(2)求点G到平面PAB的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(1)运用直线平面的垂直的性质,判定定理证明,(2)运用等积法得出vG﹣PAB =VA﹣PGB=a2×h=a2×a,即可求h的值.【解答】(1)证明:连接PG,∴PG⊥AD,∵平面PAG⊥平面ABCD ∴PG⊥平面ABCD,∴PG⊥GB,又ABCD是菱形,且∠BAD=60°,∴△ABD是等边三角形,∴GB⊥AD,∴GB⊥平面PAD.(2)解;设点G到平面PAB的距离为h,△PAB中,PA=AB=a∴面积S=•a•a=a2,∵vG﹣PAB =VA﹣PGB=a2×h=a2×a,∴h=a.21.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为,(1)求圆C的方程;(II)从圆C外一点p(2,3)向圆引切线,求切线方程.【考点】直线与圆相交的性质;直线与圆的位置关系.【分析】(I)设圆C的半径为r,根据圆心坐标写出圆的标准方程,利用点到直线的距离公式求出圆心到直线l的距离即为弦心距,然后根据垂径定理得到其垂足为弦的中点,由弦长的一半,圆心距及半径构成的直角三角形,根据勾股定理列出关于r的方程,求出方程的解即可得到r的值,从而确定圆C的方程;(II)当切线方程的斜率不存在时,显然得到x=2为圆的切线;当切线方程的斜率存在时,设出切线的斜率为k,由P的坐标和k写出切线方程,利用点到直线的距离公式求出圆心到所设直线的距离d,根据直线与圆相切,得到d等于圆的半径,列出关于k的方程,求出方程的解即可得到k的值,从而确定出切线的方程,综上,得到所求圆的两条切线方程.【解答】解:(I)设圆的方程为:(x﹣1)2+(y﹣1)2=r2因为圆心C到直线l的距离:d==,所以:r2=+=1,即r=1,圆的方程为:(x﹣1)2+(y﹣1)2=1;(II)当切线的斜率不存在时,显然x=2为圆的一条切线;当切线的斜率存在时,设切线的斜率为k,则切线方程为y﹣3=k(x﹣2),即:kx﹣y﹣2k+3=0由=1,解得k=,所以切线方程为y﹣3=(x﹣2),即3x﹣4y+6=0综上:所求的切线方程为x=2和3x﹣4y=6=0.22.已知椭圆C:的离心率为,且过点P(1,),F为其右焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点A(4,0)的直线l与椭圆相交于M,N两点(点M在A,N两点之间),若△AMF与△MFN的面积相等,试求直线l的方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆C:的离心率为,椭圆方程可化为,又点P(1,)在椭圆上,即可求得椭圆方程;(Ⅱ)易知直线l的斜率存在,设l的方程为y=k(x﹣4),与椭圆方程联立,借助于韦达定理,及△AMF与△MFN的面积相等,即可求得直线l的方程.【解答】解:(Ⅰ)∵椭圆C:的离心率为,∴,所以a=2c,b=c.…设椭圆方程为,又点P(1,)在椭圆上,所以,解得c=1,…所以椭圆方程为.…(Ⅱ)易知直线l的斜率存在,设l的方程为y=k(x﹣4),…由,消去y整理,得(3+4k2)x2﹣32k2x+64k2﹣12=0,…由题意知△=(32k2)2﹣4(3+4k2)(64k2﹣12)>0,解得.…设M(x1,y1),N(x2,y2),则①,②.因为△AMF与△MFN的面积相等,所以|AM|=|MN|,所以2x1=x2+4 ③…由①③消去x2得x1=④将x2=2x1﹣4代入②得x1(2x1﹣4)=⑤将④代入⑤,整理化简得36k2=5,解得,经检验成立.…所以直线l的方程为y=(x﹣4).…xx2月14日30486 7716 眖28254 6E5E 湞23511 5BD7 寗35036 88DC 補A27530 6B8A 殊Hg26914 6922 椢32357 7E65 繥40840 9F88 龈23788 5CEC 峬25128 6228 戨37184 9140 酀31379 7A93 窓。

高二文科上学期期中考试数学含参考答案

高二文科上学期期中考试数学含参考答案

高二数学(文科)上学期期中考试—、选择题(每小题5分,共60分)1、在半径为R 的圆内随机撒一粒黄豆,它落在圆内接正三角形内的概率是:() A 、B 、C 、D 、2、已知一组正数x 1,x 2,x 3,x 4的方差S 2=(x 12+x 22+x 32+x 42-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为:() A 、2B 、3C 、4D 、63、有3个兴趣小组,甲乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为:() A 、B 、C 、D 、4、一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终与正方体6个面的距离大于1称其为“安全飞行”,则蜜蜂安全飞行的概率为:() A 、B 、C 、D 、 5、已知m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A 、若m ∥α,n ∥α,则m ∥nB 、若α⊥β,m ⊥β,m ⊄α,则m ∥αC 、若α⊥β,m //α,则m ⊥βD 、若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β43π433ππ43π433414332213181161271836、直线l 经过l 1:x +y -2=0与l 2:x -y -4=0的交点P ,且过线段AB 的中点Q ,其中A (-1,3),B (5,1),则直线l 的方程是()A 、3x -y -8=0B 、3x +y +8=0C 、3x +y -8=0D 、3x -y +8=07、如图,在正方体ABCD -A 1B 1C 1D 1中,下列结论正确 的是()A 、A 1C 1∥ADB 、C 1D 1⊥ABC 、AC 1与CD 成45︒角D 、A 1C 1与B 1C 成60︒角8、用与球心O 距离为1的截面去截球,所得截面的面积为9π,则球的表面积为() A 、4πB 、10πC 、20πD 、40π 9、若直线l 1:y =kx -与l 2:2x +3y -6=0的交点M 在第一象限,则l 1的倾斜角的取值范围是()A 、(30︒,60︒)B 、(30︒,90︒)C 、(45︒,75︒)D 、(60︒,90︒)10、已知正方体的棱长为1,则它的内切球与外接球半径的比值为() A 、B 、C 、D 、11、已知圆锥的母线长为2cm ,底面直径为3cm ,则过该圆锥两条母线的截面面积的最大值为()A 、4cm 2B 、cm 2C 、2cm 2D 、cm 212、若直线a ∥平面α,直线b ⊥直线a ,则直线b 与平面α的333323332273473ABCD A 1B 1C 1D 1(第7题)位置关系是()A 、b ∥αB 、b ⊂αC 、b 与α相交D 、以上均有可能 二.填空题:(本题共4小题,每小题5分,共20分)13.椭圆的焦距为,则=。

