【精品】018平面向量和的概念线性运算及基本定理坐标表示答案

合集下载

2020年高一下学期第1讲:平面向量的基本概念与线性运算(含解析)

2020年高一下学期第1讲:平面向量的基本概念与线性运算(含解析)
3若a,b满足|a| |b|且a与b同向,贝y a b;
4若两个向量相等,则它们的起点和终点分另重合;
5若a//b,b//c,则a//C.
A.0个B.1个C.2个D.3个
2.下列命题中,正确的是()
a.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点总是一平行四边形的四个顶点
十、十muruur r
和0A交于E,设AB占,AO b
(1)用向量a与b表示向量Oc,CD;
…uuumu,亠
(2)若OE OA,求实数的值.
26.如图,已知ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB BE:EC2:1,AE
(1)求及;
rr uuu
(2)用aLeabharlann b表示BP;(3)求PAC的面积.
动点
uuu
P满足OP
uur
OA
uuur
/AB
(uuu
|AB|
uuur
AC、
-uuu^),
|AC|
[0,),则P的轨迹一定通过
ABC的()
A.外心
B.内心
C.重心
D.垂心
1 2.如图,四边形ABCD是正方形,
延长CD至E,
使得
DE CD.若动点P从点A出发,沿正方形
A点,其中
UUU
AP
UUL
AB
AE,下列判断正确的是()
3
|CB|,

AB BC,贝U(
)
2
2
5
5
A .-
B .-
C.
D.
3
3
3
3
5.已知|a11,
rrr

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。

平面向量的概念、线性运算、基本定理及坐标表(无答案)汇总

平面向量的概念、线性运算、基本定理及坐标表(无答案)汇总

平面向量专题(1) 2016年9月30日∙ 中海部【知识清单1】 一、向量的相关概念1.向量:既有大小有方向的量叫做向量(矢量). 只有大小没有方向的量称为数量.2.分类:自由向量(仅由大小和方向确定,与起点位置无关) 、滑动向量(允许起点在向量所在的直线上滑动) 、固定向量(大小与方向确定,且起点位置固定),高中阶段主要研究自由向量.3.几何表示: 向量可以用有向线段表示.区别:有向线段包括起点、方向、长度三个要素,向量包括方向、长度两个要素. 4.长度:向量的大小,也就是向量的长度(或称模).向量也可用字母c b a 、、(印刷用黑体a ,手写用)或用表示向量的有向线段的起点和终点表示. 例如,.5.零向量:长度为0的向量.记做0.6.单位向量: 长度为1的向量.7.平行向量: 方向相同或相反的向量. 记作a//b .规定: 零向量与任一向量平行.8.相等向量:长度相等且方向相同的向量叫做相等向量. 记做a =b . 注意: 向量相等与有向线段的起点无关.9.相反向量:长度相等且方向相反的向量叫做相反向量,记做-=规定:零向量的相反向量是零向量.10. 共线向量:任一组平行向量都可以移动到同一直线上,因此,平行向量也叫共线向量. 二、平面向量的线性运算(向量的加、减、数乘运算统称为向量的线性运算) 1.向量加法的三角形法则已知非零向量a 、b , 在平面内任取一点A , 作a =,b =,则向量叫做a 和b 的和,记做a +b ,即BC AB +=+b a. 求两个向量和的运算,叫做向量的加法. 这种方法称为向量加法的三角形法则.特点:首尾向连! 2.向量加法的平行四边形法则以同一个点O 为起点的两个已知向量a 、b 为邻边作平行四边形OACB ,则以O 为起点的对角线是a 与b 的和, 即=+=+b a. 此法叫做向量加法的平行四边形法则.特点:共起点! 3. 重要结论(1)对任意向量a 、b ,有≤|a +b ||a |+|b |; (2)当a 、b 同向时,|a +b |=|a |+|b |;(3)当a 、b 反向是,|a +b |=|a |-|b |(或|b |-|a |) 4.向量加法交换律:a +b =b+a ;5.向量加法结合律:(a +b)+c =a +(b +c)规定:对零向量与任一向量a ,00a +=+a =a6.向量减法的几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 特点:箭指被减!bcab()a b +-b-a7.向量的数乘:一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下: (1) ||||||λλ=a a ;(2) 当0λ>时,λa 的方向与a 的方向相同;(3) 当0λ<时,λa 的方向与a 的方向相同;(4) 当=时,=λ(5) 当0=λ时,=λ8.向量共线定理:如果有一个实数λ,使)0(≠=a a b λ,那么b 与a 是共线向量,反之,如果b 与a 是共线向量,那么有且只有一个实数λ,使)0(≠=a a b λ 9.数乘的运算律: (1) ()()λμλμ=a a ; (2) ()λμλμ+=+aa a ;(3) ()λλλ+=+a b a b .10. 线段定比分点定理(1)定理的证明:如图)1(≠=∆λλCB AC ,AB ,COAB 的一点为直线中, 求证:OB OA OC λλλ+++=111 .111λλλλλλλ++=∴-≠+=+-=-∴=-=-=OBOA OC OBOA OC )(OC OB (OA OC Q Q 又即又(2)两种方法证明A ,B ,C 三点共线: ①t s +=+++=λλλ111(1=+t s ) ②⇒=λC B A 、、三点共线.(3)实数λ的取值对C 点位置的影响: ①当>λ0时,点C 在AB 之间;②当<λ0时,点C 在AB 之左或之右; ③当λ=1时,点C 在AB 的中点; ④当λ=0时,点C 与A 点重合; ⑤当R ∉λ时,点C 与B 点重合.【共同开发】——1.线性计算:(1)a 4)3(⨯- (2) ---+)(2)(3 (3) )23()32(+---+解析:ACBO2.在ABC ∆中,,c AB =,b AC = 若D 点满足2= ,则=( )A .3132+ B.3532+- C.3132- D.3231+ 解析一:解析二:3.已知向量b a 、,且0)(4)2(2)(3=+---++b a x a x a x , 求x 的值. 解析:4.在中,AE =51AB ,BC EF //,EF 交AC 于F , 设a AB =,b AC =, 则BF 用表示的形式是BF =________.解析:5.在ABC ∆中,P N M 、、分别是CA BC AB 、、边上的靠近C B A 、、的三等分点,O 是ABC ∆平面上的任意一点,若++=131e -221e , 则ON OM ++=________. 解析:6. 已知任意两个非零向量、,试作b a OA +=, 2+=,3+=. 你能判断C B A 、、三点之间的位置关系吗? 为什么? 解析:7. 已知任意两个不共线向量a 、b , k 21+=, 2+=,4+=,若C B A 、、或D B A 、、三点共线,求k 的值.8.设两非零向量21e e 不共线,且21e e k +与21e k e +共线,则k 的值为( )A .1B .-1C ±1D .0解析:ABCDcb ABCEab F AB9.如图,已知AB AD 3=、BC DE 3=,试判断AC 与是否共线?解析:10.已知ABC ∆的重心为G ,O 为坐标原点, a OA =,b OB =,c OC =, 求证:OG =)(31c b a ++解析:【知识清单2】三、平面向量的基本定理及坐标表示1.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一个实数1λ、2λ,使得:1122λλ=+ae e ,把不共线的向量1e 、2e 叫做这一平面内所有向量的基底.2.向量的夹角: 已知两个非零向量和a b ,作a =,b =,则(0180)AOB θθ∠=≤≤ 叫做向量a 与b 的夹角.当a 与b 的夹角是90,称a 与b 垂直,记作⊥a b ;当0θ=时,与a b 同向; 当180θ=时,与a b 反向.3.正交分解: 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.4.向量的坐标表示: 在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.对于平面内的一个向量a ,由平面基本定理可知,有且只有一对实数x 、y ,使得:x y =+a i j .这样,平面内的任一向量a 都可以由x 、y 唯一确定,我们把有序数对(,)x y 叫做向量a 的坐标,记作(,)x y =a . 其中x ,y分别叫做a 在x 轴上,在y 轴上的坐标. 在平面直角坐标系内,每个平面向量都可以用一个有序实数对唯一表示.5.平面向量的坐标运算: (1) 若11(,)x y =a ,22(,)x y =b ,则1212(,)x x y y ±=±±a b ;(2) 若(,),x y R λ=∈a,则(,)x y λλλ=a ;(3) 若11(,)A x y ,22(,)B x y ,则)(1212y y x x --=,.(终点坐标减去起点坐标)C EABD6.平面向量共线的坐标表示: 设11(,)x y =a,22(,)x y =b ()≠0b ,则向量()≠0、a b b 共线的充要条件为12210x y x y -=.7.设111(,)P x y ,222(,)P x y .(1) 若P 是12PP 的中点时,则)22(2121y y x x p ++,; (2) 若21PP P λ=,则)22(2121y y x x P λλ++,. 四、平面向量的数量积: 1、向量的数量积概念及其运算:(1)定义:如果两个非零向量b a 、的夹角为θθ叫做向量与向量的数量积,记做⋅即:=⋅θ.(2)投影:b 在aθ,它可以为正,可以为负,也可以为0.(3)坐标计算公式:若向量)(11y x a,=,)(b 22y x ,=,则2121y y x x b a +=⋅(横乘横,纵乘纵)3222221212121yx y x y y x x b +⋅++==θ42121y x +==5、平面向量的平行与垂直问题: (1)若)(11y x ,=,)(22y x ,=,b //a ,则12210x y x y -=(2)若)(11y x ,=,)(22y x ,=,⊥,则02121=+=⋅y y x x6.重要结论:(1)G 为ABC ∆的重心(中线的交点) ),33(0321321y y y x x x G ++++⇔=++⇔;(2)G 为ABC ∆的外心(角平分线的交点)⇔==.题型1——向量数量积定义的应用 典例1 (1)已知1=,2= 向量a 的夹角为3π,求)22-+)(( (2)已知)43()12(-=-=,、,b a求:② )3b a b a -⋅+()( ;②若91=⋅-=⋅, ,求的坐标解析:题型2——向量的夹角问题典例2 (1)已知向量、都是非零向量,且向量3+与向量 57-垂直,向量4-与向量27-垂直,求向量与的夹角.(2)若向量=)(x x 2,,=)(2,3x -,且,的夹角为钝角,求x 的取值范围.解析:【自力更生】1.下列向量中,能作为表示它们所在平面内所有向量的基底的是( ))21(00(.21-==,),e e A )75(21(.21,),=-=e e B )106(53(.21,),==e e C )4321(32(.21-=-=,),e e D解析:2.已知向量 ,且2+=, 65+-= , 27-= ,则一定共线的三点是( )A . DB A 、、 B .C B A 、、 C .D C B 、、 D .D C A 、、解析:3.如果1e 、2e 是平面α内两个不共线的单位向量,那么在下列各说法中错误的有( ) ①)(21R e e ∈+μλμλ,可以表示平面α内的所有向量;②对于平面α中的任一向量a ,使21e e a μλ+=的μλ,有无数多对;③若向量2111e e μλ+与2212e e μλ+共线, 则有且只有一个实数k ,使)(21112212e e k e e μλμλ+=+;④若实数μλ,使21=+e e μλ,则0==μλ.A .①②B .②③C .③④D .仅② 解析:4.若向量)42()11(11--=-==,,,),,(,则=( )A . 3+-B .-3C .3-D . +-3解析:*5.平面直角坐标系中,O 为坐标原点,已知两点),,(),,3113(-B A 若点)(y x C ,满足,OB OA OC βα+=其中R ∈βα、, 且1=+βα,则y x ,所满足的关系式为( )A .01123=-+y xB .5)2()1(22=-+-y x C .02=-y x D . 052=++y x解析:6. 作用于原点的两力),(),,(321121==F F ,为使得它们平衡,需加力=3F .解析: 7. 若,,,,,,)3()4()32(y C x B A 且2=,则x = ,y = . 解析:8. 已知),(),,4132(B A 且12AB =)cos sin (βα,,),,22(ππβα-∈,则=+βα . 解析:9.已知),(,,23)21(-==b a ,若b a k +与b a 3-平行,则实数k 的值为 . 解析:10. 若0<⋅,则a 与b 的夹角的取值范围是 .解析:〖桃李归纳〗—— 20020πθθπ=⇒>⋅<<⇒>⋅b a b a ;.11. 18036||10||-=⋅==b a b a ,,,a 与b 的夹角是 .解析:12. 已知,,,,)53()2(-==b m a若a 与b 的夹角为钝角,实数m 的取值范围为 . 解析: 13.已知⊥-==)(2||1||,,,则a 与b 的夹角是解析:14. 已知向量与向量)125(-=,26=,求=解析: 15.如果向量=,,mj i BC j i +=-2其中i 、j 分别是x 轴、y 轴正方向上的单位向量, 试确定实数m 的值,使A 、B 、C 三点共线. 解析:16.已知C B A 、、三点坐标分别为),),(,),(,211301(--,BC BF AC AE 3131==, , 求证:AB EF //. 证明:*17.已知),()、,(、,10745)32(C B A ,若()AP AB AC R λλ=+∈,试求λ为何值时,点P 在第三象限内?解析:18. 已知,,,,)1()12(-=-=m m 若a 与b 的夹角为锐角,求实数m 的取值范围. 解析: 19. ABC ∆中,),(,,,,84)57()14(-C B A ,判断ABC ∆的形状. 解析:20、在ABC ∆中,)2()11(k ,,,==,若ABC ∆为直角三角形,求实数k 的值.解析:21、已知,,,,)1313()31(-+==b a 求与b 的夹角是多少? 解析:22、 已知,,,,)313()353(-=-=求b a 2+与b a -的夹角是多少? 解析:23、若与的夹角为θ,且)33(,=a ,)11(2,-=-,求θ. 解析:24 .(2013年上海卷)在边长为1的正六边形ABCDEF 中, 记以A 为起点, 其余顶点为终点的向量分别为54321a a a a a , 以D 为起点, 其余顶点为终点的向量分别为54321d d d d d .若M m ,分别为)()(t s r i d a k j ++⋅++的最小值、 最大值, 其中{}{}{}{},,,,,,,,,,,,,,5432154321⊆⊆t s r k j i 则M m ,满足( )A .00>=M m ,B .00><M m ,C .00=<M m ,D .00<<M m ,解析:25.(2013年辽宁)及已知点),,(),,1431(-B A 则与向量AB 同方向的单位向量为()A . 3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,解析: .1F)126.(2013年浙江数学)设P ABC ,∆是边AB上一定点,满足AB B P 410=,且对于边AB上任一点P,恒有CP B P PC PB 00∙≥∙, 则( )A .090=∠ABCB .090=∠BACC .AC AB = D .AC =解析:27.(2013年福建数学(理)在四边形ABCD 中,)21(,=, )24(,-= 则四边形的面积为()A .B .C .5D .10解析:28.(2013年安徽数学)在平面直角坐标系中,O 是坐标原点,两定点B A ,,2=⋅== 则点集{}R OB ∈≤++=μλμλμλ,,,1所表示的区域的面积是( )A .B .C .D .解析:29.(2013年重庆数学)在平面上,21AB AB ⊥,1==,21AB AB AP +=21<,则的取值范围是()A .⎛ ⎝B .C .D .解析:30.(2013年湖南卷)已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是( )A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦解析:)31.(2013年大纲版数学) 已知向量,,,,)22()11(+=+=λλn m 若)()(n m n m -⊥+, 则=λ ( )A .4-B .3-C .2-D .-1解析:32.(2013年高考湖北卷) 已知点()1,1A -,()1,2B ,()2,1C --,()3,4D ,则向量在CD 方向上的投影为()ABC.D. 解析:33.(2013年高考北京)向量在正方形网格中的位置如图所示. 若)(R ∈+=μλμλ,,则λμ=_________.解析:34.(2013年新课标Ⅱ卷数学)已知正方形ABCD 的边长为2,E 为CD 的中点,则BD AE ⋅_______.解析:35.(2013年上海试卷)已知向量)1(k ,=,)6-9(k ,=,若//,则实数k = ________解析:36.(2013年山东学)已知向量与的夹角为1203=2=,若+=λ,且BC AP ⊥,则实数λ的值为__________. 解析37.(2013年高考新课标1)已知两个单位向量的夹角为60,t t )1(-+= ,若0=⋅,则=t _____.解析: .P BCAPBaAbc38. (2013年浙江数学) 设21e e ,为单位向量,非零向量,,,R y x e y e x b ∈+=21 若21e e ,的夹角为6π,则的最大值等于________.解析:39.(2013年江苏卷)设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为__________.解析:40.(2013年高考四川卷) 在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AO AD AB λ==,则λ=_________.解析:41.(2013年高考江西卷)设1e ,2e 为单位向量,且1e ,2e 的夹角为3π,若123ae e =+,12b e =,则向量在方向上的射影为 ___________ 解析:42.(2013年天津数学)在平行四边形ABCD 中, 1=AD , 60BAD ︒∠=,E 为CD 的中点. 若1=⋅,则AB 的长为______. 解析:AC。

