第二章控制系统的数学模型
第二章控制系统的数学模型.
2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9
基本要求-控制系统数学模型
自动控制原理
第二章控制系统的数学模型
线性连续系统微分方程的一般形式
d c (t ) d c (t ) dc (t ) an an 1 ... a1 a0 c ( t ) n n 1 dt dt dt d m r (t ) d m 1r (t ) dr (t ) bm bm 1 ... b1 b0 r (t ) m m 1 dt dt dt
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
• 3.表示形式 a.时域:微分﹑差分﹑状态方程 b.复域:传递函数﹑结构图 c.频域:频率特性
三种数学模型之间的关系 线性系统
拉氏 傅氏 传递函数 微分方程 频率特性 变换 变换
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
自动控制原理
第二章控制系统的数学模型
题目变种3,寻求新解法
1 R1 cs I ( s) U ( s) U r ( s) c 1 R1 cs
Uc( s ) I (s) R2
联立,可解得: 微分方程为:
U c ( s) R2 (1 R1Cs) U r (s) R1 R2 R1 R2 Cs
微分方程的标准形式: 1、与输入量有关的项写在方程的右端; 2、与输出量有关的项写在方程的左端; 3、方成两端变量的导数项均按降幂排列
mx(t ) fx(t ) kx(t ) F (t )
航空
第二章控制系统的数学模型
电气系统三元件(知识补充)
电阻
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
2.为什么要建立数学模型: 只是定性地了解系统的工作原理和大致的 运动过程是不够的,还要从理论上对系统 性能进行定量的分析和计算。 另一个原因:许多表面上看毫无共同之处 的控制系统,其运动规律具有相似性,可 以用相同形式的数学模型表示。
自动控制原理:第二章--控制系统数学模型全
TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
第二章_控制系统的数学模型
R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s
第二章控制系统数学模型
有极限存在。
终值定理在分析研究系统的稳态性能时(例如分析系统的稳态误差,求取系统
输出量的稳态值等)有着很多的应用。因此终值定理也是一个经常用到的运算
定理。
7.初值定理: lim f (t) lim sF (s)
18
2
例2-1:写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri
1 C
idt
ui
①
uo
1 C
idt
②
由②: i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
3
例2-2 设一弹簧、质量块、阻尼器组成的系统如图所示,当外力 F(t)作用于系统时,系统将产生运动。试写出外力F(t)与质量块的 位移y(t)之间的微分方程。
uR uc Us
把 uR i R
和
ic
C
duc dt
代入电路,可得到电路的
微分方程:
RC
duc dt
uc
Us
23
现在对于上面的微分方程,我们用Laplace变换求解。
首先,利用Laplace变换中的微分定理,将微分方程变换成如下形式:
RC
duc dt
uc
Us
RCsU c (s) Uc (s) Us R(s)
利用待定系数法可求得:
A 1 ARC B 0
F (s) L[ f (t)] f (t)e st dt 0
第2章 控制系统的数学模型
第2章控制系统的数学模型§1 系统数学模型的基本概念一. 系统模型系统的模型包括实物模型、物理模型、和数学模型等等。
物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。
从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。
相似系统是控制理论中进行实验模拟的基础。
二. 系统数学模型1. 系统数学模型系统的数学模型是系统动态特性的数学描述。
数学模型是描述系统输入、输出量以及内部各变量之间关系的数学表达式,它揭示了系统结构及其参数与其性能之间的内在关系。
2. 系统数学模型的分类数学模型又包括静态模型和动态模型。
(1) 静态数学模型静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。