2021年高二上学期联考(期中)数学(文)试题 含答案

2021年高二上学期联考(期中)数学(文)试题 含答案

2021年高二上学期联考(期中)数学(文)试题 含答案一、选择题:(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中有且只有一项是符合题目要求的).1、已知集合{31,},{4,6,8,10,12}A x x n n N B ==+∈=,则集合中的元素个数为( )A .B .C .D .2、已知点,,向量,则 ( )A .B .C .D .3、已知为等差数列,其前项和为,若,则下列各式一定为定值的是( ) A .B .C .D .4、在下列区间中,函数的零点所 在的区间为( ). A . B .C .D .5、执行如图1所示的程序框图,若输入的值为, 则输出的值是( ) A .1 B .2C .4D .76、某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ).A .y ^=-10x +200 B .y ^=10x +200 C .y ^=-10x -200 D .y ^=10x -2007、已知且,则是的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 8、函数的最小正周期和最小值分别为 ( ) A ., B ., C ., D .,图 19、已知双曲线的两条渐近线均与相切,则该双曲线离心率等于()A.B.C.D.10、给出如下四个命题:①若“”为真命题,则均为真命题;②“若”的否命题为“若,则”;③“”的否定是“”;④“”是“”的充分不必要条件.其中不正确的命题是 ( )A.①② B.②③C.①③ D.③④11、设是定义在上的增函数,且对于任意的都有恒成立. 如果实数满足不等式,那么的取值范围是().A. B. C. D.12、设函数的定义域为,若函数满足条件:存在,使在上的值域是则称为“倍缩函数”,若函数为“倍缩函数”,则的范围是( )A. B. D.二、填空题:(本大题共4个小题,每小题5分,共20分,将答案填写在题中的横线上).13、曲线在处的切线方程为____ ____.14、设变量满足,则的最大值为_________.15、在三棱锥中,,平面, . 若其主视图,俯视图如图所示,则其左视图的面积为.16、已知抛物线的焦点为,准线为直线,过抛物线上一点作于,若直线的倾斜角为,则.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17、(本小题满分10分)省教育厅为了解该省高中学校办学行为规范情况,从该省高中学校中随机抽取100所进行评估,并依据得分(最低60分,最高100分,可以是小数)将其分别评定为A、B、C、D 四个等级,现将抽取的100所各学校的评估结果统计如下表:CDBA俯视图频率m 0.62 0.32 2m(Ⅰ)求根据上表求m的值,并估计这100所学校评估得分的平均数;(Ⅱ)从评定等级为D和A的学校中,任意抽取2所,求抽取的两所学校等级相同的概率.18、(本小题满分12分)函数(其中)的图象如图所示,把函数的图象向右平移个单位,再向下平移1个单位,得到函数的图象.(Ⅰ)求函数的表达式;(Ⅱ)已知内角的对边分别为,且.若向量与共线,求的值.19、(本小题满分12分)如图, 已知四边形和均为直角梯形,∥、∥,且,平面⊥平面,,.求证: (Ⅰ);(Ⅱ)求证:∥平面;20、(本小题满分12分)已知数列中,(Ⅰ)求证;数列为等比数列,并求数列的通项;(Ⅱ)若数列满足,数列的前项和为,求.21、(本小题满分12分)已知椭圆:,若椭圆上的一动点到右焦点的最短距离为,且右焦点到直线的距离等于短半轴的长.已知点,过点的直线与椭圆交于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围.22、(本小题满分12分)已知函数.(Ⅰ)解不等式;(Ⅱ)当时,恒成立,求实数的取值范围.高二文数答案一、B A C C C A C D D C B A12、解:函数为“倍缩函数”,且满足存在,使在上的值域是,在上是增函数;即;方程有两个不等的实根,且两根都大于;设, 有两个不等的实根,且两根都大于;即解得,故选A.二、填空题:13、14、_2__.15.16、.三、解答题:17、解:(Ⅰ)由上表知:设所学校评估得分的平均数为,则650.02750.62850.32950.0478.8x=⨯+⨯+⨯+⨯=分.(Ⅱ)由(1)知等级为A的学校有4所记作:;等级为的学校有所记作:从中任取两所学校取法有、、、、、、、、、、、、、、共种.记事件为”从中任取两所学校其等级相同”,则事件包含的基本事件有、、、、、、共个故18、解;(Ⅰ)由函数的图象,,得,又,所以.由图像变换,得.(Ⅱ)∵,即∵,,∴,∴.∵共线,∴.由正弦定理,得①∵,由余弦定理,得②解方程组①②,得.19、证明:(Ⅰ)由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC, 平面BCEG,EC⊥平面ABCD,又CD平面BCDA, 故EC⊥CD(Ⅱ)在平面BCEG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且MG∥AD,MG=AD,故四边形ADMG为平行四边形,AG∥DM∵DM平面BDE,AG平面BDE,AG∥平面BDE20、解:(Ⅰ)由题知,1a n+1=a n+3a n=3a n+1,∴1a n+1+12=3⎝⎛⎭⎪⎫1a n+12,又数列是以3为公比,为首项的等比数列∴1a n +12=⎝ ⎛⎭⎪⎫1a 1+12·3n -1=3n2, ∴a n =23n -1. (Ⅱ)由(Ⅰ)知,b n =(3n-1)·n2n ·23n -1=n ·⎝ ⎛⎭⎪⎫12n -1,T n =1×1+2×⎝ ⎛⎭⎪⎫121+3×⎝ ⎛⎭⎪⎫122+…+n ·⎝ ⎛⎭⎪⎫12n -1,12T n =1×12+2×⎝ ⎛⎭⎪⎫122+…+()n -1⎝ ⎛⎭⎪⎫12n -1+n ⎝ ⎛⎭⎪⎫12n ,两式相减得,12T n =1+12+122+…+12n -1-n 2n =1-⎝ ⎛⎭⎪⎫12n1-12-n 2n =2-n +22n , ∴T n =4-n +22n -1.21、解:(Ⅰ)由题意知, 解得, 故椭圆的方程.(Ⅱ)由题意知直线的斜率存在,设直线的方程为. 由 得. ①设点,,22222212221222212122(16)4(21)(324)1696016213242112(4)(4)21k k k k k x x k k x x k k y y k x x k ⎧=--+-=->⎪⎪+=⎪+⎪⎨-=⎪+⎪⎪=--=⎪+⎩212122244426==222121k OM ON x x y y k k -+=-++,即 .22、解:(Ⅰ)当时,由得 所以当时,由得 所以综上,原不等式的解集是(Ⅱ) 由题意得即在上恒成立 ① 当时,恒成立,所以 ② 当时,原不等式变形为 设,因为当时, ,所以在上单调递减当时,,所以③当时,原不等式变形为又,当时,,所以综上所述,实数的取值范围是26904 6918 椘23417 5B79 孹 26627 6803 栃uu28328 6EA8 溨^24394 5F4A 彊427073 69C1 槁21993 55E9 嗩36365 8E0D 踍31816 7C48 籈31369 7A89 窉。

高二上学期期中考试数学(文)试卷Word版含答案

高二上学期期中考试数学(文)试卷Word版含答案

数学试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :∀x ∈R ,x >sin x ,则p 的否定形式为( )A .∃x 0∈R ,x 0<sin x 0B .∀x ∈R ,x ≤sin xC .∃x 0∈R ,x 0≤sin x 0D .∀x ∈R ,x <sin x 2.不等式2654x x +<的解集为( ) A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D .14,23⎛⎫- ⎪⎝⎭3.离心率为32,长轴长为6的椭圆的标准方程是( ) A .22195x y += B .22195x y +=或22159x y += C .2213620x y += D .2213620x y +=或2212036x y += 4.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y +x -1≤0,y -3x -1≤0,y -x +1≥0,则z =2x +y 的最大值为( )A .4B .2C .1D .-45.在等比数列{}n a 中,若34567243a a a a a =,则279a a 的值为( )A.9B.6C.3D.26.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .221169x y +=B .2211612x y +=C .22143x y += D .22134x y += 7.已知数列}{n a 中,5,321==a a 且对于大于2的正整数,总有21---=n n n a a a ,则2009a 等于( ).A .-5B .-2C .2D .3.8.下表给出一个“直角三角形数阵”: 14 12, 14 34, 38,316 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则83a 等于( ) A.18 B.14 C.12 D .19.设0,0.ab >>1133a b a b+与的等比中项,则的最小值为( )A . 8B .14C . 1D . 4 {}(),1.1089等于值时,取得最小正有最大值,那么当项和且它的前是等差数列,若数列n S S n a aa n n n -< A .14B .15C .16D .1711.已知命题p :实数m 满足01≤-m ,命题q :函数xm y )49(-=是增函数。