初中数学知识归纳平面向量的线性运算及应用

初中数学知识归纳平面向量的线性运算及应用

初中数学知识归纳平面向量的线性运算及应用初中数学知识归纳:平面向量的线性运算及应用一、引言初中数学中,线性运算是一个重要的概念。

在平面几何中,平面向量的线性运算是一种常见且有用的运算。

本文将归纳总结平面向量的线性运算及其应用。

二、平面向量的定义与表示平面向量是具有大小和方向的量,用有向线段表示。

在直角坐标系中,平面向量可以用坐标表示为:AB = (x, y)其中,x表示与x轴的水平距离,y表示与y轴的垂直距离。

三、平面向量的线性运算1. 平面向量的加法若有两个平面向量AB = (x₁, y₁)和CD = (x₂, y₂),则它们的和为:AB + CD = (x₁ + x₂, y₁ + y₂)2. 平面向量的数乘若有一个平面向量AB = (x, y)和一个实数k,那么它们的数乘为:kAB = (kx, ky)3. 平面向量的减法若有两个平面向量AB = (x₁, y₁)和CD = (x₂, y₂),则它们的差为:AB - CD = (x₁ - x₂, y₁ - y₂)4. 平面向量的线性组合若有n个平面向量A₁, A₂, ..., An和n个实数k₁, k₂, ..., kn,则它们的线性组合为:k₁A₁ + k₂A₂ + ... + knAn四、平面向量的应用1. 平行向量两个向量的方向相同或相反时,它们为平行向量。

在平行四边形的性质中,平行向量具有重要的应用。

2. 向量共线与共面若有三个点A,B,C构成的两个向量AB和AC共线,则三个点A,B,C共线。

若两个向量在同一个平面内,它们为共面向量。

3. 向量的模长与方向角平面向量的模长为向量的长度,用|AB|表示。

向量的方向角为向量与水平方向的夹角,一般用α表示。

4. 平面向量的投影平面向量的投影表示一个向量在另一个向量上的投影长度,应用于解决几何问题中的投影性质。

5. 平面向量的线性相关与线性无关若存在一组实数k₁, k₂, ..., kn,使得k₁A₁ + k₂A₂ + ... + knAn = 0且不全为0,则这组向量为线性相关向量。