反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。
(2) 动态数学模型描述变量各阶导数之间关系的微分方程。
描述动态系统瞬态与过渡态特性的模型。
也可定义为描述实际系统各物理量随时间演化的数学表达式。
动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。
微分方程或差分方程常用作动态数学模型。
动态模型在一定的条件下可以转换成静态模型。
在控制理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用动态数学模型。
即,一般所指的系统的数学模型是描述系统动态特性的数学表达式。
三. 系统数学模型的形式对于给定的同一动态系统,数学模型的表达不唯一。
如微分方程、传递函数、状态方程、单位脉冲响应函数及频率特性等等。
对于线性系统,它们之间是等价的。
但系统是否线性这一特性,不会随模型形式的不同而改变。
线性与非线性是系统的固有特性,完全由系统的结构与参数确定。
经典控制理论采用的数学模型主要以传递函数为基础。
而现代控制理论采用的数学模型主要以状态空间方程状态空间方程为基础。
而以物理定律及实验规律为依据的微分方程微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。
第二章 控制系统的数学模型
= Ur (s)
传递函数为: di + u ur= R · + L i c dt Uc (s) 1 = duc G (s) = i = C dt Ur (s) LCs2 + RCs + 1
电气系统三要素:电阻、电容、电感
+ ί(t) R –
u(t)= ί(t)· R
u (t )
ί(t) C
–
u(t) ί(t)= R
图2-9 速度控制系统
+
R1 R2 R2 R1 k2
ui
R1
k1 u 1
c
u2
功 ua 放
m
SM
ω
负 载
ut
TG
运算放大器
uu+ ii+
_ +
+
Add
uo
差模输入电压等于零
u+= u-
运放同相输入端与反向输入端两点的电压相等,如同该 两点短路一样,称为虚短。
i+=i-=0
运放同相输入端与反向输入端的电流都等于零,如同该 两点被断开一样,称为虚断。
Tm s m ( s ) m (t ) K1U a ( s )
Tm s 1 m ( s) K1U a ( s)
m ( s) K1 G ( s) U a ( s) Tm s 1
m ( s) K2 G ( s) M c ( s) Tm s 1
传递函数的性质(续)
(5)传递函数与微分方程有相通性;
b1s b2 C (s) G ( s) R( s ) a0 s 2 a1s a2
对角线相乘
a0 s 2 a1s a2 C ( s ) b1s b2 R ( s )
自动控制原理-第二章 控制系统的数学模型
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt
Raia (t)
Ea (t)
ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt
fmm (t)
Mm
MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t
L1 U C
S
L1
S
2
1 S
1
1 S
S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)
控制工程基础 第二章 控制系统的数学模型
R1 ui C1 K
R2 C2 uc
U c ( s) K U i ( s ) ( R1C1s 1)( R2C2 s 1)
有源网络:
Ur R0
R1
C1 +12V
+
-12V
Uc
U c ( s) R1C1s 1 U r ( s) R0C1s
2-3 典型环节及其传递函数
环节:具有某种确定信息传递关系的元 件、元件组或元件的一部分称为一个环 节。 系统传递函数可写为:
例2 电学系统: 其中:电阻为R,电感为L,电容为C。
+ ur(t) - i
+ uc(t) -
解:系统的微分方程如下
d U c (t ) dUc (t ) LC RC U c (t ) U r (t ) 2 dt dt
2
拉氏变换后(零初始条件下)
U c ( s) 1 2 U r ( s ) LCs RCs 1
2 2
1 1 1 , 2 2 s Ts 1, T s 2Ts 1
各典型环节名称:
比例环节:K 一阶微分环节:s 1 2 2 s 二阶微分环节: 2 s 1 1 积分环节: s 1 惯性环节: 1 Ts 1 二阶振荡环节:2 s 2 2Ts 1 T