【高二】高二上册数学文科期中试卷(带答案)

【高二】高二上册数学文科期中试卷(带答案)

【高二】高二上册数学文科期中试卷(带答案)昆明三中2021-2021学年度高二年级上学期期中试题数学()(共100分,考试时间120分钟)第一卷一、(每小题3分,共36分.每小题只有一项是符合题目要求)1.如果抛物线y2=4x通过点P(3),则点P到抛物线焦点的距离等于()a.94b.4c.134d.32.如果双曲线x2+y2=1的虚轴长度是实轴长度的两倍,则等于()a.-14 b.-4 c.4 d.143.命题:“如果A2+B2=0(a,B∈ R),那么a=b=0“,反命题是()a.若a≠b≠0(a,b∈r),则a2+b2≠0b、如果a=b≠ 0(a,B)∈ R)然后是A2+B2≠ 0c.若a≠0且b≠0(a,b∈r),则a2+b2≠0d、如果≠ 0或B≠ 0(a,B)∈ R)然后是A2+B2≠ 04.不等式组x≥0,x+3y≥4,3x+y≤4,所表示的平面区域的面积等于( )a、 32b、 23c、 43d、 345.“>n>0”是“方程x2+ny2=1表示焦点在y轴上的椭圆”的( )a、充分和不必要条件B.必要和充分条件c.必要而不充分条件d.既不充分也不必要条件6.已知点P是抛物线y2=4x上的点,点P到直线的距离为D1x+2y+10=0的距离为d2,则d1+d2的最小值是( )a、五,b、四,c、 1155d、 1157.设a∈r,则a>1是1a<1的( )a、充分但不必要的条件B.必要但不充分的条件c.充要条件d.既不充分也不必要条件8.如果命题“非p或非Q”是一个假命题,则以下结论中正确的命题是()①命题“p且q”是真命题② 命题“P和Q”是一个错误命题③命题“p或q”是真命题④ 命题“P或Q”是一个错误命题a.①③b.②④c.②③d.①④9.如果命题a是命题B的充要条件,命题C是命题B的充要条件,命题D是命题C的充要条件,那么命题D是()a.充分不必要条件b.必要不充分条件c、充分必要条件D.既不充分也不必要条件10.设平面区域d是由双曲线y2-x24=1的两条渐近线和椭圆x22+y2=1的右准线所围成的三角形(含边界与内部).若点(x,y)∈d,则目标函数z=x+y的最大值为( )a、一,b、二,c、三,d、六,11.在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为( )a、-5b.1c.2d.312.已知抛物线c的方程为x2=12y,过点a(0,-1)和点b(t,3)的直线与抛物线c没有公共点,则实数t的取值范围是( )a、(-∞,-1)∪(1,+∞)b、(-∞,-22)∪(22,+∞)c.(-∞,-22)∪(22,+∞)d.(-∞,-2)∪(2,+∞)昆明市第三中学二年级2022-2022学年第一学期期中考试试题数学()第二卷题号一二三总分十七亿一千八百一十九万二千零二十一得分二、问题:(本主要问题共有4个子问题,每个子问题得3分,共计12分。

2021-2022年高二上学期期中数学试卷(文科) 含解析(VI)

2021-2022年高二上学期期中数学试卷(文科) 含解析(VI)