平面向量的概念、运算及坐标表示(讲义及

平面向量的概念、运算及坐标表示(讲义及

平面向量的概念、运算及坐标表示(讲义)➢ 知识点睛一、平面向量的基本概念 1. 定义:既有,又有 的量叫做向量.−−→表示:a , AB−−→模:向量 AB 的叫做向量的模,记作 .2. 几个特殊的向量:零向量、单位向量、平行(共线)向量、相等向量、相反向量二、平面向量的线性运算1(几何意义)加法 减法 数乘定义求两个向量和的运算向量a 加上向量b 的, 即 a +(-b )=a -b实数与向量的 积是一个向量,记作λa法则法则法则λa = λ a当λ>0 时,λa 与 a 的方向 ; 当λ<0 时,λa 与 a的方向;当λ=0 时,λa =0运算律 交换律:λ(μa )= (λ+μ)a = λ(a +b )= (-λ)a = λ(a -b )=a +b =结合律: a -b =a +(-b )(a +b )+c =λ(μ1a ±μ2b )=λμ1a ±λμ2b三、向量相关定理1.共线向量定理:向量a(a≠0)与b 共线,当且仅当有唯一一个实数λ,使.扩充:对空间三点P,A,B,可通过证明下列任意一个结论成立来证明三点共线.−−→−−→① PA =λPB ;−−→−−→−−→②对平面任一点O,OP =OA+t AB ;−−→−−→−−→③对平面任一点O,OP =x OA+y OB(x +y =1).2.平面向量基本定理(1)基底:平面内的向量e1,e2 叫做表示这一平面内所有向量的一组基底.(2)定理:如果e1,e2 是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a= .四、向量的坐标表示及运算1.坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i,j 作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j.这样,平面内的任一向量a 都可由x,y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a= .2.坐标运算设a=(x1,y1),b=(x2,y2),则a+b= ,a-b= ,λa= .(1)坐标求法−−→设A(x1,y1),B(x2,y2),则AB= .(2)向量位置关系与坐标a∥b ⇔ ⇔ .➢精讲精练1.下列四个命题:①若a = 0 ,则a 为零向量;②若a =b ,则−−→−−→ a=b 或a=-b;③若a∥b,则a =b ;④若非零向量AB 与CD 是共线向量,则A,B,C,D 四点共线.其中正确的有()A.0 个B.1 个C.2 个D.3 个2.根据图示填空:(1)a+b= ;(2)c-a= ;(3)a+b+d= ;(4)f-a-b= ;(5)c+d+e= ;(6)g-c-d= .3.若a,b 为非零向量,且a +b =a +b ,则()A.a∥b,且a 与b 方向相同B.a=bC.a=-bD.a,b 无论什么关系均可−−→−−→−−→4.如图,在正六边形ABCDEF 中,BA + CD + EF =()−−→−−→−−→A.0 B.BE C.AD D.CF−−→−−→−−→5.已知正方形ABCD 的边长为1,AB =a,BC =b,AC =c,则a +b +c =()A.0 B.3 C. 2 D.2 2−−→−−→−−→−−→6.平面上有A,B,C 三点,设m= AB +BC ,n= AB -BC ,若m,n 的长度恰好相等,则有()A.A,B,C 三点必在同一直线上B.△ABC 必为等腰三角形且∠B 为顶角C.△ABC 必为直角三角形且∠B=90°D.△ABC 必为等腰直角三角形−−→ −−→ −−→7. 已知AB =a+5b,BC =-2a+8b,CD =3(a-b),则()A.A,B,D 三点共线B.A,B,C 三点共线C.B,C,D 三点共线D.A,C,D 三点共线8.在△ABC 中,M 为边BC 上的任意一点,N 为AM 的中点,−−→−−→−−→若AN =λ AB +μ AC ,则λ+μ的值为()A.12 B.13C.14D.1−−→9.如图,平面内有三个向量OA−−→,OB−−→,OC−−→,其中OA−−→与OB 的−−→−−→−−→−−→夹角为120°,OA 与OC 的夹角为30°,且OA =OB = 1,−−→ OC = 2−−→,若OC−−→=λOA −−→+μOB ,则λ+μ的值为.3λ λ λ +λ 10.已知 D ,E 分别是△ABC 的边 AB ,BC 上的点,且 AD = 1AB ,2 BE = 2BC .若 −−→−−→ −−→ λ ( , 为实数),则3 的值为 DE = .1 AB +λ2AC 1 2 1 2−−→ 11.如图,在△ABC 中,1 −−→ −−→ −−→ −−→ , ,若 =a ,−−→−−→BD = DC 2AE =3 ED AB AC =b ,则 BE =()A . 1 a + 1 bB . - 1 a + 1 b3 3 24 C . 1 a + 1 bD . - 1 a + 1 b2 43 3−−→1 −−→ −−→ 1 −−→ 12.如图,在△AOB 中, OC = OA ,OD 4 = OB ,AD 与 BC 2−−→相交于点 M ,设 OA −−→OM =.−−→=a , OB=b ,若以 a ,b 为基底,则13. 已知平行四边形 ABCD 的三个顶点 A ,B ,C 的坐标分别为 (-2,1),(-1,3),(3,4),则顶点 D 的坐标是.14. 若向量a=(1,1),b=(-1,1),c=(4,2),则c=()A.3a+b B.3a-bC.-a+3b D.a+3b15. 向量a,b,c 在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λ=.μ16. 已知平面向量a=(1,2),b=(-2,m),若a∥b,则2a+3b=()A.(-5,-10) B.(-4,-8)C.(-3,-6) D.(-2,-4)17. 已知向量a=(2,-1),b=(-1,m),c=(-1,2),若a+b 与c 共线,则m = .【参考答案】➢知识点睛一、平面向量的基本概念−−→1. 大小,方向,长度,AB二、平面向量的线性运算加法:三角形,平行四边形,b+a,a+(b+c)减法:相反向量数乘:相同,相反,(λμ)a,λa+μa,λa+λb,-(λa),λa-λb三、向量相关定理1. b=λa2. (1)不共线;(2)λ1e1+λ2e2四、向量的坐标表示及运算1. (x,y)2. (x1+x2,y1+y2),(x1-x2,y1-y2),(λx1,λy1)(1)(x2-x1,y2-y1)(2)b=λa,x2 =y2 =λ(x ,y ≠ 0 )x1y1➢精讲精练1. B2. (1)c;(2)b;(3)f;(4)d;(5)g;(6)e3. A4. D5. D6. C7. A8. A9. 610. 1211. B12. 1 a +3 b7 713. (2,2)14. B15. 416. B17. -11 1。

平面向量的概念及其线性运算、平面向量的基本定理及向量坐标运算

平面向量的概念及其线性运算、平面向量的基本定理及向量坐标运算

及向量坐标运算、选择题1.(优质试题•四川高考文科-T2)设向量a=(2,4)与向量b=(x,6)共线,则实数 x=()C.(-1,4)D.(1,4)【解析】选 A .因为2?=(3-0,2-1)=(3,1), 所以蛊匚=[-粘=(-4,-3)-(3,1)=(-7,-4).、填空题4.(优质试题•浙江高考理科-T15)已知是空间单位向量,A.2B.3C.4D.6【解析】选B.由向量平行的坐标运算可知,2 X 6=4x,则x=3.2.(优质试题•新课标全国卷I 理科-T7)设D 为^ ABC 所在平面内一点,酬=3[0A. AD =—^AB + ^ACB. 3 3—■ 4 —■- 1 — C. AD= —AB+ —AC D. 3 3-- 1 -- 4 —- AD = —AB - —AC 3 3 —- 4 —1 —- AD = —AB - —AC3 3【解析】选A .由题知AD=AC+CD=AC +丄+-(7C —7B )=—丄需+上;C「3 3 33.(优质试题-新课标全国卷I 文科-T2)已知点A (0,1),B (3,2),向量粗=(-4,-3),A.(-7,-4)B.(7,4)【解题指南】先求出48,再利用肮二征-]B 求解.平面向量的概念及其线性运算、 平面向量的基本定理e 1 82=!,若空间向量b 满足b 2 =2; ,且对于任意x,y2 2b-(xe,' + ye j d b -^e + %◎) =1(怡,%忘 R)【解题指南】利用已知条件中平面向量的模长、数量积对不等式两 边同时平方化简求值 b —g [当且仅当x =X o ,y = y o 时取到最小值X o =1 « y 。

=2答案:1 , 2 , 2迈5.(优质试题•浙江高考文科-T13)已知e且e 售=1 .若平面向量b 满足【解题指南】 由题意求向量e , e2的坐标,从而求向量b 的坐标从而求其模.【解析】由题可知,不妨e^=(1,O )呼儿设b =xy ),则be1=x= 1 ,R, X o =,y 0= ,|b|=【解析】问题等价于两边平方即|b | b +x 2 +y 2-4x 一5y +xy2 +X 2+ y 2 -4x —5y +xy 在 x = x o ,y = y o 时取到最小值=x 2+ (y -4 )x + y2 —5y + b |,所以xo+「O,b o -2 = O,『=1解得—7 +e , 62是平面单位向量,♦—b e = b -62 =be2Ex+乎厂1,所以b=(1,f),所以ig全国名校高考数学优质学案专题汇编(附经典解析)答案:迹36.(优质试题•北京高考理科- T13)在AABC 中,点 M, N满足 AIM=2MC,BN =NC ,若 MN = X7B+y7C ,贝廿 x= ___________ , ____ y= ____________ 。

平面向量的概念及其线性运算

平面向量的概念及其线性运算

( A )
解析
∵D是AB的中点,∴ BD 1 BA
2
1 CD CB BD BC BA. 2
3.(2009·北京)已知向量a、b不共线, c=ka+b(k∈R),d=a-b.如果c∥d,那么( A.k=1且c与d同向 B.k=1且c与d反向 D )
C.k=-1且c与d同向
⑥有向线段就是向量,向量就是有向线段.
其中假命题的个数为 ( )
A.2 思维启迪 解析
B.3
C.4
D.5
熟练掌握向量的有关概念并进行判断.
①中,∵向量AB与 BA 互为相反向量, ∴它们的长度相等,∴此命题正确. ②中若a或b为零向量,则满足a与b平行,但a与b的方 向不一定相同或相反,∴此命题错误.
5 3
2 3
AD AB BD.
又BD 2 DC, BD 2 BC. 3
BC AC AB b c, AD AB 2 BC 3 2 2 1 c (b c) b c. 3 3 3
4.(2008·广东)在平行四边形ABCD中,AC与BD交 于点O,E是线段OD的中点,AE的延长线与CD交于 点F.若 AC=a, BD =b,则 AF等于 (
由平面向量的基本定理,
得 3=2
3 4 -2=- k,解之得 = , k= . 3 2
思想方法
感悟提高
方法与技巧
1.将向量用其他向量(特别是基向量)线性表示,是 十分重要的技能,也是向量坐标形式的基础. 2.首尾相连的若干向量之和等于以最初的起点为起点, 最后的终点为终点的向量;若这两点重合,则和为
(2)应用共线向量的充要条件→列方程组→
(1)证明
∵ AB =a+b, BC =2a+8b,

(完整版)平面向量的线性运算

(完整版)平面向量的线性运算

ABabbaa a O =−→−OBA B O B a abb=−→−OB a +b ABAa +b向量的线性运算(一)1.向量的加法向量的加法:求两个向量和的运算叫做向量的加法。

表示:→--AB −→−+BC =→--AC .规定:零向量与任一向量a ,都有00a a a +=+=.【注意】:两个向量的和仍旧是向量(简称和向量)作法:在平面内任意取一点O ,作→--OA =a →--→--OB =→--OA +→--AB a +b2.向量的加法法则(1)共线向量的加法:同向向量反向向量(2)不共线向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)。

三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。

表示:→--AB −→−+BC=→--AC .平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线→--AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。

如图,已知向量a 、b 在平面内任取一点A ,作→--AB =a ,=−→−BC b ,则向量−→−AC 叫做a与b 的和,记作a +b ,即a +b +=−→−AB =−→−BC −→−AC【说明】:教材中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的 特殊情况:探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.(4)“向量平移”:使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.向量加法的运算律(1)向量加法的交换律:a +b =b +a(2)向量加法的结合律:(a +b ) +c =a +(b +c ) 证明:如图:使=−→−AB a , =−→−BC b , =−→−CD c 则(a +b )+c =−→−AC +=−→−CD −→−AD ,a + (b +c )=−→−AB −→−+BD −→−=AD ,∴(a +b )+c =a +(b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行例如:()()()()a b c d b d a c +++=+++;[()]()a b c d e d a c b e ++++=++++.例题:例1. O 为正六边形的中心,作出下列向量:(1)−→−OA +−→−OC (2)−→−BC +−→−FE (3)−→−OA +−→−FE例2.如图,一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时水aaab bba +ba +b ABC ABCD三角形法则平行四边形法则的流速为h km /2,求船实际航行的速度的大小与方向。

平面向量的线性运算,基本定理及坐标表示

平面向量的线性运算,基本定理及坐标表示

平面向量的线性运算,基本定理及坐标表示1、向量有关概念:(1)向量的概念:既有大小又有方向的量.向量常用有向线段来表示,注意不能说向量就是有向线段,(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(4)相等向量:长度相等且方向相同的两个向量叫相等向量(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。

三点共线共线;2.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1+e2。

3、实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规定如下:当>0时,的方向与的方向相同,当<0时,的方向与的方向相反,当=0时,,注意:≠0。