传递函数的性质: (1)传递函数只取决于系统或元件的结构和 参数,与输入输出无关; (2)传递函数概念仅适用于线性定常系统, 具有复变函数的所有性质; (3)传递函数是复变量s 的有理真分式, 即n≥m; (4)传递函数是系统冲激响应的拉氏变换;
传递函数的性质: (5)传递函数与真正的物理系统不存在一 一对应关系; (6)由于传递函数的分子多项式和分母多 项式的系数均为实数,故零点和极点可以是 实数,也可以是成对的共轭复数。
2控制系统的数学模型(拉氏变换)
一、数学模型的基本概念 1、数学模型 数学模型是描述系统输入、输出量以及内部 各变量之间关系的数学表达式,它揭示了系 统结构及其参数与其性能之间的内在关系。 静态数学模型:静态条件(变量各阶导数为 零)下描述变量之间关系的代数方程。 动态数学模型:描述变量各阶导数之间关系 的微分方程。
将F(s)的分母多项式A(s)进行因式分解得 A(s)=(s-s1)(s-s2)…(s-sn) 式中, si(i=1,2,…,n)为A(s)=0 的根。下面分两 )=0有n个不等根,此时F(s)可分解为:
F ( s) c1 c c 2 ... n s s1 s s2 s sn
式中 cr+1,cr+2,…,cn为单根部分的待定系数由式 (2-14)计算。而重根部分的计算公式如下
cr lim( s s1 ) F ( s)
r s s1
(2-17)
14
cr j
1 dj lim j [( s s1 ) r F ( s)] j! ds
s s1
1 d r 1 c1 lim r 1 [( s s1 ) r F ( s)] (r 1)! ds
4
1、定义 函数f(t)的拉普拉斯变换定义为:
0 st
F (s) L f (t ) f (t )e dt
式中:s=+j(,均为实数)称为拉普拉斯算子; F(s)称为函数f(t)的拉普拉氏变换或象函数,它是 一个复变函数;f(t)称为F(s)的原函数;
L为拉氏变换的符号。
2 1 3t f (t ) 0.5te 0.75e e 3 12
t t
16
5
f(0)
第二章 控制系统的数学模型
⇒
QQQr00(((sss)))−−=QQH0c1(((sss)))R=−=1Hcc122s(sHsH)12(s()s)
qc (t)
=
h2 (t) R2
Qc
(s)
=
H2 (s) R2
G(s)
=
Qc (s) Qr (s)
=
R1R 2C1C 2s 2
1 + (R1C1 + R2C2
机理分析法:
依据描述系统运动规律的定律并通过理论推导 来得到数学模型的方法 。
实验辨识法:
通过整理基于系统输入-输出的实验数据来 得到系统的数学模型。本章着重讨论机理分析 法。
建模特点:相似性、简化性、准确性。
数学模型类型: 经典控制理论: 微分方程(连续系统)、
差分方程(离散系统) 、传递函数、系 统方框图和信号流图; 现代控制理论:状态方程
注:如果在第(3)步结束时已经得到符合第(4)步要求的微分方程,则 无须第(4)步。
线性定常系统微分方程的一般形式
an
d nc(t) dt n
+
an−1
d n−1c(t ) dt n−1
+
...
+
a1
dc(t ) dt
+
a0c(t )
=
bm
d mr(t) dt m
+
bm −1
d m−1r(t ) dt m−1
d x(t ) + dt
Kx(t ) = f (t )
当f(t)=f1(t)时,上述方程的解为x1(t); 当f(t)=f2(t)时,上述方程的解为x2(t); 如果f(t)=f1(t)+ f2(t) ,方程的解为x(t)= x1(t)+x2(t),这就是叠加性
第二章 控制系统的数学模型(fkt)
(2)比较点(合成点、综合点)Summing Point 两个或两个以上的输入信号进行加减比较的元件。 “+”表示相加,“-”表示相减。“+”号可省略不写。
Υ1
+ +
Υ 1+Υ 2
R1 (s)
R1(s) R2 (s)
Υ3 Υ1
-
-
Υ 1-Υ 2+Υ 3 Υ2
Υ2
R2 (s)
图2-15比较点示意图
U i ( s) U o ( s) I ( s) R I ( s) U o ( s) sC
(1) (2)
U i (s) - U o ( s)
I(s)
U o ( s)
(d)
将图(b)和(c)组合起来即得到图(d), 图(d)为该一阶RC网络的方块图。
例2-9 画出下列R-C网络的方块图 解:(1)根据电路定理列 出方程,写出对应的拉氏 变换,也可直接画出该电 路的运算电路图如图(b); (2)根据列出的4个式子作 出对应的框图; (3)根据信号的流向将各 方框依次连接起来。
R(s)
G(s) 比较点前移
+
C(s) Q(s)
R(s)
+
G(s)
C(s)
比较点后移 Q(s)
R(s)
+
G(s) C(s)
R(s) G(s)
+
C(s)
Q(s)
Q(s) G(s)
C ( s) R( s)G ( s) Q( s) Q( s ) [ R( s ) ]G ( s) G( s)
