医学生物化学课件(8)ppt演示课件

合集下载

《医学生物化学》课件

《医学生物化学》课件

《医学生物化学》课件汇报人:日期:contents •生物化学概述•蛋白质的结构与功能•核酸的结构与功能•酶的结构与功能•糖类的结构与功能•脂类的结构与功能•维生素和矿物质的结构与功能目录生物化学概述01CATALOGUE生物化学的定义它涉及生命现象的分子水平和细胞水平,为理解生物体的基本生命活动和疾病的发生机制提供了基础。

生物化学是医学专业的重要基础课程之一,为后续的医学专业课程如药理学、病理学等提供了必要的基础。

生物化学是一门研究生物体分子结构与功能、物质代谢与调控以及遗传信息传递与表达的学科。

生物化学的发展可以追溯到19世纪末,当时科学家开始研究生物体中的化学物质和它们的作用。

20世纪初,许多重要的生物化学发现和理论不断涌现,如蛋白质的氨基酸组成、DNA的双螺旋结构等。

近年来,随着分子生物学和遗传学等学科的发展,生物化学的研究领域不断扩大,涉及到的主题包括基因表达调控、蛋白质修饰与降解、细胞信号转导等。

生物化学的发展历程生物化学的研究内容01生物化学研究的主要内容包括02蛋白质的结构与功能:研究蛋白质的氨基酸组成、三维结构及其与功能的关联。

03酶的作用与调控:探讨酶的结构、催化机制及代谢调控。

04糖类、脂质和维生素代谢:研究这些物质的代谢途径、调控机制及与疾病的关系。

05核酸代谢与基因表达:探讨DNA复制、转录、翻译的过程及调控机制。

06细胞信号转导:研究细胞内信号转导途径及其在生理和病理过程中的作用。

蛋白质的结构与功能02CATALOGUE氨基酸肽键肽链的盘曲结构氨基酸通过肽键连接形成肽链。

多肽链形成后,会进一步盘曲形成特定的空间构象。

0302 01蛋白质的基本构成单位,由氨基、羧基、侧链组成。

肽链局部区域的构象,主要有α-螺旋、β-折叠、γ-转角等。

二级结构整条肽链全部氨基酸残基的相对空间位置,主要通过疏水相互作用和氢键维系。

三级结构由二硫键、离子键和氢键等形成的肽链之间的相互作用。

四级结构许多酶是蛋白质,能催化生物体内的化学反应。

医学生物化学(第八章)生物氧化

医学生物化学(第八章)生物氧化

* 铁硫蛋白为单电子传递体 ( Fe2+-e Fe3+)
+e
20
3. 泛醌(ubiquinone , Q) 又称辅酶Q (Coenzyme Q , CoQ)
21
**泛醌的特点 1)是双电子传递体 2)不与蛋白结合的游离存在的电子载体 3)是复合物Ⅰ、Ⅱ、Ⅲ之间的连接者,
是多种底物的电子进入呼吸链的中心点
53
四、 ATP与能量的释放、储存和利用
H2O+CO2 ATP
有机物氧化 产能
生物大分子 主动
合成
运输
肌肉 收缩
遗传信 息传递
O2 ADP+Pi
54
一、 ATP分子中的高能磷酸基的来源 (一) 氧化磷酸化: 主要来源 (二) 底物水平磷酸化 概念: 在反应过程中,由于分子内部能 量重新分配,形成高能磷酸化合物,进一 步将高能磷酸基转移给ADP,形成ATP
67
AH2
2H+
2Cu2+
O2-
H2O
A 2Cu+
1/2O2
属氧化酶主要有:细胞色素氧化酶、 酚氧化酶、 抗坏血酸氧化酶等
68
(二)需氧脱氢酶 (aerobic dehydrogenase)
特点: 使作用物氢活化, 受氢体:除氧以外还有其他试剂 产物之一是H2O2
69
AH
FMN(FAD)
H2O2
氧化磷酸化
4

脂肪
葡萄糖 脂肪酸 + 甘油
乙 酰CoA
蛋白质
氨基酸
TCA cycle
CO2
H++e (进 入 呼 吸 链 )
生成H2O 及释 放 出 能 量
5