4、向量的运算:(1)几何运算:(2)坐标运算:设,则:①向量的加减法运算:,。

②实数与向量的积:。

③若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。

⑤向量的模:。

⑥两点间的距离:若,则。

5、向量平行(共线)的充要条件:=0。

12、向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).(3)在中,①若,则其重心的坐标为。

一、选择题:1、已知向量,则用表示为( ) A.B.C.D.2、已知,则的取值范围是( )A. B. C. D.3、已知向量,,,,且,则( )A.B.C.D.4.(2010•四川)设点M是线段BC的中点,点A在直线BC外,=16,|则||=( )A.8B.4C.2D.1解析:由可知,⊥则AM为Rt△ABC斜边BC上的中线,因此,|选C.5.已知△ABC中,点D在BC边上,且则r+s的值是( )C.-3D.0解析:∵∴∴又∴r=,∴r+s=0.故选D.3.平面向量a,b共线的充要条件是()6.平面向量a,b共线则( )A.a,b方向相同B.a,b两向量中至少有一个为0C.存在λ∈R,使b=λaD.存在不全为零的实数λ1,λ2,使λ1a+λ2b=0解析:a,b共线时,a,b方向相同或相反,故A错.a,b共线时,a,b不一定是零向量,故B错.当b=λa时,a,b一定共线,若b≠0,a=0.则b=λa不成立,故C错.排除A、B、C,故选D.7.若a=(2cosα,1),b=(sinα,1),且a∥b,则tanα等于( ) A.2 B. C.-2 D.-解析:∵a∥b,∴a=λb,∴∴2cosα=sinα,∴tanα=2. 答案:A8.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则+的值等于( ) A.1 B. C.D.解析:=(a-2,-2),=(-2,b-2),依题意,有(a-2)·(b-2)-4=0,即ab-2a-2b=0,所以+=. 答案:B9.设点A(2,0),B(4,2),若点P在直线AB上,且||=2||,则点P的坐标为( )A.(3,1) B.(1,-1) C.(3,1)或(1,-1) D.无数多个解析:设P(x,y),则由||=2||,得=2或=-2.=(2,2),=(x-2,y),即(2,2)=2(x-2,y),x=3,y=1,P(3,1),或(2,2)=-2(x-2,y),x=1,y=-1,P(1,-1).答案:C10.已知点A(2,1),B(0,2),C(-2,1),O(0,0),给出下面的结论:其中正确结论的个数是( )①直线OC与直线BA平行; ②③④A.1个 B.2个 C.3个 D.4个解析:kOC==-,kBA==-,∴OC∥BA,①正确;∵∴②错误; ∵∴③正确;∵v (-4,0), ∴④正确.故选C.11.设向量a=(3,),b为单位向量,且a∥b,则b=( )A.(,-)或(-,) B.(,) C.(-,-) D.(,)或(-,-)解析:设b=(x,y),由a∥b可得3y-x=0,又x2+y2=1得b=(,)或b=(-,-).答案:D12.在△ABC中,角A,B,C所对的边分别为a,b,c,且m=(b-c,cos C),n=(a,cos A),m∥n,则cos A的值等于( )A. B.- C. D.-解析:∵m∥n,∴(b-c)cos A=a cos C,∴( sin B-sin C)cos A=sin A cos C,即sin B cos A=sin A cos C+sin C cos A=sin(A+C)=sin B,易知sin B≠0,∴cos A=. 答案:C二、填空题:13、若,则; .14、若点O是△ABC所在平面内的一点,且满足,则△ABC的形状为________.解析:∴故A、B、C为矩形的三个顶点,△ABC为直角三角形. 15.(2010·陕西)已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.解析:由题知a+b=(1,m-1),c=(-1,2),由(a+b)∥c得1×2-(m-1)×(-1)=m+1=0,所以m=-1. 答案:-116.(2011·天津十二校联考)已知直角坐标平面内的两个向量a=(1,3),b=(m,2m-3),使平面内的任意一个向量c都可以唯一的表示成c=λa+μb,则m 的取值范围是________.解析:∵c可唯一表示成c=λa+μb,∴a与b不共线,即2m-3≠3m,∴m≠-3. 答案:{m|m∈R,m≠-3}17.如图,平面内有三个向量、、其中与的夹角为120°,与的夹角为30°,且||=||=1,| |=,若=λμ (λ,μ∈R),则λ+μ的值为________.解析:过C作与的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,|,得平行四边形的边长为2和4,故λ+μ=2+4=6. 答案:618.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若则m+n的值为________.解析:由于MN的任意性可用特殊位置法:当MN与BC重合时知m=1,n=1,故m+n=2.答案:2三、解答题:19.已知A(-2,4),B(3,-1),C(-3,-4),O为坐标原点.设=b,且(1)求3a+b-3c;(2)求满足a=m b+n c的实数m,n.解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb+nc=(-6m+n,-3m+8n)=(5,-5),∴,解得.20.已知向量a=(sinθ,cosθ-2sinθ),b=(1,2).(1)若a∥b,求tanθ的值; (2)若|a|=|b|,0<θ<π,求θ的值.解:(1)因为a∥b,所以2sinθ=cosθ-2sinθ,于是4sinθ=cosθ,故tanθ=.(2)由|a|=|b|知,sin2θ+(cosθ-2sinθ)2=12+22,所以1-2sin2θ+4sin2θ=5. 从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin(2θ+)=-. 又由0<θ<π知,<2θ+<,所以2θ+=或2θ+=. 因此θ=或θ=.。

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。

平面向量的概念与线性运算知识点

平面向量的概念与线性运算知识点

平面向量的概念与线性运算知识点平面向量是二维空间中的量,可以看作是带有方向和长度的箭头。

它通常用有序数对表示,即(x,y)。

其中,x称为向量的横坐标,y称为向量的纵坐标。

平面向量可以进行很多运算,其中包括线性运算,即向量的加法和数乘。

1.向量的加法:向量的加法定义为:对于两个向量A=(a₁,a₂)和B=(b₁,b₂),它们的和定义为C=(a₁+b₁,a₂+b₂)。

加法满足以下性质:-交换律:A+B=B+A-结合律:(A+B)+C=A+(B+C)-零向量:对于任意向量A,存在一个零向量0,使得A+0=0+A=A2.向量的数乘:向量的数乘定义为:对于一个向量A=(a₁,a₂)和一个实数k,它们的数乘定义为B=(ka₁, ka₂)。

数乘满足以下性质:- 结合律:k*(l*A) = (kl)*A-1的作用:1*A=A-0的作用:0*A=0除了加法和数乘外,还可以进行向量的减法和向量的数量积。

3.向量的减法:向量的减法定义为:对于两个向量A=(a₁,a₂)和B=(b₁,b₂),它们的差定义为C=(a₁-b₁,a₂-b₂)。

减法满足以下性质:-A-A=04.向量的数量积:向量的数量积(也称为内积、点积)定义为:对于两个向量A=(a₁,a₂)和B=(b₁,b₂),它们的数量积定义为a₁b₁+a₂b₂。

用符号表示为A·B。

数量积的性质:-交换律:A·B=B·A-结合律:(kA)·B=A·(kB)=k(A·B)-分配律:A·(B+C)=A·B+A·C向量的数量积还可以通过向量的坐标和向量的夹角来求得:A·B = ,A,,B,cosθ其中,A,和,B,分别表示向量A和向量B的长度,θ表示向量A和向量B之间的夹角。

除了上述基本概念和运算外,还有一些与平面向量相关的重要知识点,如向量的模、单位向量、向量的垂直和平行关系、共线与共点等等。

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算好啦,今天我们来聊聊平面向量的基本定理和坐标运算。

这可是个很有趣的话题,别被那些数学术语吓跑哦!你知道吗,向量其实就像是一把钥匙,可以打开很多数学大门。

听上去挺高大上的,但实际上,我们生活中处处都离不开它们,就像你每天都离不开饭一样。

想象一下,你在操场上跑来跑去,运动会的时候,标记你起跑的地方和终点的地方。

用坐标来表示,就是一个个的点,比如 (2, 3) 代表着你起跑的地方,(5, 7) 是终点。

平面向量就像是连接这两个点的一根线,从 A 点到 B 点的过程就叫做向量的运算。

听起来是不是有点神秘?其实也没那么复杂。

向量不仅有方向,还有长度,这样一来,我们就能把它当成一个小箭头,指向目标,越远越好,嘿嘿。

再来看看坐标运算,简单来说,就是把这些向量在坐标系上转来转去。

比如说你要把一条向量从起点搬到终点,怎么搬?很简单,向量的加法就可以搞定。

想象一下,你有一个从 (2, 3) 到 (5, 7) 的向量,再加上一个从 (5, 7) 到 (8, 10) 的向量,结果就是从 (2, 3) 直接到 (8, 10)。

这就像你在操场上先跑到朋友那儿,然后一起跑到更远的地方,简直爽翻了。

向量的减法也好玩,想象你在吃汉堡,先吃了一个大汉堡,接着又吃了一个小汉堡。

这样一来,你的胃口就会受到影响嘛,向量的减法就是把一部分“胃口”给减掉。

把(5, 7) 的向量减去 (2, 3),就好比把你吃过的那部分减掉,最后留下的结果就是 (3, 4)。

这就像是记账,进账和出账的过程,清清楚楚,明明白白。

平面向量的基本定理告诉我们,两个向量如果相加,结果其实就是个新向量。

这和我们日常生活的积累特别像,不管是友情还是经历,都是点点滴滴积累起来的。

你在学校交了朋友,跑步时又认识了新伙伴,这些都是向量的相加。

每个人都是一个小向量,带着自己独特的方向和长度,拼凑起来就是一幅美丽的画面。

再说说方向和大小,向量的大小就是它的长度,方向就是箭头指向的地方。

2023年新高考数学大一轮复习专题21 平面向量的概念、线性运算及坐标表示(解析版)

2023年新高考数学大一轮复习专题21 平面向量的概念、线性运算及坐标表示(解析版)