2021-2022年高二上学期期中数学试卷(文科)含解析(VI)一.选择题(每题5分,共60分)1.直线y=﹣x+的斜率为()A.﹣B.C.D.2.两条异面直线,指的是()A.在空间内不相交的两条直线B.分别位于两个不同平面内的两条直线C.某一平面内的一条直线和这个平面外的一条直线D.不在同一平面内的两条直线3.在平面直角坐标系中,已知点A(﹣1,2),B(3,0),那么线段AB中点的坐标为()A.(2,2)B.(1,1)C.(﹣2,﹣2)D.(﹣1,﹣1)4.如图所示的直观图,其表示的平面图形是()A.正三角形B.直角三角形 C.钝角三角形 D.锐角三角形5.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)6.已知两条直线y=ax﹣2和y=(a+2)x+1互相垂直,则a等于()A.2 B.1 C.0 D.﹣17.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9π B.10πC.11πD.12π8.已知平面α与平面β交于直线l,且直线a⊂α,直线b⊂β,则下列命题错误的是()A.若α⊥β,a⊥b,且b与l不垂直,则a⊥lB.若α⊥β,b⊥l,则a⊥bC.若a⊥b,b⊥l,且a与l不平行,则α⊥βD.若a⊥l,b⊥l,则α⊥β9.已知直线l的斜率,则直线倾斜角的范围为()A.B.C.D.10.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()A.B.C.D.11.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC12.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.上述命题中,正确命题的个数是()A.0 B.1 C.2 D.3二.填空题(每空5分,共20分)13.(文)已知圆锥的母线长l=5cm,高h=4cm,则该圆锥的体积是cm3.14.已知直线l:ax+(1﹣2a)y+1﹣a=0则直线恒过定点.15.已知棱长为1的立方体ABCD﹣A1B1C1D1,则从顶点A经过立方体表面到达正方形CDD1C1中心M的最短路线有条.16.①两条平行直线L1 L2分别过P(﹣1,3),Q(2,﹣1)它们分别绕P、Q旋转,但始终保持平行,则L1与L2之间的距离d的取值范围是(0,4)②x2+y2﹣2x﹣4y+6=0表示一个圆的方程.③过点(﹣2,﹣3)且在两坐标轴上的截距相等的直线l的方程为x+y=5.④直线ax+by+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值为﹣2.其中错误的命题是.三.解答题(共70分,第17题10分,其他各12分)17.求经过三点A(0,3)、B(4,0),C(0,0)的圆的方程.18.如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC=BC,M,N分别是棱CC1,AB的中点.(1)求证:CN⊥平面ABB1A1;(2)求证:CN∥平面AMB1.19.已知如图,四边形ABCD是等腰梯形,AB∥DC,A(﹣1,﹣2),B(6,5),D(0,2).(Ⅰ)求点C的坐标.(Ⅱ)求等腰梯形ABCD对角线交点M的坐标.20.在坐标系中有两点P(2,3),Q(3,4).求(1)在y轴上求出一点M,使得MP+MQ的值最小;(2)在x轴上求出一点N,使得NQ﹣NP的值最大.21.在四棱锥P﹣ABCD 中,△PAD 为等边三角形,底面ABCD为等腰梯形,满足AB∥CD,AD=DC=AB=2,且平面PAD⊥平面ABCD.(Ⅰ)证明:BD⊥平面PAD;(Ⅱ)求点C到平面PBD的距离.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.参考答案与试题解析一.选择题(每题5分,共60分)1.直线y=﹣x+的斜率为()A.﹣B.C.D.【考点】直线的点斜式方程.【分析】利用直线的斜截式y=kx+b,即可知道直线的斜率为k,进而求出答案.【解答】解:∵直线的方程为y=﹣x+,由直线的斜截式可知:直线的斜率为.故选A.2.两条异面直线,指的是()A.在空间内不相交的两条直线B.分别位于两个不同平面内的两条直线C.某一平面内的一条直线和这个平面外的一条直线D.不在同一平面内的两条直线【考点】异面直线的判定.【分析】直接由异面直线的定义,判断选项的正误即可.【解答】解:A两条直线可能平行,所以不正确.B分别位于两个不同平面内的两条直线,可能还在另一个平面,不正确.C某一平面内的一条直线和这个平面外的一条直线可能在同一个平面,不正确.D是异面直线的定义,正确.3.在平面直角坐标系中,已知点A(﹣1,2),B(3,0),那么线段AB中点的坐标为()A.(2,2)B.(1,1)C.(﹣2,﹣2)D.(﹣1,﹣1)【考点】中点坐标公式.【分析】利用两点的中点坐标公式,直接求解即可.【解答】解:由中点坐标公式可得,点A(﹣1,2),B(3,0),那么线段AB中点的坐标为:(),即(1,1).故选B.4.如图所示的直观图,其表示的平面图形是()A.正三角形B.直角三角形 C.钝角三角形 D.锐角三角形【考点】平面图形的直观图.【分析】因为在做直观图时,平行性不变.BC∥y′轴,故在原图中平行于y轴,而AC平行于x′轴,在原图中平行于x轴,故BC⊥AC,即可判断三角形的形状.【解答】解:因为BC∥y′轴,故在原图中平行于y轴,而AC平行于x′轴,在原图中平行于x轴,故BC⊥AC,即三角形的形状为直角三角形.故选B.5.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】简单空间图形的三视图.【分析】根据三视图的作法,判断正方体、圆锥、圆柱、球的三视图中,满足题意的几何体即可.【解答】解:(1)的三视图中正视图、左视图、俯视图都是正方形,满足题意;(2)(3)的左视图、正视图是相同的,俯视图与之不同;(4)的三视图都是圆,满足题意;故选D6.已知两条直线y=ax﹣2和y=(a+2)x+1互相垂直,则a等于()A.2 B.1 C.0 D.﹣1【考点】两条直线垂直与倾斜角、斜率的关系.【分析】两直线ax+by+c=0与mx+ny+d=0垂直⇔am+bn=0解之即可.【解答】解:由y=ax﹣2,y=(a+2)x+1得ax﹣y﹣2=0,(a+2)x﹣y+1=0因为直线y=ax﹣2和y=(a+2)x+1互相垂直,所以a(a+2)+1=0,解得a=﹣1.故选D.7.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9π B.10πC.11πD.12π【考点】由三视图求面积、体积.【分析】由题意可知,几何体是由一个球和一个圆柱组合而成的,依次求表面积即可.【解答】解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面为S=4π×12+π×12×2+2π×1×3=12π故选D.8.已知平面α与平面β交于直线l,且直线a⊂α,直线b⊂β,则下列命题错误的是()A.若α⊥β,a⊥b,且b与l不垂直,则a⊥lB.若α⊥β,b⊥l,则a⊥bC.若a⊥b,b⊥l,且a与l不平行,则α⊥βD.若a⊥l,b⊥l,则α⊥β【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面平行或垂直以及平面和平面平行或者垂直的性质和判定定理进行判断即可.【解答】解:A.若α⊥β,a⊥b,且b与l不垂直,则a⊥l,正确B.若α⊥β,b⊥l,则b⊥α,∵a⊂α,∴a⊥b,正确C.∵a与l不平行,∴a与l相交,∵a⊥b,b⊥l,∴b⊥α,则α⊥β正确.D.若a⊥l,b⊥l,不能得出α⊥β,因为不满足面面垂直的条件,故D错误,故选:D9.已知直线l的斜率,则直线倾斜角的范围为()A.B.C.D.【考点】直线的倾斜角.【分析】设直线倾斜角为θ,由直线l的斜率,肯定,即可得出.【解答】解:设直线倾斜角为θ,∵直线l的斜率,∴,∴θ∈∪.故选:B.10.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()A.B.C.D.【考点】简单组合体的结构特征.【分析】因为正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,可以设出球半径r,求解再做比即可.【解答】解:设球的半径为r;正三棱锥的底面面积,h=2r,.所以故选A.11.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC【考点】平面与平面垂直的判定.【分析】由题意推出CD⊥AB,AD⊥AB,推出AB⊥平面ADC,可得平面ABC⊥平面ADC.【解答】解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°∴BD⊥CD又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD故CD⊥平面ABD,则CD⊥AB,又AD⊥AB故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.12.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.上述命题中,正确命题的个数是()A.0 B.1 C.2 D.3【考点】点到直线的距离公式.【分析】题目中点到直线的距离,分别为p、q,由于p、q的范围是常数p≥0,q≥0,所以对p、q进行分类讨论,验证①②③是否成立.【解答】解:①正确,此点为点O;②正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有无数个点,从而可知有且仅有2个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点.