C ( s) G1 ( s) G2 ( s) G3 ( s) G ( s) R( s )
第二章 控制系统的数学模型
两个输人一个输出的线性系统,可以应用叠加原理进行分析。
如果忽略电枢电阻R 和电动机转动惯量J ,则Tm = 0 。
上式可变为 ω = cd ua 此时,电动机转速与电枢电压成正比。
2.1 控制系统微分方程的建立
三、系统的稳态数学模型
由直流电机例分析 如果电机处于平衡状态,则方程中各阶导数均为零。 此时微分方程变成代数方程,即
3.积分定理
若f(t) n重积分,各重积分在t=0 的值为0时,
2.2拉普拉斯变换及其应用——拉氏变换的几个重要运算定理
4.位移定理 ⑴实位移定理(时间坐标中有一个位移)
该定理又称延迟定理。 ⑵复位移定理(在复数s坐标中有一位移)
2.2拉普拉斯变换及其应用——拉氏变换的几个重要运算定理
5.终值定理 6.初值定理 Nhomakorabea2.1 控制系统微分方程的建立——例3
解 ua为给定输人,ML为干扰输人,ω 为输出。
据KVL 电枢回路方程:
据牛顿转动定律,电机转子的运动方程(动力学方程):
当激磁磁通不变时,M与ia 成正比:
2.1 控制系统微分方程的建立——例3
将各式联立,消去中间变量M、ed、ia可得:
Ta :电磁时间常数 Tm :机电时间常数
4.整理微分方程,使其规范化,
将输出项放到方程左侧, 输人项放到方程右侧, 各阶导数项按阶次从高到低的顺序排列。
2.1 控制系统微分方程的建立
二、举例
例1:已知RLC 电路系
统如图所示,试列写其 输入—输出之间的微分 方程。
2.1 控制系统微分方程的建立
例2:带阻尼的弹簧系统( k-m-f ), 输入力x,输出位移y , 试列写系统的微分方程。
自动控制原理与应用第2章自动控制系统的数学模型
自动控制原理与应用第2章自动控制系统的数学模型自动控制是现代工业和科学技术的重要组成部分,它在各种自动化系统中起着关键作用。
通过对自动控制系统的数学建模,我们可以对系统的行为进行分析和预测,并设计合适的控制策略来实现系统的稳定性和性能要求。
本章主要介绍自动控制系统的数学模型及其应用。
自动控制系统的数学模型主要包括线性时不变系统和非线性时变系统两类。
1.线性时不变系统线性时不变系统是指系统的输出与输入之间存在线性关系,并且系统的性质不随时间的推移而变化。
线性时不变系统的数学模型可以用常微分方程或差分方程来表示,其中常微分方程适用于连续系统,差分方程适用于离散系统。
常见的线性时不变系统包括电路、机械系统等。
2.非线性时变系统非线性时变系统是指系统的输出与输入之间存在非线性关系,并且系统的性质随时间的推移而变化。
非线性时变系统的数学模型可以用偏微分方程、泛函方程等形式来表示。
非线性时变系统由于具有更复杂的动力学特性,通常需要借助数值方法来求解。
二、数学模型的建立方法建立自动控制系统的数学模型有多种方法,常用的方法包括物理模型法、数据模型法和状态空间法。
1.物理模型法物理模型法主要通过物理规律来建立系统的数学模型。
它基于系统的物理特性及其输入输出关系,通过建立微分方程或差分方程来描述系统的动态行为。
物理模型法适用于那些具有明确的物理意义和物理规律的系统。
例如,对机械系统可以利用牛顿定律建立系统的动力学方程。
2.数据模型法数据模型法是通过分析实验数据来建立系统的数学模型。
它基于系统的输入输出数据,借助统计方法和系统辨识技术来进行模型识别和参数估计。
数据模型法适用于那些难以建立明确物理模型的系统。
例如,对于生物系统或经验性系统,可以通过数据模型法来建立系统的数学模型。
3.状态空间法状态空间法是一种以状态变量和输出变量为基础的建模方法。
它将系统的动态行为表示为一组一阶微分方程或差分方程的形式。
状态空间法对于较复杂的系统具有较好的描述能力,能够反映系统的内部结构和动态特性。
自动控制原理:第2章-控制系统的数学模型可编辑全文
*
上式表明,三个环节的串联可以用一个等效环节来代替。这种情况可以推广到有限个环节串联(各环节之间无负载效应)的情况,等效环节的传递函数等于各个串联环节的传递函数的乘积,如有n个环节串联则等效传递函数可表示为:
*
2. 环节的并联
环节并联的特点是各环节的输入信号相同,输出信号相加(或相减)。
2.7 闭环系统的传递函数
一.闭环系统
*
(3)开环传递函数: 假设N(s)=0,主反馈信号B(s)与误差信号E(s)之比。
(2)反馈回路传递函数:假设N(s)=0,主反馈信号B(s)与输出信号C(s)之比。
*
(4)闭环传递函数 Closed-loop Transfer Function 假设N(s)=0 输出信号C(s)与输入信号R(s)之比。
复习拉普拉斯变换有关内容(6)
(3)积分定理
零初始条件下有:
进一步有:
例4 求 L[t]=?
