(完整版)数列公式汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学必修五
第二章 数列 重难点解析
第二章 课文目录
2.1 数列的概念与简单表示法 2.2 等差数列
2.3 等差数列的前n 项和 2.4 等比数列
2.5 等比数列前n 项和
【重点】
1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n 项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n 项和公式推导,进一步熟练掌握等比数列的通项公式和前n 项和公式
【难点】
1、根据数列的前n 项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n 项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法
⒈ 数列的定义:按一定次序排列的一列数叫做数列.
注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;
⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.
⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. ⒊数列的一般形式:
,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 ⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.
注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;
⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是
2)1(11+-+=n n a ,也可以是|2
1cos
|π+=n a n . ⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.
数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系:
数列可以看成以正整数集N *
(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。
反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)、 f(4)…,f(n),… 6.数列的分类:
1)根据数列项数的多少分:
有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列 2)根据数列项的大小分:
递增数列:从第2项起,每一项都不小于它的前一项的数列。 递减数列:从第2项起,每一项都不大于它的前一项的数列。 常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列 7.数列的表示方法 (1)通项公式法
如果数列{}n a 的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。 如数列
的通项公式为 ;
的通项公式为
;
的通项公式为 ;
(2)图象法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项
为纵坐
标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势. (3)递推公式法
如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。 递推公式也是给出数列的一种方法。
如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为:)83(,5,32121≤≤+===--n a a a a a n n n 4、列表法
.简记为
.
典型例题:
例1:根据下面数列的前几项的值,写出数列的一个通项公式:
(1) 3, 5, 9, 17, 33,……; (2)
32, 154, 356, 638, 99
10, ……; (3) 0, 1, 0, 1, 0, 1,……; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……; (5) 2, -6, 12, -20, 30, -42,…….
解:(1) n a =2n +1; (2) n a =)12)(12(2+-n n n ; (3) n a =2
)1(1n
-+;
(4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……,
∴n a = ;
(5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……, ∴ n a =
例2:设数列{}n a 满足1111
1(1).n
n a a n a -=⎧
⎪
⎨=+>⎪⎩
写出这个数列的前五项。 解:
二、等差数列
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)。
⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差。
2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】
等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据
其定义可得:
d a a =-12即:d a a +=12
d a a =-23即:d a d a a 2123+=+= d a a =-34即:d a d a a 3134+=+=
……
由此归纳等差数列的通项公式可得:d n a a n )1(1-+=
∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a 。 由上述关系还可得:d m a a m )1(1-+= 即:d m a a m )1(1--=
则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+-- 即等差数列的第二通项公式 =n a d m n a m )(-+ ∴ d=n
m a a n
m --
3.有几种方法可以计算公差d
① d=n a -1-n a ② d =
1
1
--n a a n ③ d =m n a a m n --
4.结论:(性质)在等差数列中,若m+n=p+q ,则,q p n m a a a a +=+
即 m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N )
但通常 ①由q p n m a a a a +=+ 推不出m+n=p+q ,②n m n m a a a +=+ 典型例题:
例1:⑴求等差数列8,5,2…的第20项