专题21平面向量的概念、线性运算及坐标表示【考点预测】 一.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB 的长度,记作||AB . (3)特殊向量:①零向量:长度为0的向量,其方向是任意的. ②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ④相等向量:长度相等且方向相同的向量. ⑤相反向量:长度相等且方向相反的向量. 二.向量的线性运算和向量共线定理 (1)向量的线性运算①交换律b b a =+②结合律 )a b c ++=(a b c ++a 与b 的相反向量b -的和的运算叫做a b 的差 ()a b a b -=+-求实数λ与a 的积的运算(|||||a a λ=(0λ>时,a λ与a 的方向相同;当λ<a λ与a 的方向相同;时,0a λ=()()a a λμλμ=)a a a λμλμ+=+(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -=,AM AN NM -=,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.三.平面向量基本定理和性质 1.共线向量基本定理如果()a b R λλ=∈,则//a b ;反之,如果//a b 且0b ≠,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).2.平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e eλλ+叫做向量a 关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a 都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==. 推论2:若11220a e e λλ=+=,则120λλ==. 3.线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB ACAD λλ+=+.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.4.三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=; ⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+; ⇔存在1λμ+=,使得OC OA OB λμ=+.5.中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+)AC ,反之亦正确.四.平面向量的坐标表示及坐标运算 (1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j 作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a ,有且只有一对实数,x y 使a xi yj =+,我们把有序实数对(,)x y 叫做向量a 的坐标,记作(,)a x y =.(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有 向量(,)x y 一一对应向量OA一一对应点(,)A x y .(3)设11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y =,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.五.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||(AB x = ②已知11(,)a x y =,22(,)b x y =,则a b ±1212()x x y y =±±,,11(,)a x y λλλ=, =a b ⋅1212x x y y +,21||a x y =+.a b ∥⇔12210x y x y -=,a b ⊥⇔12120x x y y +=【方法技巧与总结】(1)向量的三角形法则适用于任意两个向量的加法,并且可以推广到两个以上的非零向量相加,称为多边形法则.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.即122311n n n A A A A A A A A -+++=.(2)||||||||||||a b b a a b -≤±≤+,当且仅当,b a 至少有一个为0时,向量不等式的等号成立.(3)特别地:||||||||b b a a -≤±或||||||a a b b ±≤+当且仅当,b a 至少有一个为0时或者两向量共线时,向量不等式的等号成立.(4)减法公式:AB AC CB -=,常用于向量式的化简.(5)A 、P 、B 三点共线⇔(1)OP t OA tOB =-+()t R ∈,这是直线的向量式方程.【题型归纳目录】题型一:平面向量的基本概念 题型二:平面向量的线性表示 题型三:向量共线的运用 题型四:平面向量基本定理及应用 题型五:平面向量的直角坐标运算【典例例题】题型一:平面向量的基本概念例1.(2022·全国·高三专题练习)已知平面四边形ABCD 满足AB DC =,则四边形ABCD 是( ) A .正方形 B .平行四边形C .菱形D .梯形【答案】B 【解析】 【分析】根据平面向量相等的概念,即可证明AB DC =,且//AB DC ,由此即可得结论. 【详解】在四边形ABCD 中, AB DC =,所以AB DC =,且//AB DC , 所以四边形ABCD 为平行四边形. 故选:B例2.(2022·全国·高三专题练习)给出如下命题: ①向量AB 的长度与向量BA 的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个公共终点的向量,一定是共线向量;⑤向量AB 与向量CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上. 其中正确的命题个数是( ) A .1 B .2C .3D .4【答案】B【解析】 【分析】根据向量的基本概念,对每一个命题进行分析与判断,找出正确的命题即可. 【详解】对于①,向量AB 与向量BA ,长度相等,方向相反,故①正确;对于②,向量a 与b 平行时,a 或b 为零向量时,不满足条件,故②错误; 对于③,两个有共同起点且相等的向量,其终点也相同,故③正确; 对于④,两个有公共终点的向量,不一定是共线向量,故④错误;对于⑤,向量AB 与CD 是共线向量,点A ,B ,C ,D 不一定在同一条直线上,故⑤错误. 综上,正确的命题是①③. 故选:B .例3.(2022·全国·高三专题练习)下列说法:①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同;②若向量AB →,CD →满足AB CD →→>,且AB →与CD →同向,则AB CD →→>;③若两个非零向量AB →与CD →满足0AB CD →→→+=,则AB →,CD →为相反向量; ④AB CD →→=的充要条件是A 与C 重合,B 与D 重合. 其中错误的个数为( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】①错误. 两个空间向量相等,但与起点和终点的位置无关;②错误. 向量不能比较大小;③正确. AB →,CD →为相反向量;④错误. A 与C ,B 与D 不一定重合.【详解】①错误.两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关. ②错误.向量的模可以比较大小,但向量不能比较大小.③正确. 0AB CD →→→+=,得AB CD →→=-,且AB →,CD →为非零向量,所以AB →,CD →为相反向量.④错误. 由AB CD →→=,知AB CD →→=,且AB →与CD →同向,但A 与C ,B 与D 不一定重合.故选:C 【点睛】易错点睛:向量是一个既有大小,又有方向的矢量,考虑向量的问题时,一定要注意这一点.例4.(2022·江苏江苏·一模)平面内三个单位向量a ,b ,c 满足230a b c ++=,则( ) A .a ,b 方向相同 B .a ,c 方向相同 C .b ,c 方向相同 D .a ,b ,c 两两互不共线【答案】A 【解析】 【分析】根据230a b c ++=,得32c a b =--,两边利用单位向量的平方等于1,即可求出a,b 0<>=,解得a ,b 方向相同.【详解】因为230a b c ++=, 所以32c a b =--, 所以22(3)(2)c a b =--, 所以222944?c a b a b =++, 所以9144cos ,a b a b =++<>, 所以4411cos ,a b =⨯⨯<>, 所以cos ,1a b <>= 所以a,b 0<>=, 所以a ,b 方向相同, 故选:A.例5.(2022·吉林吉林·模拟预测(文))已知向量()4,3a =,则与向量a 垂直的单位向量的坐标为( ) A .43,55⎛⎫ ⎪⎝⎭B .34,55⎛⎫- ⎪⎝⎭C .43,55⎛⎫-- ⎪⎝⎭或43,55⎛⎫ ⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭【答案】D 【解析】 【分析】先写出与之垂直的一个向量,然后再求得与此垂直向量平行的单位向量即得. 【详解】易知(3,4)b =-是与a 垂直的向量,5b =,所以与b 平行的单位向量为134(,)555b =-或134(,)555b -=-,故选:D .例6.(多选题)(2022·全国·高三专题练习)下列命题中正确的是( ) A .若a b =,则32a b > B .0BC BA DC AD ---=C .若向量,a b 是非零向量,则a b a b a +=+⇔与b 方向相同D .向量a 与()0b b ≠共线的充要条件是:存在唯一的实数λ,使λa b 【答案】CD 【解析】 【分析】利用向量的知识对选项逐一分析,由此确定正确选项. 【详解】向量不等比较大小,故A 选项错误.向量加法、减法的结果仍为向量,故B 选项错误. a b a b a +=+⇔与b 方向相同,C 选项正确.根据向量共线的知识可知D 选项正确. 故选:CD例7.(多选题)(2022·全国·高三专题练习)下列有关四边形ABCD 的形状,判断正确的有( ) A .若AD BC =,则四边形ABCD 为平行四边形 B .若13AD BC =,则四边形ABCD 为梯形C .若AB AD AB AD +=-,则四边形ABCD 为菱形 D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【答案】AB 【解析】 【分析】依据平行四边形判定定理判断选项A ;依据梯形判定定理判断选项B ;依据菱形判定定理判断选项C ;依据正方形判定定理判断选项D.【详解】选项A :若AD BC =,则//AD BC ,=AD BC ,则四边形ABCD 为平行四边形.判断正确; 选项B :若13AD BC =,则//AD BC ,AD BC ≠,则四边形ABCD 为梯形. 判断正确;选项C :若AB AD AB AD +=-,则2240AB AD AB AD AB AD -=+⋅=-,则AB AD ⊥,即90BAD ∠=.仅由90BAD ∠=不能判定四边形ABCD 为菱形.判断错误;选项D :若AB DC =,则//AB DC ,=AB DC ,则四边形ABCD 为平行四边形, 又由AC BD ⊥,可得对角线AC BD ⊥,则平行四边形ABCD 为菱形. 判断错误. 故选:AB例8.(多选题)(2022·全国·高三专题练习)下列说法错误的是( ) A .若a b =,则a b =或a b =- B .若ma mb =,m R ∈,则a b = C .若//a b , //c b ,则//a cD .若0ma =,m R ∈,则0m =或0a = 【答案】ABCD 【解析】 【分析】对于A ,模长相等的两个向量方向任意,不一定平行;对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,无法推出这两点,故B 不正确;对于C ,当0b =时,选项不正确;对于D ,00ma m =⇒=或0a =,即可得到D 错误.【详解】对于A ,若a b =,则两个向量的方向可以是任意的,不一定是平行的,故A 不正确; 对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,满足0ma mb ==, a 和b 的方向可以是任意的,且两者的模长也不一定相同,故B 不正确;对于C ,若//a b , //c b ,当0b =时,满足//a b , //c b ,但是不满足//a c ,故C 错误; 对于D ,00ma m =⇒=或者||0a =,即0m =或0a =,故D 错误; 故选:ABCD.【方法技巧与总结】准确理解平面向量的基本概念是解决向量题目的关键.共线向量即为平行向量,非零向量平行具有传递性,两个向量方向相同或相反就是共线向量,与向量长度无关,两个向量方向相同且长度相等,就是相等向量.共线向量或相等向量均与向量起点无关.题型二:平面向量的线性表示例9.(2022·山东潍坊·模拟预测)在平行四边形ABCD 中,,M N 分别是,AD CD 的中点,BM a =,BN b =,则BD =( )A .3243a b +B .2233ab C .2334a b +D .3344a b +【答案】B【解析】 【分析】设,AB m AD n ==,根据向量的线性运算,得到11()()22BD x y n x y m =+--,结合BD n m =-,列出方程组,求得,x y 的值,即可求解.【详解】如图所示,设,AB m AD n ==,且BD xa yb =+,则1111()()()()2222BD xa yb x n m y n m x y n x y m =+=⋅-+⋅-=+--,又因为BD n m =-,所以112112x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22,33x y ==,所以2233BD a b =+.故选:B.例10.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD - B.1566AB AD +C .5166AB AD -D .5166AB AD +【答案】C 【解析】 【分析】根据平面向量线性运算法则计算可得; 【详解】解:因为2EO AE =,所以()111366AE AO AC AB AD ===+, 所以()151666EB AB AE AB AB AD AB AD =-=-+=-. 故选:C.例11.(2022·吉林吉林·模拟预测(文))如图,ABCD 中,AB a =,AD b =,点E 是AC 的三等分点13⎛⎫=⎪⎝⎭EC AC ,则DE =( )A .1233a b -B .2133a b -C .1233a b +D .2133ab 【答案】B 【解析】 【分析】根据向量的加法法则和减法法则进行运算即可. 【详解】 2221()3333DE AE AD AC AD AB AD AD a b =-=-=⋅+-=- 故选:B.例12.(2022·安徽·合肥市第八中学模拟预测(文))在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -【答案】B 【解析】 【分析】根据题意和平面向量的线性运算即可得出结果. 【详解】 ()1111112111·2222323622DG DE DF DA AE DC AD AB AB AB AD ⎛⎫=+=++=-++=- ⎪⎝⎭.故选:B.例13.(2022·湖南师大附中三模)艺术家们常用正多边形来设计漂亮的图案,我国国旗上五颗耀眼的正五角星就是源于正五边形,正五角星是将正五边形的任意两个不相邻的顶点用线段连接,并去掉正五边形的边后得到的图形,它的中心就是这个正五边形的中心.如图,设O 是正五边形ABCDE 的中心,则下列关系错误的是( )A .AD DB OB OA +=-B .0AO BE ⋅=C .3AC AD AO +=D .AO AD BO BD ⋅=⋅【答案】C【解析】【分析】由平面向量的运算对选项逐一判断【详解】对于A ,,AD DB AB OB OA AB +=-=,故A 正确,对于B :因为AB AE =,OB OE =,所以AO BE ⊥,故B 正确,对于C :由题意O 是ACD △的外心,不是ACD △的重心设CD 中点为M ,则2||=||||||||cos36||2cos 18AM AO OM AO AO AO +=+︒=⋅︒,24cos 18AC AD AO +=︒,故C 错误, 对于D :2211||||22AO AD AD BD BO BD ⋅===⋅,故D 正确. 故选:C 例14.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AH AG +=D .23BO BH BG += 【答案】D【解析】【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误.【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误; ()112333AO AH AG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BH BG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.例15.(2022·全国·模拟预测)在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b +-B .23a b +-C .23a b --D .23a b -- 【答案】B【解析】【分析】 根据题意得()13AF AC AD =+,再分析求解即可. 【详解】如下图所示,连接AC 与BD 交于O ,则O 为AC 的中点,因为E 为AD 的中点,所以F 为三角形ACD 的重心,所以()()112333a b AF AC AD a b a +=+=---=-. 故选:B.例16.(2022·黑龙江·哈尔滨三中模拟预测(文))ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE =( )A .1133AB AC + B .1233AB AC + C .2133AB AC + D .2233AB AC + 【答案】C【解析】【分析】利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【详解】解:因为点E 是BC 边上靠近B 的三等分点,所以13BE BC =, 所以1121()3333AE AB BE AB BC AB BA AC AB AC =+=+=++=+; 故选:C.例17.(多选题)(2022·山东·烟台二中模拟预测)中华人民共和国的国旗图案是由五颗五角星组成,这些五角星的位置关系象征着中国共产党领导下的革命与人民大团结.如图,五角星是由五个全等且顶角为36°的等腰三角形和一个正五边形组成.已知当2AB =时,1BD =,则下列结论正确的为( )A .DE DH =B .0AF BJ ⋅=C .51AH AB +=D .CB CD JC JH +=- 【答案】AB【分析】连接DH ,AF ,CH ,BH ,利用五角星的结构特征逐项分析判断作答.【详解】对于A ,连接DH ,如图,由DF =FH ,108DFH ∠=得:36DHF E ∠==∠,DE DH =,A 正确;对于B ,连接AF ,由,AD AH FD FH ==得:AF 垂直平分DH ,而//BJ DH ,即AF BJ ⊥,则0AF BJ ⋅=,B 正确; 对于C ,AH 与AB 不共线,C 不正确;对于D ,连接CH ,BH ,由选项A 知,DH DE BC ==,而//BC DH ,则四边形BCDH 是平行四边形, CB CD CH JH JC +==-,D 不正确.故选:AB【方法技巧与总结】(1)两向量共线问题用向量的加法和减法运算转化为需要选择的目标向量即可,而此类问题又以“爪子型”为几何背景命题居多,故熟练掌握“爪子型”公式更有利于快速解题.