解.
例5 求
解.
复习拉普拉斯变换有关内容(7)
(4)实位移定理
证明:
例6
解:
令
复习拉普拉斯变换有关内容(8)
(5)复位移定理
证明:
令
例7
例8
例9
复习拉普拉斯变换有关内容(9)
负反馈:反馈信号与给定输入信号符号相反的反馈。
正反馈:反馈信号与给定输入信号符号相同的反馈。
*
上述三种基本变换是进行方框图等效变换的基础。对于较复杂的系统,例如当系统具有信号交叉或反馈环交叉时,仅靠这三种方法是不够的。
(二)信号相加点和信号分支点的等效变换
对于一般系统的方框图,系统中常常出现信号或反馈环相互交叉的现象,此时可将信号相加点(汇合点)或信号分支点(引出点)作适当的等效移动,先消除各种形式的交叉,再进行等效变换即可。
第第二章 控制系统的数学模型
1
sa
1
(s a)n
18
拉普拉斯变换简表
f (t)
9
sin t
10
cost
11
1 (1 eat )
a
12
1 a
(a0
(a0
a)eat
)
13
1 a2
(at
1
e at
)
14
a0t a2
(
a0 a2
t)(eat
1)
F (s)
s2 2
s
s2 2
s s(s a)
s a0 s(s a)
1 s2 (s a)
(1)独立性(可加性):线性系统内各个 激励产生的响应互不影响
xi1(t) xi2(t)
xo1(t) xo2(t)
xi1(t)+xi2(t) xo1(t)+xo2(t)
(2)均匀性(齐次性)
8
线形系统的一般形式
an
dn dtn
y(t) an1
d n1 d t n 1
y(t) ... a1
d dt
dt
s
则
证:
f (0) lim sF (s)
s
由微分定理有:
L( df (t)) sF (s) f (0) dt
两边取极限
lim[ df (t) est dt] lim[sF (s) f (0)]
s 0 dt
s
27
lim[ df (t) est dt] lim[sF (s) f (0)]
0 dt s0
s0
lim est 1
s0
[ df (t) dt] lim[sF (s) f (0)]
自动控制原理第二章
1 ui (t ) 1(t ), U i ( s) s Ui 0.1s 0.2 1 1 u0 (t ) L [U 0 ( s )] L [ 2 2 ] s s 1 s s 1 1 0.1s 0.2 1 L [ 2 ] 2 s ( s s 1) s s 1
m=10, f=1, k=1
m=10, f=1, k=5
输入: Fi 1(t )
m=10, f=1, k=1
m=10, f=1, k=5
相似系统
RLC无源网络和弹簧-质量-阻尼器机械系 统的数学模型均是二阶微分方程,为相似 系统。 相似系统便于用一个简单系统去研究与其 相似的复杂系统,也便于控制系统的计算 机数字仿真。
化的过程。
4、线性系统的基本特性 叠加性:系统在几个输入信号同时作用 下的总响应,等于这几个输入信号单独 作用的响应之和。
如果元件输入为: r1(t)、r2(t)、r(t) ,
对应的输出为: c1(t)、c2(t)、c(t) 。
如果 r(t)=r1(t)+r2(t) 时, c(t)=c1(t)+c2(t) 满足叠加性。
满足齐次性。
满足叠加性和齐次性的元件才是线性元件
例如 y=kx 是线性元件
输入 x1 输出 y1=kx1 x2 输入x1 +x2 C为常数, Cx1 y2=kx2 y1 + y2 满足迭加性 Cy1 满足齐次性
所表示的元件 为线性元件
线性方程不一定满足迭加性和齐次性
y=kx+b(b为常数 0)线性方程,所表示的元件不是 线性元件 . 输入 x1y1 输出 y1= kx1+b x2 y2 y2 =kx2+b 输入 x1 + x2 输出 y=k(x1 + x2)+b =k x1 +kx2+b y1 +y2 不满足迭加性 k为常数 :kx1输出y=k(kx1)+b=k2x1+b ky1=k(kx1+b)= k2x1+kb yky1 不满足齐次方程。 所表示的元件不是线性元件。