生物化学(安医)全套PPT课件

生物化学(安医)全套PPT课件

下公式推算出蛋白质的大致含量:
100克样品中蛋白质的含量 ( g % )
= 每克样品含氮克数× 6.25×100 1/16%
一、氨基酸
—— 组成蛋白质的基本单位
存在自然界中的氨基酸有 300 余种,但
组成人体蛋白质的基本氨基酸仅有20种
COO
+
CH 3 R H
H
C
NH3
甘氨酸 丙氨酸 L-氨基酸的通式
1. 非极性疏水性氨基酸 甘氨酸 丙氨酸 缬氨酸 亮氨酸 异亮氨酸 glycine alanine valine leucine isoleucine Gly Ala Val Leu Ile G A V L I F P
5.97 6.00 5.96 5.98 6.02 5.48
苯丙氨酸 phenylalanine Phe 脯氨酸 proline Pro
——侧链基团在中性溶液中解离后带正电荷。
赖氨酸 Lys(K)
9.74
精氨酸 Arg (R) 10.76
组氨酸 His (H) 7.59
另外:
1、蛋白质中的很多氨基酸是经过加工修 饰的——修饰氨基酸 如:脯氨酸 羟基化 成 羟脯氨酸 赖氨酸 羟基化 成 羟赖氨酸
2、半胱氨酸Cys常以胱氨酸的形式存在
第一章
蛋白质的结构与功能
Structure and Function of Protein
Protein —— 来自希腊字母,意思是‚头等 重要的,原始的‛ 蛋白质 —— 来源于对蛋清(清蛋白)的研究 分布广:所有器官、组织都含有蛋白质;
细胞的各个部分都含有蛋白质。
含量高:蛋白质是细胞内最丰富的有机分

半胱氨酸
-SH HS-CH -CH-COO + 2 2

生物化学教学课件ppt

生物化学教学课件ppt
分子间作用力
分子间作用力包括范德华力、氢键和疏水作用力等,影响分子的聚集状态和稳 定性。
化学反应与能量转化
化学反应
化学反应是原子或分子重新组合的过程,遵循质量守恒和能 量守恒定律。
能量转化
化学反应中伴随着能量的吸收或释放,可用于解释反应的动 力学和热力学性质。
酸碱反应与缓冲溶液
酸碱反应
酸和碱通过质子转移反应生成水和盐,酸碱反应是化学反应中的重要类型之一。
生物化学教学课件
目录
• 生物化学概述 • 生物化学基础知识 • 生物大分子与细胞结构 • 生物化学代谢过程 • 生物化学实验技术与方法 • 生物化学前沿研究与发展趋势
01
生物化学概述
生物化学的定义与重要性
定义
生物化学是生物学和化学两门学 科的交叉学科,主要研究生物体 内的化学过程和物质代谢。
重要性
02
生物化学基础知识
分子结构与性质
分子结构
分子由原子组成,通过化学键连接, 具有空间构型和电子分布,决定分子 的物理和化学性质。
分子性质
分子的性质由其结构决定,包括极性 、溶解度、挥发性等,影响分子的物 理状态和化学反应活性。
化学键与分子间作用力
化学键
化学键是原子间通过电子转移或共享形成的相互作用力,分为共价键、离子键 和金属键等。
核酸的结构与功能
总结词
核酸是生物体中重要的遗传物质,具有多种结构和功能。
详细描述
核酸包括DNA和RNA,它们由核苷酸组成,具有一级、二级和三级结构。一级结构决定了核酸的序列 ,二级结构决定了核酸的双螺旋结构,三级结构决定了核酸的空间构象。核酸的功能是携带和传递遗 传信息。
酶的结构与催化机制
总结词