(2)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(3)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.题型三:向量共线的运用例18.(2022·陕西·西北工业大学附属中学模拟预测(文))设a 、b 都是非零向量,下列四个条件中,使a a b b=成立的充分条件是( )A .a b =且a b ∥B .a b =-C .a b ∥D .2a b = 【答案】D【解析】根据充分条件的定义以及平面向量的有关概念即可解出.【详解】对于A ,当a b =且a b ∥时,a a b b =或a b a b =-,A 错误; 对于B ,当a b =-时,a b a b =-,B 错误; 对于C ,当a b ∥时,a ab b =或a b a b =-,C 错误; 对于D ,当2a b =时,a a b b =,D 正确.故选:D . 例19.(2022·四川绵阳·二模(理))已知平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,则( )A .A ,B ,D 三点共线B .A ,B ,C 三点共线 C .B ,C ,D 三点共线D .A ,C ,D 三点共线【答案】D【解析】 【分析】根据给定条件逐项计算对应三点确定的某两个向量,再判断是否共线作答.【详解】平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,对于A ,3(3)6BD BC CD a b a b b =+=-+++=,与AB 不共线,A 不正确;对于B ,因46AB a b =+,3BC a b =-+,则AB 与BC 不共线,B 不正确;对于C ,因3BC a b =-+,3CD a b =+,则BC 与CD 不共线,C 不正确;对于D ,46(3)393AC AB BC a b a b a b CD =+=++-+=+=,即//AC CD ,又线段AC 与CD 有公共点C ,则A ,C ,D 三点共线,D 正确.故选:D 例20.(2022·全国·高三专题练习)已知1e ,2e 是不共线向量,则下列各组向量中,是共线向量的有( )①15a e =,17b e =;②121123a e e =-,1232b e e =-; ③12a e e =+,1233b e e =-.A .①②B .①③C .②③D .①②③【解析】【分析】 根据平面向量共线定理得到,对于①57a b =,故两向量共线;对于②16a b =,故两向量共线;对于③不存在实数λ满足λa b ,故不共线.【详解】对于①15a e =,17b e =,57a b =,故两向量共线; 对于②121123a e e =-,1232b e e =-,16a b =,故两向量共线; 对于③12a e e =+,1233b e e =-,假设存在,a b λλ=⇒()121233e e e e λ=-+()()123131e e λλ⇒-=+,因为1e ,2e 是不共线向量,故得到3131λλ-=+无解.故选:A.例21.(2022·内蒙古·包钢一中一模(文))已知向量1e ,2e 是两个不共线的向量,122a e e =-与12b e e λ=+共线,则λ=( )A .2B .2-C .12-D .12 【答案】C【解析】【分析】根据向量共线的充要条件建立方程直接求解. 【详解】因为122a e e =-与12b e e λ=+共线,所以ka b =,0k ≠,所以12121212()22=k k e e e e e e e e k λλ-+⇒-=+, 因为向量1e ,2e 是两个不共线的向量,所以21k k λ=⎧⎨-=⎩,解得12λ=-, 故选:C .例22.(2022·安徽·合肥市第六中学模拟预测(理))如图,在ABC 中,M ,N 分别是线段AB ,AC 上的点,且23AM AB =,13AN AC =,D ,E 是线段BC 上的两个动点,且(,)AD AE x AM y AN x y +=+∈R ,则12x y+的的最小值是( )A .4B .43C .94D .2【答案】B【解析】【分析】 根据平面向量共线定理可设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,再结合AD AE x AM y AN +=+得26x y +=,最后运用基本不等式可求解.【详解】设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,则AD AE mAB nAC AB AC λμ+=+++=3()()()3()2m AB n AC m AM n AN λμλμ+++=+++x AM y AN =+,3()2m x λ+=,3()n y m μλ+=⇒+=23x ,13n y μ+=,21222633m n x y x y λμ+++=⇒+=⇒+=.所以12112(2)6x y x y x y ⎛⎫+=++= ⎪⎝⎭14142222663y x x y ⎛⎛⎫+++≥++= ⎪ ⎝⎭⎝, 当且仅当32x =,3y =时等号成立. 所以12x y +的的最小值是43. 故选:B例23.(2022·全国·模拟预测)在ABC 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB yAC x y =+>>,则12x y +的最小值为( ) A .9B .8C .4D .2【答案】A【解析】【分析】 根据向量共线定理得推论得到21x y +=,再利用基本不等式“1”的妙用求解最小值.【详解】因为点F 为线段BC 上任一点(不含端点),所以21x y +=,故()12122221459y x x y x y x y x y ⎛⎫+=++=+++≥+ ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时等号成立, 故选:A例24.(2022·山东泰安·模拟预测)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B 三点共线,则x =( )A .53-B .53C .35D .35【答案】A【解析】【分析】根据O ,A ,B 三点共线,则OA OB ∥,R λ∃∈,OB OA λ=,代入整理.【详解】因为O ,A ,B 三点共线,则OA OB ∥所以R λ∃∈,OB OA λ=,即()53xm n m n λ+=-整理得:()()531x m n λλ-=+ 又∵向量m ,n 不共线,则5310x λλ-=+=,则53x =- 故选:A .例25.(2022·云南·昆明一中高三阶段练习(文))已知向量a ,b ,且2AB a b =+,BC 56a b =-+,72CD a b =-,则一定共线的三点是( )A .A ,B ,DB .A ,B ,C C .B ,C ,D D .A ,C ,D【答案】A【解析】【分析】 由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,选项A ,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B ,D 三点共线,则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确;选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得λ不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,C ,D 三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,解得λ不存在,故该选项错误;选项D ,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,即48(72)a b a b λ-+=-,解得λ不存在,故该选项错误;故选:A.例26.(2022·全国·高三专题练习)给出下列命题:①若||||a b =,则a b =;②若A B C D 、、、是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③若a b =,b c =,则a c =;④a b =的充要条件是||a ||b =且//a b ;⑤若//a b ,//b c ,则//a c .其中正确命题的序号是________ .【答案】②③##③②【解析】【分析】根据向量相等的概念及向量共线的概念即可判断.【详解】对于①,两个向量的长度相等,不能推出两个向量的方向的关系,故①错误;对于②,因为A ,B ,C ,D 是不共线的四点,且AB DC = 等价于//AB DC 且AB DC =,即等价于四边形ABCD 为平行四边形,故②正确;对于③,若a b =,b c =,则a c =,显然正确,故③正确;对于④,由a b =可以推出||||a b =且//a b ,但是由||||a b =且//a b 可能推出a b =-,故“||||a b =且//a b ”是“a b =”的必要不充分条件,故④不正确,对于⑤,当0b =时,//a b ,//b c ,但推不出//a c ,故⑤不正确.故答案为:②③例27.(2022·全国·高三专题练习)如图,在ABC 中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1+【解析】【分析】 先利用条件找到12133λμ+=,则12()33λμλμλμ⎛⎫+=+⋅+ ⎪⎝⎭,利用基本不等式求最小值即可. 【详解】 BP BA AP =+,PC PA AC =+,又2BP PC =, ∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()113333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即λμ=∴λμ+的最小值为1故答案为:1例28.(2022·全国·高三专题练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3【解析】【分析】以,AN AM 为基底,由G 是ABC ∆的重心和M ,G ,N 三点共线,可得11=133x y+,即求. 【详解】 根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.例29.(2022·全国·高三专题练习)如图,ABC 中点,D E 是线段BC 上两个动点,且AD AE xAB y AC +=+,则9x yxy+的最小值为______.【答案】8 【解析】 【分析】设AD mAB nAC =+,AE AB AC λμ=+,由B ,D ,E ,C 共线可得2x y +=, 再利用乘“1”法求解最值. 【详解】设AD mAB nAC =+,AE AB AC λμ=+,B ,D ,E ,C 共线,1m n ∴+=,1λμ+=.AD AE xAB y AC +=+,则2x y +=,点D ,E 是线段BC 上两个动点,0x ∴>,0y >. ∴991191191()()(10)(10)8222x y y x y xx y xy x y x y x y x y+=+=++=+++= 则9x yxy+的最小值为8. 故答案为:8. 【点睛】由向量共线定理的推论得到2x y +=是解题关键,乘“1”法求解最值是基本不等式求最值的常用方法.. 例30.(2022·全国·高三专题练习)已知向量1223a e e =-,1223b e e =+,其中1e ,2e 不共线,向量1229c e e =-,问是否存在这样的实数λ,μ,使向量d a b λμ=+与c 共线?【答案】存在 【解析】 【分析】由已知得12(22)(33)d e e λμλμ=++-+,所以要使d 与c 共线,则应有实数k ,使d kc =,即()1212(22)(33)29e e k e e λμλμ++-+=-,从而得222339k k λμλμ+=⎧⎨-+=-⎩,进而可求得结果【详解】因为向量1223a e e =-,1223b e e =+, 所以1212(23)(23)d a b e e e e λμλμ=+=-++12(22)(33)e e λμλμ=++-+要使d 与c 共线,则应有实数k ,使d kc =, 即()1212(22)(33)29e e k e e λμλμ++-+=-,即222339kkλμλμ+=⎧⎨-+=-⎩得2λμ=-. 故存在这样的实数λ,μ,只要2λμ=-,就能使d 与c 共线.【方法技巧与总结】要证明A ,B ,C 三点共线,只需证明AB 与BC 共线,即证AB =λBC (R λ∈).若已知A ,B ,C 三点共线,则必有AB 与BC 共线,从而存在实数λ,使得AB =λBC .题型四:平面向量基本定理及应用例31.(2022·重庆八中模拟预测)如图,在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O .若2AD =,(32)7AO AD AB ⋅-=-,则AB 的长为( )A .2B .3C .4D .5【答案】C 【解析】 【分析】先以AB AD 、为基底表示AO ,再利用向量的数量积把(32)7AO AD AB ⋅-=-转化为关于AB 的方程,即可求得AB 的长【详解】在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O . 设(01)DO DE λλ=<<, (01)BO BF μμ=<<则11++122AD DO AD DE AD AB AD AD AB λλλλ⎛⎫⎛⎫+==-=-+ ⎪ ⎪⎝⎭⎝⎭22(1)33AB BO AB BF AB AD AB AB AD μμμμ⎛⎫+=+=+-=-+ ⎪⎝⎭由AO AD DO AB BO =+=+,可得2(1)3AB AD μμ-+112AD AB λλ⎛⎫=-+ ⎪⎝⎭则112213λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩,解之得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,则3142AO AD DO AD AB =+=+则22(32)(33194242)7AO AD AB AD AB AD A AD AB B ⎛⎫+⋅-= ⎪⎝⋅-=⎭-=-又2AD =,则279AB -=-,解之得4AB ,即AB 的长为4故选:C例32.(2022·全国·高三专题练习)在等边ABC 中,O 为重心,D 是OB 的中点,则AD =( ) A .AB AC + B.2132AB AC +C .1124AB AC +D .2136AB AC +【答案】D 【解析】 【分析】根据给定条件,利用平面向量的线性运算计算作答. 【详解】O 为ABC 的重心,延长AO 交BC 于E ,如图,E 为BC 中点,则有2211()()3323AO AE AB AC AB AC ==⋅+=+,而D 是OB 的中点, 所以111121()222636AD AB AO AB AB AC AB AC =+=++=+. 故选:D例33.(2022·河南郑州·三模(理))在ABC 中,D 是BC 上一点,2BD DC =,M 是线段AD 上一点,14BM tBA BC =+,则t =( )A .12 B .23C .34 D .58【答案】D 【解析】 【分析】 求得1233AD AB AC =+,设1233AM AD AB AC λλλ==+,其中01λ≤≤,利用平面向量的线性运算可得出3144AM AB BM t AB AC ⎛⎫=+=-+ ⎪⎝⎭,根据平面向量的基本定理可得出关于λ、t 的方程组,即可解得t 的值.【详解】因为2BD DC =,则()2AD AB AC AD -=-,所以,1233AD AB AC =+, ()131444AM AB BM AB t AB AC AB t AB AC ⎛⎫=+=-+-=-+ ⎪⎝⎭, 因为M 是线段AD 上一点,设1233AM AD AB AC λλλ==+,其中01λ≤≤,所以,13342134t λλ⎧=-⎪⎪⎨⎪=⎪⎩,解得3858t λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D.例34.(2022·河南·模拟预测(理))如图,在ABCD 中,M 为BC 的中点,AC mAM nBD =+,则m +n =( )A .1B .43 C .53D .2【答案】C 【解析】 【分析】利用向量的线性运算可求,m n 的值. 【详解】1122AM AB BC AB AD =+=+,而BD AD AB =-,故()12AC m AB AD n AD AB ⎛⎫=++- ⎪⎝⎭()2m m n AB n AD ⎛⎫=-++ ⎪⎝⎭,而AC AB AD =+且,AB AD 不共线,故4153{13123m n m m n m n n ⎧-==⎪⎪⇒⇒+=⎨+=⎪=⎪⎩, 故选:C.例35.(2022·河南商丘·三模(理))如图,在ABC 中,点D ,E 分别在边AB ,BC 上,且均为靠近B 的四等分点,CD 与AE 交于点F ,若BF xAB yAC =+,则3x y +=( )A .1-B .34-C .12-D .14-【答案】A 【解析】 【分析】由题意推出DE AC ∥,可得14DF DE FC AC ==,推出15DF DC =,根据向量的加减运算,用基底,AB AC 表示出BF ,和BF xAB yAC =+比较,可得,x y ,即得答案.【详解】 连结DE ,由题意可知,14BD BE BA BC ==, 所以DE AC ∥,则14DE BD AC BA ==, 所以14DF DE FC AC ==,所以14BD AB =-,34DC AC AD AC AB =-=-, 则1135520DF DC AC AB ==-, 故11321452055BF BD DF AB AC AB AB AC =+=-+-=-+, 又BF xAB yAC =+,所以25x =-,15y =,则31x y +=-,故选:A例36.(2022·山东济宁·三模)在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP =________.【解析】 【分析】根据题意得34AP mAC AD =+,求出14m =,所以1142AP AC AB =+,即21142AP AC AB ⎛⎫=+ ⎪,求解即可.【详解】 因为23AD AB =,所以32AB AD =,又12AP mAC AB =+,即1324AP mAC AB mAC AD =+=+,因为点P 在线段CD 上, 所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形, 所以222211111cos60421644AP AC AB AC AC AB AB ⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故7AP =例37.(2022·湖南·模拟预测)在三角形ABC 中,点D 在边BC 上,若2BD DC =,AD AB ACλμ=+(),λμ∈R ,则λμ-=______.【答案】13-【解析】 【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD DC =,得()2233BD BC AC AB ==-, 所以()212333A A C AB D AB BD AB A A BC -+===++, 因为(),AD AB AC λμλμ=+∈R ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-【方法技巧与总结】应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止.(2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.(3)三点共线定理: A ,B ,P 三点共线的充要条件是:存在实数,λμ,使OP OA OB λμ=+,其中1λμ+=,O 为AB 外一点.题型五:平面向量的直角坐标运算例38.(2022·江苏·高三专题练习)在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+。