自动控制原理-控制系统的数学模型可编辑全文
r(t)
b1
d m1 dt m1
r(t)
bm1
d dt
r(t)
bm r (t )
c(t)是系统输出量,r(t)是系统输入量,参数是常系数。
性质:满足叠加原理
6
3. 系统微分方程的建立步骤
第一步:将系统分成若干个环节,列写各环节的 输出输入的数学表达式。
利用适当物理定律—如牛顿定律、 基尔霍夫定律、能量守恒定律等。
s2 2
n 1 2
e nt
s in( n
1 2t)
n2 s 2 2n s n 2
12
4、拉氏反变换
查表实现
f
(t )
1 2pj
s j F ( s )e st ds
s j
F(s)化成下列因式分解形式:
F (s) B(s) k(s z1)(s z2 ) (s zm ) A(s) (s s1)(s s2 ) (s sn )
设双变量非线性方程为:y f (x1,, x工2 ) 作点为
则可近似为:
y K1x1 K2x2
y0 f (x10 , x20 )
x1 x1 x10 x2 x2 x20
K1
y x1
| , K x1x10
2
x2 x20
y x2
|x1 x10
x2 x20
[注意]: ⑴上述非线性环节不是指典型的非线性特性(如间隙、饱和特 性等),它可以用泰勒级数展开。 ⑵实际的工作情况在工作点附近。 ⑶变量的变化必须是小范围的。其近似程度与工作点附近的非 线性情况及变量变化范围有关。
◆F(s)中具有单极点时,可展开为
F (s) c1 c2 cn
s s1 s s2
s sn
自动控制原理(数学模型)精选全文完整版
t 0
s
证明:由微分定理 df (t) estdt s F (s) f (0)
0 dt
lim df (t) estdt lim s F (s) f (0)
s 0 dt
s
左 df (t) limestdt 0 0 dt s
lim
s
s F(s)
f (0 )
0
f
二、非线性系统微分方程的线性化
例5 已知某装置的输入输出特性如下,求小扰动线性化方程。
y( x ) E0 cos[x(t )]
解. 在工作点(x0, y0)处展开泰勒级数
y( x)
y(x0)
y( x0 )( x
x0 )
1 2!
y( x0 )( x
x0 )2
取一次近似,且令
y(x) y(x) y(x0) E 0 sin x0 ( x x0 )
1
s(s a)( s b)
f
lim
s0
s
ss
1
as
b
1 ab
例12
Fs
s2
ω ω2
f sinωt t
lim s
s0
s2
ω ω2
0
3 用拉氏变换方法解微分方程
系统微分方程
y(t) a1 y(t) a2 y(t) 1(t)
y(0) y(0) 0
L变换
(s2
a1s
a2 )Y (s)
0
1 1
1 1 2 j
2j
s
j
s
j
2j
s2
2
s2
2
2 拉氏变换的几个重要定理
(1)线性性质 La f1(t) b f2(t) a F1(s) b F2(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
duo (t) dt
uo (t)
ui (t)
线性微分方程的特性
假设线性系统的微分方程如下:
a0
d n y(t) dt n
a1
d n1 y(t) dt n1
an1
dy(t) dt
an
y(t)
f (t)
叠加性 当 f (t) f1(t) 时,上述方程的解为 g1(t) ;而当 f (t) f2 (t) 时,上述方程的解为 g2 (t) ,则当 f (t) f1(t) f2 (t) 时,上述方程的解为g1(t) g2 (t)
性质 性质1 传递函数是复变量 s 的有理真分式函
数,m n ,且具有复变量函数的所有性质
性质2 传递函数只取决于系统或元件的结构和参数,而与 外部输入形式(如幅值、大小等)无关
性质3 传递函数虽然只与线性系统的结构和参数有关,但 它不提供任何关于该系统的具体物理结构
性质4 当一个线性系统的传递函数未知,而又无法从理论 上对其进行推导时,可以给系统加上已知的输入信号,根 据其输出响应来研究系统的传递函数