故选:D.二.填空题(每空5分,共20分)13.(文)已知圆锥的母线长l=5cm,高h=4cm,则该圆锥的体积是12πcm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用勾股定理可得圆锥的底面半径,那么圆锥的体积=×π×底面半径2×高,把相应数值代入即可求解.【解答】解:∵圆锥的高是4cm,母线长是5cm,∴圆锥的底面半径为3cm,∴圆锥的体积=×π×32×4=12πcm3.故答案为:12π.14.已知直线l:ax+(1﹣2a)y+1﹣a=0则直线恒过定点(﹣1,﹣1).【考点】恒过定点的直线.【分析】直线方程即 a(x﹣2y﹣1)+(y+1)=0,一定经过x﹣2y﹣1=0和y+1=0 的交点,联立方程组可求定点的坐标.【解答】解:直线l:ax+(1﹣2a)y+1﹣a=0即 a(x﹣2y﹣1)+(y+1)=0,根据a的任意性可得,解得x=﹣1,y=﹣1,∴当a取不同的实数时,直线l:ax+(1﹣2a)y+1﹣a=0恒过一个定点,这个定点的坐标是(﹣1,﹣1).故答案为(﹣1,﹣1).15.已知棱长为1的立方体ABCD﹣A1B1C1D1,则从顶点A经过立方体表面到达正方形CDD1C1中心M的最短路线有 2 条.【考点】多面体和旋转体表面上的最短距离问题.【分析】由题意,经过边DD1或DC时,路线最短,即可得出结论.【解答】解:由题意,经过边DD1或DC时,路线最短,有2条.故答案为:2.16.①两条平行直线L1 L2分别过P(﹣1,3),Q(2,﹣1)它们分别绕P、Q旋转,但始终保持平行,则L1与L2之间的距离d的取值范围是(0,4)②x2+y2﹣2x﹣4y+6=0表示一个圆的方程.③过点(﹣2,﹣3)且在两坐标轴上的截距相等的直线l的方程为x+y=5.④直线ax+by+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值为﹣2.其中错误的命题是①②③.【考点】圆的一般方程.【分析】①当PQ⊥l1,PQ⊥l2时,利用平行直线l1,l2的距离取得最大值|PQ|.于是可得:平行直线l1,l2之间的距离d的取值范围是,(0,|PQ|].②由题意验证D2+E2﹣4F的符号可得.③分情况讨论,直线过原点和不过原点两种情况.④由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.【解答】解:①当PQ⊥l1,PQ⊥l2时,利用平行直线l1,l2的距离取得最大值|PQ|==5.所以平行直线l1,l2之间的距离d的取值范围是(0,5).故错误;②由题意可得D=﹣2,E=4,F=6,∴D2+E2﹣4F=4+16﹣36=﹣16<0,∴方程x2+y2﹣2x+4y+6=0不表示任何图形,故错误;③直线过原点时,由两点式易得,直线方程为y=x,故错误;④解:圆x2+y2﹣2ax+a=0可化为(x﹣a)2+y2=a2﹣a∴圆心为:(a,0),半径为:圆心到直线的距离为:d==.∵直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,∴a2+1+1=a2﹣a,∴a=﹣2.故正确.故答案是:①②③.三.解答题(共70分,第17题10分,其他各12分)17.求经过三点A(0,3)、B(4,0),C(0,0)的圆的方程.【考点】圆的一般方程.【分析】由题意,经过三点A(0,3)、B(4,0),C(0,0),是以A(0,3)、B (4,0)连线为直径的圆,求出圆心与半径,即可求出圆的方程.【解答】解:由题意,经过三点A(0,3)、B(4,0),C(0,0),是以A(0,3)、B(4,0)连线为直径的圆,所以圆心坐标为(2,1.5),半径为2.5,所以圆的方程为(x﹣2)2+(y﹣1.5)2=6.25.18.如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC=BC,M,N分别是棱CC1,AB的中点.(1)求证:CN⊥平面ABB1A1;(2)求证:CN∥平面AMB1.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)证明AA1⊥CN,CN⊥AB,即可证明CN⊥平面ABB1A1;(2)设AB1的中点为P,连接NP、MP,利用三角形中位线的性质,可得线线平行,利用线面平行的判定,可得CN∥平面AMB1.【解答】证明:(1)∵三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,CN⊂平面ABC,∴AA1⊥CN,∵AC=BC,N是棱AB的中点,∴CN⊥AB,∵AA1∩AB=A,∴CN⊥平面ABB1A1;(2)设AB1的中点为P,连接NP、MP∵M、N分别是棱CC1、AB的中点∴CM∥AA1,且CM=AA1,NP∥AA1,且NP=AA1,∴CM∥NP,CM=NP∴CNPM是平行四边形,∴CN∥MP∵CN⊄平面AMB1,MP⊂平面AMB1,∴CN∥平面AMB1.19.已知如图,四边形ABCD是等腰梯形,AB∥DC,A(﹣1,﹣2),B(6,5),D(0,2).(Ⅰ)求点C的坐标.(Ⅱ)求等腰梯形ABCD对角线交点M的坐标.【考点】平面向量的坐标运算;两条直线的交点坐标.【分析】(I)利用向量共线定理和模的计算公式即可得出;(II)分别求出直线AC与BD的方程即可得出.【解答】解(Ⅰ)设C(x,y).∵A(﹣1,﹣2),B(6,5),D(0,2),∴,,,由已知,AB∥DC,,∴,解得或.当x=7,y=9时,四边形ABCD是平行四边形,舍去.∴x=2,y=4,即C(2,4).(Ⅱ)由(Ⅰ)知,直线AC的方程是,即y=2x,直线BD的方程是.解方程组,得,∴.20.在坐标系中有两点P(2,3),Q(3,4).求(1)在y轴上求出一点M,使得MP+MQ的值最小;(2)在x轴上求出一点N,使得NQ﹣NP的值最大.【考点】两点间距离公式的应用.【分析】(1)作出P点关于y轴的对称点P′,连接P′Q与y轴的交点即为M;(2)连接PQ并延长,与x轴交点就是N.【解答】解:(1)作出P点关于y轴的对称点P′,连接P′Q与y轴的交点即为M;∵P(2,3),Q(3,4).∴P′的坐标为(﹣2,3),故直线P′Q方程为:x﹣5y+17=0,令x=0,则y=,即M点坐标为(0,).(2)连接PQ并延长,与x轴交点就是N.∵P(2,3),Q(3,4).故直线PQ方程为:x﹣y+1=0,令y=0,则x=﹣1,即N点坐标为(﹣1,0)时,NQ﹣NP的值最大.21.在四棱锥P﹣ABCD 中,△PAD 为等边三角形,底面ABCD为等腰梯形,满足AB∥CD,AD=DC=AB=2,且平面PAD⊥平面ABCD.(Ⅰ)证明:BD⊥平面PAD;(Ⅱ)求点C到平面PBD的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)在梯形ABCD中,取AB中点E,连结DE,推导出点D在以AB为直径的圆上,由此能证明BD⊥平面PAD.(Ⅱ)取AD中点O,连结PO,则PO⊥AD,设C到平面PBD的距离为h,由VP﹣BCD =VC﹣PBD,能求出点C到平面PBD的距离.【解答】证明:(Ⅰ)在梯形ABCD中,取AB中点E,连结DE,则DE∥BC,且DE=BC,故DE=,即点D在以AB为直径的圆上,∴BD=AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面PAD.解:(Ⅱ)取AD中点O,连结PO,则PO⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD,由(Ⅰ)知△ABD和△PBD都是直角三角形,∴BD==2,∴=2, =,解得PO=,设C到平面PBD的距离为h,由VP﹣BCD =VC﹣PBD,得=,解得h=,∴点C到平面PBD的距离为.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.【考点】点、线、面间的距离计算;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)通过证明BC⊥平面PAB,即可证明平面PBC⊥平面PAB;(Ⅱ)在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,利用线面平行的判定定理,证明MN∥平面ABCD;(Ⅲ)AM的长就是点A到MN的距离,A到直线MN距离的最小值就是A到线段PB的距离.【解答】证明:(Ⅰ)在正方形ABCD中,AB⊥BC.….因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.….又AB∩PA=A,AB,PA⊂平面PAB,….所以BC⊥平面PAB.….因为BC⊂平面PBC,所以平面PBC⊥平面PAB.….(Ⅱ)由(Ⅰ)知,BC⊥平面PAB,PB⊂平面PAB,所以BC⊥PB.….在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,….又BC⊂平面ABCD,MN⊄平面ABCD,….所以MN∥平面ABCD.….解:(Ⅲ)因为MN∥BC,所以MN⊥平面PAB,….而AM⊂平面PAB,所以MN⊥AM,….所以AM的长就是点A到MN的距离,….而点M在线段PB上所以A到直线MN距离的最小值就是A到线段PB的距离,在Rt△PAB中,AB=3,PA=4,所以A到直线MN的最小值为.….xx1月15日29517 734D 獍32111 7D6F 絯38809 9799 鞙21033 5229 利33813 8415 萕37469 925D 鉝w 32558 7F2E 缮 20949 51D5 凕{31303 7A47 穇27284 6A94 檔32920 8098 肘。