平面向量的概念和运算

平面向量的概念和运算

平面向量的概念和运算平面向量是高中数学中一个重要的概念,它在解决几何问题和物理问题中有着广泛的应用。

本文将介绍平面向量的定义、表示、基本运算以及一些常见的性质和应用。

一、平面向量的定义和表示平面向量是有大小和方向的量。

在平面直角坐标系中,以有向线段表示平面向量。

设点A和点B为平面上的两个点,线段AB的起点为A,终点为B,则线段AB代表的向量记作AB。

平面向量表示为:AB = (x,y),其中x和y分别代表向量在x轴和y 轴上的投影长度。

例如,向量AB = (3,2)表示该向量在x轴上的投影长度为3,在y轴上的投影长度为2。

二、平面向量的基本运算1. 平面向量的加法设有两个向量AB = (x1, y1)和CD = (x2, y2),则它们的和记作AB + CD = (x1+x2, y1+y2)。

例如,向量AB = (3, 2)和CD = (-1, 4),它们的和为AB + CD = (3+(-1), 2+4) = (2, 6)。

2. 平面向量的数乘设有一个向量AB = (x, y)和一个实数k,则k乘以向量AB记作kAB = (kx, ky)。

例如,向量AB = (3, 2)的2倍为2AB = (2*3, 2*2) = (6, 4)。

3. 平面向量的减法设有两个向量AB = (x1, y1)和CD = (x2, y2),则它们的差记作AB - CD = AB + (-CD),其中-CD = (-x2, -y2)。

例如,向量AB = (3, 2)和CD = (-1, 4),它们的差为AB - CD = AB + (-CD) = (3,2) + (-1,-4) = (2,-2)。