《大学医学生物化学课件》

《大学医学生物化学课件》
细胞信号传导途径的组成
细胞信号传导途径主要由信号分子、受体、信号转导蛋白 和效应蛋白等组成。
受体介导细胞内信号转导过程剖析
01
受体的定义和分类
受体是一类位于细胞表面或细胞内的蛋白质,能够与特定的信号分子结
合并传递信号。根据受体的位置和性质,可分为膜受体和胞内受体两大
类。
02
受体介导的信号转导过程
当信号分子与受体结合后,受体会发生构象变化并激活与之相关联的信
针对特定抗原表位设计单克隆抗体, 通过特异性结合抗原发挥治疗作用, 如用于治疗肿瘤、感染性疾病等。
激酶抑制剂
针对激酶靶点设计药物,通过抑制激 酶活性阻断信号传导通路,用于治疗 肿瘤、自身免疫性疾病等。
细胞凋亡调节剂
针对细胞凋亡相关蛋白设计药物,通 过促进或抑制细胞凋亡达到治疗目的, 如用于治疗神经退行性疾病、心血管 疾病等。
02
生物大分子结构与功能
蛋白质结构与功能
1 2
蛋白质的基本组成单位 氨基酸的种类、结构和性质
蛋白质的分子结构 一级、二级、三级和四级结构的定义和特点
3
蛋白质的功能 酶、激素、抗体、转运蛋白等的功能和作用机制
核酸结构与功能
01
02
03
04
核酸的基本组成单位: 核苷酸的结构和种类
DNA的双螺旋结构:碱 基配对、DNA的超螺旋 和拓扑异构
氮代谢及调控机制
蛋白质的消化吸收
食物中的蛋白质在消化道内被分解为氨基酸,被小肠吸收进 入血液。
氨基酸的转运和储存
血液中的氨基酸通过特定的转运蛋白转运至肝脏和肌肉等组 织储存。
氨基酸的分解代谢
在细胞内,氨基酸经过脱氨基作用分解为氨和相应的α-酮 酸。氨在肝脏中转化为尿素排出体外,α-酮酸可进一步氧 化分解供能。

2024版《医学生物化学》PPT课件

2024版《医学生物化学》PPT课件
策略。
06
基因表达调控与疾病关系
基因表达调控机制简介
01
转录水平调控
通过控制RNA聚合酶的活性或选择性转录起始位点来实现。
02
翻译水平调控
通过影响mRNA的稳定性、翻译效率或蛋白质翻译后修饰来调控。
03
表观遗传学调控
通过改变基因组的表观遗传修饰,如DNA甲基化、组蛋白修饰等,来
影响基因表达。
表观遗传学在医学领域应用前景
生物化学在医学领域重要性
01
02
03
疾病诊断
生物化学指标如血糖、血 脂等用于评估健康状况和 诊断疾病。
药物研发
通过研究生物大分子与小 分子相互作用,设计针对 特定靶点的药物。
治疗方法
利用生物化学原理开发基 因疗法、免疫疗法等新型 治疗方法。
生物化学发展历史及现状
发展历史
从19世纪末开始,随着化学和生物学的发展,生物化学逐渐成为一个独立学科。
挑战
基因诊断技术的敏感性和特异性仍 需提高,同时面临着伦理、法律和 社会等方面的挑战。
精准医疗时代下个性化治疗方案设计
基因突变与疾病关系解析
个性化药物选择
根据患者的基因型信息,选择最适合的药物进行治疗, 提高治疗效果和降低副作用。
通过分析患者的基因突变与疾病发生发展的关 系,为个性化治疗方案提供依据。
酶在医学诊断和治疗中应用价值
1 2
酶与疾病的关系 酶缺乏或异常导致疾病;疾病过程中酶的活性变 化。
酶在医学诊断中的应用 酶活性测定用于疾病诊断;同工酶分析用于遗传 性疾病诊断。
3
酶在医学治疗中的应用 酶替代疗法治疗遗传性疾病;酶抑制剂用于治疗 癌症等。
酶抑制剂与激活剂研究进展