列写系统数学模型的步骤可归纳如下:
• 分析系统及元部件的工作原理,从中确定 系统的输入量和输出量;
• 根据所分析系统(或元部件)在工作过程 中所遵循的物理、化学或其它相关规律, 写出它们各自的微分方程;
• 根据所确定的系统输入量和输出量,消去 中间变量,写出仅包含输入、输出变量的 微分方程式即为所求的数学模型
如下图所示为由 RC 组成的四端无源网络。试列写 以 ui (t) 为输入量,uo (t) 为输出量的网络微分方程。
解: 设回路电流为 i1 和 i2 。根据克希霍夫定律可
得如下方程:
ui (t) R1i1 uc1
uo (t) uc2
其中:
uc1
1 C1
(i1 i2 )dt
uc2
1 C2
特点:输出量能准确复现输入量,但须延迟一个固定的 时间间隔
实例:管道压力、流量等物理量的控制,其数学模型 一般均包含有延迟环节
结构图的基本组成
方框(环节)(Block Diagram)
表示输入到输出单向传输间的函数关系,方框中写入元 部件或系统的传递函数。显然,方框的输出等于方框的 输入与传递函数的乘积,即C(s) G(s)R(s) ,如下图所示
引出点(或测量点)(Branch Point)
引出点表示信号引出或测量的位置,从同一位置引 出的信号,在数值和性质方面完全相同(如下图所 示)
结构图的基本连接方式
串联连接
特点:前一环节的输出量就是后一环节的输入量
简化结果:简化后环节的等效传递函数等于所有传递函数
的乘积,即:G(s)
n
Gi
(s),n为相串联的环节数
• 对于混合节点而言,可以通过增加一个具有单位增益的 支路把它作为阱节点来处理
• 对于一个给定的系统,节点变量的设定是任意的,因此, 信号流图不是唯一的
举例
利用梅逊增益公式求如下图所示系统的 闭环传递函数
该系统共有3个前向通路,分别为:
1 2 3 4 5 6 通道增益 p1 G1G2G3G4G5, 1 1
f (x10 , x20
xn0 )
n i 1
f (x10 , x20 xi
xn0 ) (xi
xi0 )
传递函数
定义 在零初始条件下,系统输出的拉氏变换与其输 入的拉氏变换的比值
计算 方法
设线性定常系统由下述 n 阶线性常微分方程描述:
a0
d nc(t) dt n
a1
d n1c(t) dt n1
1 G4 H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G4G2G7 H1H 2
阱节点(Sink Node)
在阱节点上,只有输入的支路而没有输出的支路。阱节点 一般代表系统的输出变量,故也被称为输出节点,如示意
图中的 x6 节点即为阱节点
混合节点(Mixed Node)
在混合节点上,既有输入支路又有输出支路,如示意图中
的 x2 , x3, x4 , x5 等节点就是混合节点
前向通路(Forward Pass)
2 3 4 5 6 2 回路增益 L4 G2G3G4G5H 2
系统只有一对互不接触回路,其不接触回路增益 为:
L1L2 G4G2G7 H1H 2
故根据Mason公式,可得系统的闭环传递函数为:
G(s)
C(s) R(s)
1
(P11
P2 2
P33 )
G1G2G3G4G5 G1G6G4G5 G1G2G7 (1 G4 H 2 )
振荡环节
G(s)
n2
1
S 2 2n S n 2 T 2S 2 2TS 1
式中:
为阻尼比 (0
1) ;n
为固有频率
T
1
n
;
特点:环节中有两个独立的储能元件,并可进行能量交
换,其输出时会出现振荡
实例:RLC电路的输出与输入电压间的传递函数属于该
环节
纯时间延迟环节 G(s) es
式中: 为延迟时间;
1 2 4 5 6 通道增益 p2 G1G6G4G5 , 2 1 1 2 3 6 通道增益 p3 G1G2G7 , 3 1 G4H1
该系统共有4个单独回路,分别为:
4 5 4 回路增益 L1 G4H1
2 3 6 2 回路增益 L2 G2G7H2