2019-2020年高二上学期期中数学试卷(文科) 含解析

2019-2020年高二上学期期中数学试卷(文科) 含解析

2019-2020年高二上学期期中数学试卷(文科)含解析一.选择题(本大题共12题,每题5分,共60分)1.椭圆的离心率为()A.B.C.2 D.42.设a,b∈R,则“a>b”是“|a|>|b|”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.已知||=1,||=,|﹣2|=,则向量,的夹角为()A.B.C.D.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=5.给出下列命题:(1)“若xy=1,则x,y互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若m≤1,则x2﹣2x+m=0有实根”的逆否命题;(4)“若A∩B=B,则A⊆B”的逆否命题.其中为真命题的是()A.(1)(2) B.(2)(3) C.(1)(2)(3) D.(3)(4)6.已知椭圆的长轴是8,离心率是,此椭圆的标准方程为()A.B.或C.D.或7.若向量、、两两所成的角相等,且||=1,||=1,||=3,则|++|等于()A.2 B.5 C.2或5 D.或8.设=(1,2),=(1,1)且与+λ的夹角为锐角,则实数λ的取值范围是()A.(﹣,0)∪(0,+∞)B.(﹣,+∞)C.[﹣,0)∪(0,+∞)D.(﹣,0)9.已知方程﹣=1表示双曲线,那么k的取值范围是()A.k>5 B.﹣2<k<2 C.k>2或k<﹣2 D.k>5或﹣2<k<210.设D为△ABC所在平面内一点,,则()A.B.C.D.11.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A. B.6 C. D.1212.设双曲线的焦点为F1、F2,过F1作x轴的垂线与该双曲线相交,其中一个交点为M,则||=()A.5B.4C.3D.2二.填空题(本大题共4题,每题5分,共20分)13.命题“∃∈R,x2+2x+5=0”的否定是.14.若命题p:曲线﹣=1为双曲线,命题q:函数f(x)=(4﹣a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是.15.已知点F1(﹣4,0),F2(4,0),动点P满足|PF2|﹣|PF1|=4,则动点P的轨迹方程为.16.在直角三角形ABC中,∠C=,AB=2,AC=1,若=,则•=.三.解答题(本大题共6题,共70分)17.求符合下列条件的双曲线的标准方程(1)焦点在x轴上,顶点间的距离为6,渐近线方程为y=±(2)与椭圆+=1共焦点,它们的离心率之和为.18.已知,的夹角为60°,,,当实数k为何值时,(1)(2).19.已知点P是椭圆+=1上的一点,且以点P及焦点F1,F2为顶点的三角形面积等于1,求点P的坐标.20.在四边形ABCD中,已知∥,=(6,1),=(x,y),=(﹣2,﹣3).(1)求用x表示y的关系式;(2)若⊥,求x、y值.21.已知椭圆C: +=1(a>b>0)上的动点到焦点距离的最小值为.以原点为圆心、椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,P为椭圆上一点,且满足+=t(O为坐标原点).当|AB|=时,求实数t的值.22.已知椭圆E: +=1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB 为直径的圆的位置关系,并说明理由.2016-2017学年内蒙古包头一中高二(上)期中数学试卷(文科)参考答案与试题解析一.选择题(本大题共12题,每题5分,共60分)1.椭圆的离心率为()A.B.C.2 D.4【考点】椭圆的简单性质.【分析】根据椭圆方程和椭圆基本量的平方关系,可得a=2、b=,从而算出c=1,由此即得该椭圆离心率的值.【解答】解:∵椭圆的方程为,∴a2=4,b2=3,可得c==1,因此椭圆的离心率e=,故选:B2.设a,b∈R,则“a>b”是“|a|>|b|”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:若a=1,b=﹣2,满足a>b,但|a|>|b|不成立,若a=﹣2,b=1,满足|a|>|b|,但a>b不成立,即“a>b”是“|a|>|b|”的既不充分也不必要条件,故选:D.3.已知||=1,||=,|﹣2|=,则向量,的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】利用向量数量积运算性质即可得出.【解答】解:∵|﹣2|=,∴=,∴5=,解得=,∴向量,的夹角为.故选:C.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=【考点】双曲线的简单性质.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.5.给出下列命题:(1)“若xy=1,则x,y互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若m≤1,则x2﹣2x+m=0有实根”的逆否命题;(4)“若A∩B=B,则A⊆B”的逆否命题.其中为真命题的是()A.(1)(2) B.(2)(3) C.(1)(2)(3) D.(3)(4)【考点】命题的真假判断与应用.【分析】①写出逆命题,进行判断②写出否命题,进行判断③若m≤1,△=4﹣4m≥0,原命题为真,逆否命题也为真④若A∩B=B,则A⊆B”为假,逆否命题也为假.【解答】解:“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”为真命题.(1)正确.“面积相等的三角形全等”是假命题,其否命题为真命题.(2)正确.当m≤1时,△=4﹣4m≥0,x2﹣2x+m=0有实根,命题为真,逆否命题也为真(3)正确.“若A∩B=B,则A⊆B”为假命题,逆否命题也为假.(4)错误综上所述,为真命题的是(1)(2)(3)故选C6.已知椭圆的长轴是8,离心率是,此椭圆的标准方程为()A.B.或C.D.或【考点】椭圆的标准方程.【分析】根据椭圆的基本概念,结合题意算出a=4且c=3,从而得到b2=a2﹣c2=7.再根据椭圆的焦点位置,即可确定此椭圆的标准方程.【解答】解:∵椭圆的长轴为8,离心率是,∴2a=8,e==,解得a=4,c=3,b2=a2﹣c2=7,因此,当椭圆的焦点在x轴上时,其方程为;椭圆的焦点在y轴上时,其方程为.故选:B7.若向量、、两两所成的角相等,且||=1,||=1,||=3,则|++|等于()A.2 B.5 C.2或5 D.或【考点】平面向量数量积的运算.【分析】设向量所成的角为α,则先求出的值即可求出,【解答】解:由向量、、两两所成的角相等,设向量所成的角为α,由题意可知α=0°或α=120°则=+++2(++)=11+2(||•||cosα+||•||cosα+||•||cosα)=11+14cosα所以当α=0°时,原式=5;当α=120°时,原式=2.故选C8.设=(1,2),=(1,1)且与+λ的夹角为锐角,则实数λ的取值范围是()A .(﹣,0)∪(0,+∞)B .(﹣,+∞)C .[﹣,0)∪(0,+∞)D .(﹣,0)【考点】平面向量数量积的运算.【分析】若设θ为与的夹角,θ为锐角⇒cos θ>0,且cos θ≠1,根据条件及两向量夹角的余弦公式即可求得λ的取值范围,并且在求时,先求它的平方. 【解答】解: =(1,2)•(1+λ,2+λ)=3λ+5,=5+6λ+2λ2,;∴设与的夹角为θ且θ为锐角,则:cos θ==>0,且∴解得:λ,且λ≠0.∴实数λ的取值范围是.故选A .9.已知方程﹣=1表示双曲线,那么k 的取值范围是( )A .k >5B .﹣2<k <2C .k >2或k <﹣2D .k >5或﹣2<k <2【考点】双曲线的简单性质.【分析】由双曲线方程的特点可得(k ﹣5)(|k |﹣2)>0,解之可得.【解答】解:若方程﹣=1表示的曲线为双曲线,则(k ﹣5)(|k |﹣2)>0,解得k >5或﹣2<k <2. 故选D .10.设D 为△ABC 所在平面内一点,,则( )A .B .C .D .【考点】平行向量与共线向量.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A .11.已知△ABC 的顶点B ,C 在椭圆+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .B .6C .D .12 【考点】椭圆的简单性质.