医学大全生物化学课件

医学大全生物化学课件

要点三
信号传导异常的治疗 策略
针对信号传导异常的治疗策略主要包 括抑制异常活化的信号传导途径、恢 复受损的信号传导途径以及调节相关 基因表达等。目前,许多药物和治疗 方法都是基于这些策略开发的,如靶 向治疗药物、基因治疗等。
06
现代生物化学技术应 用和发展趋势
现代生物化学技术种类和应用领域介绍
生物技术
基因表达异常与疾病发生关系探讨
基因突变与疾病
表观遗传学异常与疾病
基因突变可能导致基因表达异常,进 而引发一系列疾病,如遗传性疾病、 癌症等。
表观遗传学异常可能导致基因表达模 式改变,进而引发疾病,如糖尿病、 心血管疾病等。
基因表达失调与疾病
基因表达失调可能导致细胞功能异常 ,从而引发疾病,如自身免疫性疾病 、神经退行性疾病等。
磷脂的代谢
磷脂是细胞膜的主要组成成分,其代谢包括磷脂的合成与降解。磷脂的合成主要发生在内 质网,而降解则通过磷脂酶等酶的作用进行。
氮代谢途径及调控机制
蛋白质的合成与分解
蛋白质是生命活动的主要承担者,其合成受到氨基酸的活化、转运和核糖体上肽链合成的调节。蛋白质的分解则通过 蛋白酶体等酶的作用进行。
氨基酸的代谢
由两个单糖分子组成,如蔗糖 、麦芽糖等。
多糖的结构与功能
由多个单糖分子连接而成,包 括淀粉、纤维素等,是生物体
内的主要储能物质。
糖类的功能
提供能量、参与细胞识别、构 成细胞壁等。
03
生物小分子代谢及调 控机制
糖代谢途径及调控机制
01
糖酵解
糖酵解是细胞在缺氧或无氧条件下分解葡萄糖生成丙酮酸或乳酸,并释
受体介导的信号转导过程
当信号分子与受体结合后,受体构象发生变化并激活与之 偶联的信号转导蛋白,进而引发一系列级联反应,最终将 信号传递至细胞核内,调节基因表达。

临床生物化学讲讲义义完整版PPT课件

临床生物化学讲讲义义完整版PPT课件
高血压与钠代谢
高血压与钾代谢
高血压与血脂代谢
钾离子对维持血压稳定具有重要作用,低钾血症可导致血压升高。
血脂异常与高血压的发生和发展密切相关,控制血脂水平有助于降低高血压风险。
03
02
01
心血管疾病与胆固醇
高胆固醇血症是心血管疾病的重要危险因素,降低胆固醇水平有助于预防心血管疾病。
肿瘤标志物检测有助于肿瘤的早期发现和诊断。
肿瘤标志物
如肌钙蛋白、B型钠尿肽等,用于心梗、心衰等疾病的诊断和预后评估。
心脑血管疾病标志物
如C反应蛋白、降钙素原等,用于感染性疾病的诊断和治疗效果评估。
感染性疾病标志物
如胰岛素、血糖等,用于糖尿病、甲状腺疾病等内分泌疾病的诊断和监测。
内分泌疾病标志物
临床生物化学与疾病
04
高盐饮食是高血压的重要危险因素,钠离子在高血压发病中起重要作用。
02
03
04
能够自动完成多项生化指标的检测,具有快速、准确、高效等特点。
能够自动完成血常规检测,包括白细胞计数、红细胞计数等。
能够自动完成免疫学指标的检测,如乙肝两对半、肿瘤标志物等。
能够自动完成尿液常规检测,包括尿蛋白、尿糖等。
如癌胚抗原(CEA)、甲胎蛋白(AFP)等,用于肿瘤的早期诊断、病情监测和预后评估。
临床生物化学检测可以为医生提供关于患者健康状况的客观数据,帮助医生准确诊断疾病。
诊断疾病
通过定期进行临床生物化学检测,可以监测患者的病情变化,为医生制定治疗方案提供依据。
监测病情
根据临床生物化学检测结果,医生可以制定针对性的治疗方案,并评估治疗效果。
指导治疗
通过了解疾病的生物化学机制,可以开发出有效的预防措施,降低疾病的发生率。