2 4 5 6 2 回路增益 L3 G6G4G5H2
an1
dc(t ) dt
an c(t )
b0
d mr(t) dt m
b1
d m1r(t) dt m1
bm1
dr (t ) dt
bmr(t)
令L[c(t)] C(s),L[r(t)] R(s),并且假设各阶系数在 t 0时
的初值为零,可得系统 的传递函数为:
G(s) b0s m b1s m1 bm1s bm a0s n a1s n1 an1s an
引出点前移
引出点后移
比较点的移动
比较点前移
比较点后移
信号流图的基本术语
信号流图示意图如下图所示:
节点(Node)
代表方程式中的变量,以小圆圈表示(如示意图中
的1,2, ,6均为节点)
支路(Branch)
表示信号流图中单方向的一条通路,它连接了输入输出两 个变量,其上标以输入和输出之间的增益,所以支路相当
信号线(Signal line)
信号线为带有箭头的直线,箭头表示信号的流向, 在直线旁标记信号的时间函数或象函数(如下图 所示)
比较点(或综合点)(Summing Point)
比较点表示两个或两个以上的输入信号进行加减运 算。“+”表示相加,“-”表示相减。“+”号可省略 不写(如下图所示)。需要注意的是进行相加或相 减的量,必须具有相同的量刚
p2 a12a24a45a56
③ x1 x2 x5 x6
p3 a12a25a56
回路(Loop)
信号的起点和终点在同一节点,并与其它节点相遇仅一次 的通路。回路中所有支路的乘积称为回路增益,用 La 表 示。如示意图中的系统一共有如下几条回路:
① x2 x3 x2 ② x2 x4 x3 x2 ③ x3 x4 x3 ④ x2 x5 x3 x2 ⑤ x2 x4 x5 x3 x2 ⑥ x3 x4 x5 x3 ⑦ x4 x4
型; • 根据所建立的数学模型写出微分方程; • 求解微分方程,得出输出变量的表达式; • 对所求得的解进行检验; • 根据检验的结果,必要的时候进行重新分析;
建立控制系统数学模型的方法有以下两种:
• 分析法 • 实验法
所建立的数学模型有如下几种表现形式:
• 时域表示法 • 复域表示法 • 频域表示法
于乘法器,如示意图中的 x1 x2, x2 x3, , x5 a56 等均为 支路,而数字 a12 , a23, , a56 等为相应支路的增益
源节点(Source Node)
在源节点上,只有信号输出的支路而没有信号输入的支路。 源节点一般代表系统的输入变量,故也被称为输入节点, 如示意图中的 x1 节点即为源节点
信号流图的性质
• 信号流图适用于线性系统
• 支路表示一个信号对另一个信号的函数关系,它起到乘 法器的作用,信号只能沿支路上的箭头单向传递,当信 号从一个节点传递到另一个节点时,将被乘以支路增益 变成另一个信号
• 节点标志系统的变量,一般节点自左向右顺序设置,每 个节点标志的变量是所有流向该节点的信号之代数和, 而从同一节点流向各支路的信号均用该节点的变量表示
性质5 传递函数与微分方程之间存在着如下的关系:如果
s 将用 来 d 置换,则可将传递函数替换成微分方程 dt
性质6 传递函数 G(s) 的拉氏反变换是系统的单位脉冲响 应 g(t)
举例 根据前面介绍的 RC 网络所得到的微分方程:
R1 R2 C1C 2
d 2u0 (t) dt 2
(R1C1
R1C2
第二章 控制系统的数学模型
§2.1 引言 §2.2 运动对象的微分方程 §2.3 线性微分方程的求解 §2.4 控制系统的复域数学模型 §2.5 控制系统的结构图 §2.6 信号流图和梅逊公式 §2.7 数学模型的实验测定
动力系统的分析可归结为如下几步:
• 定义系统及其相关的组成部分; • 对系统作必要的假设,建立该系统的数学模
R2C2 )
duo (t) dt
uo (t)
ui (t)
在初值为零的条件下,对上述方程两边取拉氏变换可得:
[R1R2C1C2s2 (R1C1 R1C2 R2C2 )s 1]Uo (s) Ui (s)
系统的传递函数为:
G(s) Uo(s)