【分析】由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a ,可得△ABC 的周长.【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a ,可得△ABC 的周长为4a=, 故选C12.设双曲线的焦点为F 1、F 2,过F 1作x 轴的垂线与该双曲线相交,其中一个交点为M ,则||=( )A .5B .4C .3D .2【考点】双曲线的简单性质.【分析】依题意,可求得﹣=1的左焦点F 1(﹣3,0),从而可求得||,利用双曲线的定义即可求得||.【解答】解:∵双曲线﹣=1中a 2=3,b 2=6,∴c 2=a 2+b 2=9,∴c=3,故左焦点F 1(﹣3,0).依题意,设M (﹣3,y 0),则=﹣1=2,∴y 0=±2,故|MF 1|=2. ∵M (﹣3,y 0)为左支上的点,∴|MF2|﹣|MF1|=2,∴|MF2|=2+|MF1|=4,即||=4.故选B.二.填空题(本大题共4题,每题5分,共20分)13.命题“∃∈R,x2+2x+5=0”的否定是∀x∈R,x2+2x+5≠0.【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行判断.【解答】解:命题的特称命题,则命题的否定是全称命题,即∀x∈R,x2+2x+5≠0,故答案为:∀x∈R,x2+2x+5≠014.若命题p:曲线﹣=1为双曲线,命题q:函数f(x)=(4﹣a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是(﹣∞,2]∪[3,6).【考点】复合命题的真假;双曲线的简单性质.【分析】通过p∨q为真命题,p∧q为假命题,判断两个命题的真假关系,分别求出命题是真命题时a的范围,即可求解结果.【解答】解:当p为真命题时,(a﹣2)(6﹣a)>0,解之得2<a<6.当q为真命题时,4﹣a>1,即a<3.由p∨q为真命题,p∧q为假命题知p、q一真一假.当p真q假时,3≤a<6.当p假q真时,a≤2.因此实数a的取值范围是(﹣∞,2]∪[3,6).故答案为:(﹣∞,2]∪[3,6).15.已知点F1(﹣4,0),F2(4,0),动点P满足|PF2|﹣|PF1|=4,则动点P的轨迹方程为.【考点】轨迹方程.【分析】由条件知,点P的轨迹是以F1、F2为焦点的双曲线左支,从而写出轨迹的方程即可.【解答】解:由|PF2|﹣|PF1|=4<|F1F2|知,点P的轨迹是以F1、F2为焦点的双曲线左支,得c=4,2a=4,∴a=2,∴b2=12,故动点P的轨迹方程是.故答案为16.在直角三角形ABC 中,∠C=,AB=2,AC=1,若=,则•=.【考点】平面向量数量积的运算.【分析】根据结合图形得出==,=0, =2××COS30°,转化得出•=()•=+求解即可.【解答】解:∵直角三角形ABC 中,∠C=,AB=2,AC=1,∴根据勾股定理得出BC=,sin ∠ABC ═=,即∠ABC=30°∵若=,∴==, =0,=2××COS30°=3∴•=()•=+=×3=故答案为:三.解答题(本大题共6题,共70分) 17.求符合下列条件的双曲线的标准方程(1)焦点在x 轴上,顶点间的距离为6,渐近线方程为y=±(2)与椭圆+=1共焦点,它们的离心率之和为.【考点】双曲线的简单性质.【分析】(1)由题意,2a=6, =,求出a ,b ,即可求出双曲线的标准方程;(2)椭圆+=1的焦点坐标为(0,±4),离心率为,可得双曲线的焦点坐标为(0,±4),离心率为2,求出a,b,即可求出双曲线的标准方程.【解答】解:(1)由题意,2a=6,=,∴a=3,b=1,∴双曲线的标准方程为=1;(2)椭圆+=1的焦点坐标为(0,±4),离心率为,∴双曲线的焦点坐标为(0,±4),离心率为2,∴,∴双曲线的标准方程为=1.18.已知,的夹角为60°,,,当实数k为何值时,(1)(2).【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.【分析】(1)由可知存在实数t,使,可得k与t的方程组,解之可得;(2)由=()•()=0可得关于k的方程,解之即可.【解答】解:(1)由可知存在实数t,使,即,解得,故k=时,可得;(2)由=()•()=0可得15+3k+(5k+9)=0,代入数据可得15×4+27k+(5k+9)×=0,解得k=﹣,故当k=﹣时,.19.已知点P是椭圆+=1上的一点,且以点P及焦点F1,F2为顶点的三角形面积等于1,求点P的坐标.【考点】椭圆的简单性质.【分析】由椭圆方程可知: +=1,c==1,由三角的面积公式可知:S=•2c•丨y丨=1,即丨y丨=1,代入椭圆方程得:=1,即可求得丨x丨=,即可求得点P的坐标.【解答】解:F1、F2是椭圆+=1的左、右焦点,c==1,则F1(﹣1,0),F2(1,0),设P(x,y)是椭圆上的一点,由三角的面积公式可知:S=•2c•丨y丨=1,即丨y丨=1,将丨y丨=1代入椭圆方程得:=1,解得:丨x丨=,∴点P的坐标为(,1))(﹣,1)()(,﹣1).20.在四边形ABCD中,已知∥,=(6,1),=(x,y),=(﹣2,﹣3).(1)求用x表示y的关系式;(2)若⊥,求x、y值.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.【分析】(1),由,能求出y=﹣.(2)=(x+6,y+1),=(x﹣2,y﹣3),由,y=﹣,能求出x、y值.【解答】(本小题满分12分)解:(1)∵=(6,1),=(x,y),=(﹣2,﹣3),∴…∵,∴x(﹣2+y)=y(4+x)…∴y=﹣,…(2)∵=(6,1),=(x,y),=(﹣2,﹣3),∴=(x+6,y+1),=(x﹣2,y﹣3),∵,∴(x+6)(x﹣2)+(y+1)(y﹣3)=0,又∵y=﹣,解得或.21.已知椭圆C: +=1(a>b>0)上的动点到焦点距离的最小值为.以原点为圆心、椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,P为椭圆上一点,且满足+=t(O为坐标原点).当|AB|=时,求实数t的值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)利用椭圆C: +=1(a>b>0)上的动点到焦点距离的最小值为,可求a﹣c的值,利用直线与圆相切,可得b的值,由此可求椭圆C的方程;(Ⅱ)设直线AB的方程与椭圆方程联立,利用韦达定理及|AB|=, +=t,即可求得结论.【解答】解:(Ⅰ)由题意知a﹣c=﹣1;…又因为b==1,所以a2=2,b2=1.…故椭圆C的方程为+y2=1.…(Ⅱ)设直线AB的方程为y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2﹣8k2x+8k2﹣2=0.…△=64k4﹣4(2k2+1)(8k2﹣2)>0,∴k2.…x1+x2=,x1x2=.又由|AB|=,得|x1﹣x2|=,即=…可得…又由+=t,得(x1+x2,y1+y2)=t(x,y),则=,=…故,即16k2=t2(1+2k2).…得,t2=,即t=±.…22.已知椭圆E: +=1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB 为直径的圆的位置关系,并说明理由.【考点】直线与圆锥曲线的综合问题.【分析】解法一:(1)由已知得,解得即可得出椭圆E的方程.(2)设点A(x1,y1),B(x2,y2),AB中点为H(x0,y0).直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,利用根与系数的关系中点坐标公式可得:y0=.|GH|2=.=,作差|GH|2﹣即可判断出.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则=,=.直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,计算=即可得出∠AGB,进而判断出位置关系.【解答】解法一:(1)由已知得,解得,∴椭圆E的方程为.(2)设点A(x1y1),B(x2,y2),AB中点为H(x0,y0).由,化为(m2+2)y2﹣2my﹣3=0,∴y1+y2=,y1y2=,∴y0=.G,∴|GH|2==+=++.===,故|GH|2﹣=+=﹣+=>0.∴,故G在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1y1),B(x2,y2),则=,=.由,化为(m2+2)y2﹣2my﹣3=0,∴y1+y2=,y1y2=,从而==+y1y2=+=﹣+=>0.∴>0,又,不共线,∴∠AGB为锐角.故点G在以AB为直径的圆外.2016年12月19日。