三、平面向量的性质和应用1. 平面向量的共线性与共面性如果两个向量的夹角为0°或180°,则它们共线;如果三个向量在同一个平面内,则它们共面。

2. 平面向量的数量积设有两个向量AB = (x1, y1)和CD = (x2, y2),它们的数量积记作AB·CD = x1x2 + y1y2。

平面向量的概念线性运算基本定理及坐标表示与向量的数量积知识点与同步练习

平面向量的概念线性运算基本定理及坐标表示与向量的数量积知识点与同步练习

平面向量的概念、线性运算、基本定理及坐标表示与向量的数量积一、向量的概念1.向量:既有大小有方向的量叫做向量. 只有大小没有方向的量称为数量.2.几何表示: 向量可以用有向线段表示.长度:向量AB 的大小,也就是向量AB 的长度(或称模),记做|AB|. 向量也可用字母a b,c,(印刷用黑体a ,手写用a )或用表示向量的有向线段的起点和终点表示.例如,AB ,CD .零向量:长度为0的向量.记做0. 单位向量: 长度为1的向量.平行向量: 方向相同或相反的向量.记作a //b . 规定: 零向量与任一向量平行.3.相等向量:长度相等且方向相同的向量叫做相等向量. 记做a =b .注意: 向量相等与有向线段的起点无关.共线向量:任一组平行向量都可以移动到同一直线上,因此,平行向量也叫共线向量. 二、平面向量的线性运算(向量的加、减、数乘运算统称为向量的线性运算) 1.向量加法的三角形法则已知非零向量a 、b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 和b 的和,记做a +b ,即AB BC =+a +b求两个向量和的运算,叫做向量的加法. 这种方法称为向量加法的三角形法则. 2.向量加法的平行四边形法则以同一个点O 为起点的两个已知向量a 、b 为邻边作OACB ,则以O 为起点的对角线OC 是a 与b 的和,即OA OB OC =+=a +b .此法叫做向量加法的平行四边形法则.规定:对零向量与任一向量a ,00a +=+a =a 3.小结论对任意向量a 、b ,有≤|a +b ||a |+|b |; 当a 、b 同向时,|a +b |=|a |+|b |;当a 、b 反向是,|a +b |=|a |-|b |(或|b |-|a |)4.向量加法交换律:a +b =b +a ;向量加法结合律:(a +b)+c =a +(b+c)5.与a 长度相等,方向相反的向量叫做a 的相反向量.规定:零向量的相反向量是零向量.6.向量减法的几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量.7.向量的数乘:一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下: (1) ||||||λλ=a a ;(2) 当0λ>时,λa 的方向与a 的方向相同;当0λ<时,λa 的方向与a 的方向相同. 8.数乘的运算律:(1) ()()λμλμ=a a ; (2) ()λμλμ+=+a a a ; (3) ()λλλ+=+a b a b . 9.向量共线充要条件:向量()≠a a 0与b 共线,当且仅当有唯一一个实数λ,使λ=b a . 三、平面向量的基本定理及坐标表示1.平面向量基本定理 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一个实数1λ、2λ,使得1122λλ=+a e e把不共线的向量1e 、2e 叫做这一平面内所有向量的基底.2.向量的夹角 已知两个非零向量和a b ,作OA =a ,OB =b ,则(0180)AOB θθ∠=≤≤ 叫做向量a 与b 的夹角.如果a 与b 的夹角是90,称a 与b 垂直,记作⊥a b . 当0θ=时,与a b 同向;当180θ=时,与a b 反向.3.正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.4.向量的坐标表示 在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.对于平面内的一个向量a ,由平面基本定理可知,有且只有一对实数x 、y ,使得x y =+a i j这样,平面内的任一向量a 都可以由x 、y 唯一确定,我们把有序数对(,)x y 叫做向量a 的坐标,记作(,)x y =a .其中x ,y 分别叫做a 在x 轴上,在y 轴上的坐标. 在平面直角坐标系内,每个平面向量都可以用一个有序实数对唯一表示. 5.平面向量的坐标运算(1) 若11(,)x y =a ,22(,)x y =b ,则1212(,)x x y y ±=±±a b ; (2) 若(,),x y R λ=∈a ,则(,)x y λλλ=a ;(3) 若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--. 6.平面向量共线的坐标表示设11(,)x y =a ,22(,)x y =b ()≠0b ,则向量()≠0、a b b 共线的充要条件为12210x y x y -=.7.设111(,)P x y ,222(,)P x y .(1) 若P 是12PP 的中点,则121222(,)x x y y P ++=; (2) 若12PP PP λ=,则121211(,)x x y y P λλλλ++++=. 前三部分总结1.向量相等(长度和方向).2.加法的三角形法则(首尾相连)、四边形法则(起点相同)及其几何意义. 注意与平面几何相结合小结论:(1)G 为ABC ∆的重心(中线的交点)123123GA+GB+GC 0G 33x x x y y y ++++⎛⎫⇔=⇔ ⎪⎝⎭,;(2)G 为ABC ∆的外心⇔GB GC GA == 3.共线(平行)向量.(1) 11221221(,)(,)()//0x y x y x y x y λ≠⇔⇔-=a ,b b 0a b a =b ; (2) ,,A B C 三点共线//AB AC ⇔.4.平面向量基本定理 112212(,)λλ=+不共线a e e e e 四、平面向量的数量积: 1、向量的夹角概念:对于两个非零向量,a b ,如果以O 为起点,作,OA a OB b ==,那么射线,OA OB 的夹角θ叫做向量a 与向量b 的夹角,其中0θπ≤≤. 2、向量的数量积概念及其运算:(1)定义:如果两个非零向量,a b 的夹角为θ,那么我们把||||cos a b θ叫做向量a 与向量b 的数量积,记做a b即:cos a b a b θ=.(2)投影:b 在a 上的投影是一个数量cos b θ,它可以为正,可以为负,也可以为0 (3)坐标计算公式:若向量11(,)a x y =,22(,)b x y =,则1212x x y a y b += 3、向量的夹角公式:2cos a b a bx θ==4、向量的模长:22a a a a x ==⋅=+5、平面向量的平行与垂直问题:(1)若11(,)a x y =,22(,)b x y =,//a b ,则12210xy xy -=(2)若11(,)a x y =,22(,)b x y =,a b ⊥,则121200x x y a b y ==+⇒ 例:一、平面向量的数量积的应用: 1、向量数量积定义的应用〖例1〗(1)已知1,2,a b ==向量,a b 的夹角为3π,求(2)(2)a b a b +- (2)已知(2,1),(3,4),a b =-=-求:①()(3)a b a b +-;②若1,9a c b c =-=,求c 的坐标2、向量的夹角问题〖例2〗(1)已知向量→a 、→b 都是非零向量,且向量→a →+b 3与向量57-→a →b 垂直,向量→a →-b 4与向量27-→a →b 垂直,求向量→a 与→b 的夹角。

2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

零向量和共线向量不能作基底.
2.平面向量的坐标运算
已知a=(x1,y1),b=(x2,y2).
则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),a∥b⇔x1y2-x2y1=0.
3.向量的坐标表示
若A(x1,y1),B(x2,y2),则
AB
=(x2-x1,y2-y1).
1 2
( BD
- BA )= BA +
1 4
BC
-
1 2
BA =
1 2
BA +
1 4
BC
,∴D
错误.故选AC.
答案 AC
考法二 向量共线问题的求解方法
1.两非零向量共线是指存在实数λ,使两向量可以相互表示,在应用时注意
待定系数法和方程思想的应用.
2.证明三点共线问题,可用向量共线来解决,但应注意向量共线和三点共
λ(μa)=(λμ)a; (λ+μ)a=λa+μa; λ(a+b)=λa+λb
2.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使b=λa.
考点二 平面向量基本定理及坐标运算
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向 量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把{e1、e2}叫做表示这个平 面内所有向量的一个基底.
答案 6
高考 数学
专题六 平面向量
6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
基础篇
考点一 平面向量的概念及线性运算 1.向量的线性运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量和的概念、线性运算及基本定理、坐标表示
考纲解读
1。

平面向量的实际背景及基本概念.
(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.
(3)理解向量的几何表示.
2.向量的线性运算.
(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及几何意义
3。

掌握平面向量的正交分解及其坐标表示
4。

了解平面向量的基本定理及其意义.
5。

会用坐标表示平面向量的加法、减法与数乘运算.
6。

理解用坐标表示的平面向量共线的条件.
命题探究
1。

平面向量在数学中作为一种工具性知识出现和应用,是一种数学的独特运算符号,这决定了其在高考考查中的地位,自身基础性的知识考查较为简单,多与其他章节知识相结合,向量作为一种外表修饰,也作为一种运算和表达的新方法,使问题的解决趋于灵活和多样化2。

平面向量的基础知识的考查多以填空的形式出现,多与三角形相结合,进行考查长度、角度、平行和垂直.
3。

预计2014年高考对本部分会以填空题的形式考查平面向量的基本概念及运算,难度一般不大;在解答题中向量依然会作为工具,与圆锥曲线、不等式、三角函数、数列等知识结合,
体现知识点的交汇,其综合性强,难度一般在中等偏上.
【考纲知识梳理】
1.向量的有关概念及表示方法 (1)向量的有关概念
(2)向量的表示方法
①字母表示法,如:
AB a →

,等;②几何表示法:用一条有向线段表示向量。

2。

向量的线性运算
注:式子2222
||||2(||||)a b a b a b ++-=+的几何意义为:平行四边形两条对角线的平
方和等于它们四条边的平方和.
3。

向量
a →(a →0→≠)与向量
b →共线的充要条件为存在唯一一个实数λ,使a b →
→=λ
注:用向量法证明三点A 。

B 。

C 共线时,首先求出AC
AB →

,,然后证明
AC AB →→=λ,即AC AB →
→,共线即可(A 为公共点)。

4.两个向量的夹角 (1)定义
已知两个非零向量a 和b ,作,OA a OA b ==,则___________叫做向量a 与b 的夹角。

(2)范围
向量夹角θ的范围是____________,a 与b 同向时,夹角__________;a 与b 反向时,夹角_________。

(3)向量垂直
如果向量a 与b 的夹角是900
,则a 与b 垂直,记作a ⊥b 。

5。

平面向量基本定理及坐标表示 (1)平面向量基本定理
定理:如果12,e e 是同一平面内的两个______向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ,2λ,使a =__________.
其中,不共线的向量12,e e 叫做表示这一平面内所有向量的一组基底。

(2)平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (3)平面向量的坐标表示
①在平面直角坐标系中,分别取与x 轴。

y 轴方向相同的两个单位向量,i j 作为基底,对于平面内的一个向量a ,有且只有一实数x ,y ,使a xi y j =+,把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y ),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标.
②设OA xi y j =+,则向量OA 的坐标(x ,y )就是终点A 。

的坐标,即若OA
=(x,y ),则A 。

点坐标为(x ,y ),反之亦成立。

(O 为坐标原点) 6.平面向量的坐标运算 (1)加法。

减法.数乘运算
(2)向量坐标的求法
已知11(,)A x y ,22(,)B x y ,则AB =__________,即一个向量的坐标等于该向量终点的坐标减去始点的坐标。

(3)平面向量共线的坐标表示
设a =11(,)x y ,b =22(,)x y ,其中b ≠0,则a 与b 共线⇔a =b λ⇔______________。

【热点难点精析】 (一)向量的有关概念 ※相关链接※
1。

着重理解向量以下几个方面:
(1)向量的模;(2)向量的方向;(3)向量的几何表示;(4)向量的起点和终点。

2。

判定两个向量的关系时,特别注意以下两种特殊情况:
(1)零向量的方向及与其他向量的关系;(2)单位向量的长度及方向。

(二)平面向量基本定理及其应用 ※相关链接※
1.以平面内任意两个不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同;
2.对于两个向量a ,b ,将它们用同一组基底表示,我们可通过分析这两个表示式的关系,来反映a 与b 的关系;
3。

利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或进行数乘运算.
注:由于基底向量不共线,所以0不能作为一个基底向量。

※例题解析※
【例1】给出下列命题:
①有向线段就是向量,向量就是有向线段;②若DC AB →
→=,则ABCD 为平行四边形;
③若c b b a →



==,则c a →
→=④若a →‖b →且b →‖c →
,则a →
‖c →
其中正确命题的个数是() A 。

0B 。

1 C.2D 。

3
【例2】下列结论中,不正确的是() (A ) 向量
AB →,CD →共线与向量AB →∥CD →
同义; (B ) 若向量AB →∥CD →,则向量AB →与DC →
共线; (C ) 若向量
AB →=CD →,则向量DC BA →
→= (D ) 只要向量
a →
,b →
共线,且满足b a →→=,就有b a →
→=
【例3】在ABC ∆中,
AB AD


=3
2
,//DE BC 交AC 于E ,BC 边上的中线AM 交
DE

N

a
AB →
→=,
b
AC →
→=,用
b
a →
→,表示向量
AN AM DN DE BC AE →





,,,,。

【例4】设两个非零向量a 与b 不共线,
(1) 若,28,3().AB a b BC a b CD a b =+=+=-求证:A 。

B.D 三点共线; 试确定实数k ,使ka b +和a kb +共线。

(k=1或k=—1)
基础精练
1。

若A (2,—1),B (-1,3),则的坐标是()
A.(1,2)
B.(—3,4)C 。

(3,—4)D.以上都不对 2。

与a=(4,5
A.(—5k,4k )B 。

(-10,2。

(5k,—4k ) 3.△ABC 中,=a ,=b ,则AB 等于() A.a+bB 。

—(a+b)C.a-bD.b —a
4.化简52(a -b )-31(2a+4b)+152
(2a+13b)的结果是()
A 。

51a ±51bB.0 C 。

51a+51bD 。

51a -51b
5。

已知|p |=22,|q|=3,p 与q 的夹角为4π
,则以a=5p+2q ,b=p -3q 为邻边的平行四边
形的一条对角线长为() A.15B.15C.16D 。

14
6。

已知A (2,-2),B(4,3),向量p 的坐标为(2k —1,7)且p ∥,则k 的值为()
A.109-
B.109
C.-
7.已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是()
A 。

P 在△ABC 的内部
B 。

P 在△AB
C 的外部
C 。

P 是AB 边上的一个三等分点D.P 是AC 边上的一个三等分点 8.已知△ABC 的三个顶点,A (1,5),B (-2,4),C(—6,-4),M 是BC 边上一点,且△ABM
的面积是△ABC 面积的41
,则线段AM 的长度是()
A 。

5
B 25D 。

相关文档
最新文档