高二数学上学期期中考试(文科)

高二数学上学期期中考试(文科)

(4)“若 ac 2 bc 2 ,则a b ”的逆否命题。
三.解答题(共六题,70 分)请把答案写在答题卷相应位置上。 17.(本小题 10 分)
写出“若 x 2 ,则 x 2 5x 6 0 ”的逆命题、否命题、逆否命题,并判断其真假.
18.(本小题 12 分)
求椭圆 x2 4 y2 16 的长轴和短轴的长、离心率、焦点和顶点的坐标
C.50
9.命题:“ x∈R,都有 x2-x+1>0”的否定是
D.162
A. x∈R,都有 x2-x+1≤0
B. x∈R,都有 x2-x+1>0
C. x∈R,都有 x2-x+1≤0.
D.以上选项均不正确
10.已知双曲线 y2-x2=1 的离心率为 e,且抛物线 y2=2px 的焦点坐标为(e2,0),则 P
心率为
()
A. 3
6
B.
2
6
C.
3
3
D.
3
第Ⅱ卷(非选择题 共 90 分)
二、填空题(每题 5 分,共 20 分)
13. 若x 0, y 0, 且 1 4 1 ,则 x y 的最小值是

xy
x2 14.椭圆 16
y2 9
1 上一点 P 到它的一个焦点的距离等于 3,那么点 P 到另一个焦点的
高二数学(共 4 页,第 1 页)
点,则点 M 的轨迹方程是
A. 9x 2 y 2 1 16 4
B. x 2 y 2 1 4
C. x 2 y 2 1 4
D. 9 y 2 x 2 1 16 4
8.设 x 、 y R ,且 x y 4 ,则 5x 5y 的最小值为
A.9
B.25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上期中考试数学(文科)试题(考试时间:120分钟;满分150分)第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数列}{n a 中,已知11=a ,5=9a ,则3=a BA .-3B .3C .±3D .52.椭圆x 216+y 28=1的离心率为A .13B .12C .33D .223.0>x 若,则14++x x 的最小值为 D A .2 B .3 C .4D .5 5.对于实数a ,b ,c ,“a >b ”是“ac 2>bc 2”的 ( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件1.数列11×3,13×5,15×7,…,1(2n -1)(2n +1)…的前n 项和为 B A .n 2n -1 B .n 2n +1 C .2n 2n +1 D .2n 2n -14.椭圆x 2m +y 24=1的焦距为2,则m 的值为 A .5 B .3 C .5或3 D .811.已知F 1,F 2是椭圆 x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为A .6B .5C .4D .39.命题“对任意的32,10x R x x ∈-+≤”的否定是A .不存在32,10x R x x ∈-+≤B .存在32,10x R x x ∈-+≤C .存在32,10x R x x ∈-+>D .对任意的32,10x R x x ∈-+>5.已知命题p :a 2≥0(a ∈R ),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题为真命题的是 ( A )A .p ∨qB .p ∧qC .(⌝p )∧(⌝q )D .(⌝p )∨q3.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于 ( C )A .4 2B .8 3C .24D .48第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.10.已知数列}{n a 满足a n =(-1)n(2n -1),其前n 项和为S n ,则S n =_______⎩⎨⎧-为偶数,为奇数n n n n ,. 14.等比数列}{n a 的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则}{n a 的公比为= ▲13. 16.若不等式022>++bx ax 的解集是⎪⎭⎫ ⎝⎛-31,21,则b a +的值为 ▲ . 20.若点P 在区域⎪⎩⎪⎨⎧≥+-≤-+≥-02202012y x y x y 内,求点P 到直线3x -4y -12=0距离的最大值为 ▲ .15.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 ▲ .15.若“23x <<”是“x m <”的充分不必要条件,则m 的取值范围为 ▲ 3m ≥ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)求实轴长为12,离心率为32,焦点在x 轴上的椭圆的标准方程. 解:设椭圆的标准方程为)0(12222>>=+b a by a x ……………………2分 由已知,122=a ,32==a c e ……………………………………………6分 ,6=∴a 4=c20222=-=c a b …………………………………………………………8分 所以椭圆的标准方程为1203622=+y x .……………………………………10分 18.(本小题满分12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2是,函数f (x )=x +1x >1c恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.解:由命题p 知:0<c <1.由命题q 知:2≤x +1x ≤52要使此式恒成立,则2>1c ,即c >12. 又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假,当p 为真,q 为假时,c 的取值范围为0<c ≤12. 当p 为假,q 为真时,c ≥1.综上,c 的取值范围为{c |0<c ≤12或c ≥1}.19.(本小题满分12分)解关于x 的不等式ax 2-2 ≥ 2x -ax (0<a ).解:原不等式可化为:ax 2+(a -2)x -2≥0.……………………………………………………………2分即⎝⎛⎭⎫x -2a (x +1)≤0,…………………………………………………………4分 (1)当 2a<-1,即-2<a <0时,, 其解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; ………………………………………………6分 (2)当a =-2时,不等式即为(x +1)2≤0,其解集为{-1};…………………………………………………8分(3)当-1<2a,即a <-2时, 其解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . ………………………………………………10分 综上:当-2<a <0时,解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,解集为{-1};当a <-2时,解集为{x |-1≤x ≤2a}. …………………………………………12分 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -= (II )设31323log log log n nb a a a =+++,求数列{}n b 的通项公式. 解: (Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31n n n S -=--= 所以,21n n a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-= 2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n22.(本小题满分12分)已知椭圆G : )0(12222>>=+b a b y a x 的离心率为36, 右焦点为(22, 0).斜率为1的直线l 与椭圆G 交于A , B 两点, 以AB 为底边作等腰三角形, 顶点为P ( - 3, 2).(I )求椭圆G 的方程;(II )求PAB ∆的面积.解: (I )由已知得 c =22,36=a c解得a =32 …………………………………………………2分又b 2 = a 2 - c 2 = 4,………………………………………………4分所以椭圆G 的方程为141222=+y x .………………………………6分(II )设直线l 的方程为y = x + m .由⎪⎩⎪⎨⎧=++=141222y x mx y得4x 2 + 6mx + 3m 2- 12 = 0.(*)……………………8分设A (x 1, y 1), B (x 2, y 2) (x 1 < x 2),AB 中点为E (x 0, y 0), 则x 0 = = -43m, y 0 = x 0 + m =4m .………………………………9分因为AB 是等腰△P AB 的底边, 所以PE ⊥AB .所以PE 的斜率k = = - 1.解得m = 2.此时方程(*)为4x 2 + 12x = 0.解得x 1 = - 3, x 2 = 0.所以y 1 = - 1, y 2 = 2.所以|AB | = 3.………………………………………10分此时, 点P ( - 3, 2)到直线AB :x - y + 2 = 0的距离d = , …………………………………………………11分所以△P AB 的面积S = |AB |·d = .…………………………………………12分10.在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C . (1)写出C 的方程;(2)设直线y=kx+1与C 交于A 、B 两点,k 为何值时OA →⊥OB →?此时AB →的值是多少?解:(1)设P (x ,y ),由椭圆的定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴长为2的椭圆,它的短半轴长b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A (x 1,y 1)、B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1,消去y 并整理得(k 2+4)x 2+2kx -3=0,故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,则x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12. 当k =±12时,x 1+x 2=±417,x 1·x 2=-1217,。

相关文档
最新文档