《医学生物化学课件》:医学卫生类专业必修课程详细课件

《医学生物化学课件》:医学卫生类专业必修课程详细课件

动脉粥样硬化
胆固醇沉积在动脉壁上,导 致血管狭窄和血液循环问题。
染色体的结构和功能
染色体是细胞内遗传信息的载体,由DNA和蛋白质组成。染色体的不正常结 构和功能可能导致遗传病和癌症。
DNA的结构和功能
DNA是双螺旋结构,由四种碱基组成。它存储了生物体的遗传信息,通过复制和转录过程传递给 后代。
RNA的结构和功能
3 细胞代谢
细胞中的化学反应组 成了细胞代谢网络, 维持生物体的正常功 能。
生物分子的结构
蛋白质
由氨基酸组成的聚合物,具 有多样的结构和功能。
糖类
包括单糖、双糖和多糖,是 细胞能量的重要来源。
脂质
包括脂肪、磷脂和类固醇, 构成细胞膜和储存能量。
生物膜的结构和功能
Байду номын сангаас
1 细胞膜
2 信号传导
由磷脂双层和蛋白质组成, 控制物质在细胞内外的交换。
RNA是单链分子,有多种类型,包括mRNA、tRNA和rRNA。它在蛋白质合成过程中起着重要角色。
蛋白质合成的过程
1
翻译
2
通过核糖体将mRNA转译成多肽链,
形成蛋白质。
3
转录
将DNA转录成mRNA,将遗传信息 转移到RNA分子上。
折叠
新合成的多肽链经过折叠和修饰, 形成特定的蛋白质结构。
糖代谢和糖尿病的关系
1
糖原
多糖的形式储存在肝脏和肌肉中,
糖酵解
2
作为能量的来源。
将葡萄糖分解为乳酸或酒精,产生
能量。
3
葡萄糖酮症
糖代谢异常导致血液中酮体水平升 高,可能出现酮症酸中毒。
脂质代谢和心血管疾病的关系
胆固醇

【医学ppt课件】生物化学(Biochemistry)

【医学ppt课件】生物化学(Biochemistry)
2003年版; 3. Hames B et al., Instant notes in biochemistry(影印版),
1999年版。
10
物质代谢变化与生理机能的关系——机能生物化学。
5
(三) 基因表达及其调控
转录
翻译
DNA
RNA
Pr
基因: 携带一定遗传信息的特定DNA片断以及相关的 调控序列;
(四) 专题生化
肝胆生化、水盐代谢和酸碱平衡等。
6
四. 生 物 化 学 与 医 药 学 的 关 系
与医学关系 2. 与药学关系 3. 与其他学科关系
【医学ppt课件】生物化学 (Biochemistry)
第一章 绪 论 (introduction)
2
一. 生物化学
主要是运用化学的理论和方法,从分子水平研究生 物体的化学组成及其在生命活动过程中化学变化规律 的一门学科,从而揭示生命现象的化学本质。
又称生命的化学(chemistry of life)。
3
二. 研 究 对 象
(主要针对组成生物体的六大营养素): 糖、脂、蛋白质、核酸、水和无机盐等
4
三. 主要内容
(一)生物体的物质组成及其结构和功能
蛋白质、核酸和多糖 —— 生物大分子 / 生物信息分子 物质的组成、结构与化学性质等 —— 静态生物化学;
(二) 物质代谢及其代谢调节
物质在体内的代谢变化规律、能量代谢及其代谢调节是生 物化学的中心内容——动态生物化学;
7
五. 学 习 生 化 的 目 的
1. 了解生物体内物质的化学变化过程; 2. 从分子水平阐明疾病发生、发展的机制; 3. 更科学、有效地诊断与防治疾病,并帮助阐明中医
药的作用机理; 4. 指导新药的研制、提高对重大疾病的防治水平; 5. 为其他医药学基础课及临床医学打下扎实的基础。

《医学生物化学》课件

《医学生物化学》课件

《医学生物化学》课件xx年xx月xx日CATALOGUE目录•课程简介•生物化学概述•蛋白质结构与功能•核酸结构与功能•酶的分类与功能•生物氧化•糖代谢•脂类代谢01课程简介医学生物化学是医学专业必修的一门课程,是研究生物体化学组成、代谢和调节的学科。

医学专业必修课程医学生物化学涉及生物学、化学、医学等多个领域,是医学专业学生必修的基础课程之一。

学科交叉课程背景1 2 3包括蛋白质、核酸、糖类、脂质和维生素等生物分子的结构与功能。

生物分子结构与功能包括糖代谢、脂质代谢、氨基酸代谢和核苷酸代谢等过程及其调控机制。

代谢过程包括DNA复制、RNA转录、翻译和基因表达调控等遗传信息传递与表达的基本过程。

遗传信息的传递与表达培养学生掌握医学生物化学的基本概念、原理和方法通过课程学习,学生应掌握医学生物化学的基本概念、原理和方法,了解生物体内各种生物分子和代谢过程的结构和功能、调控机制以及遗传信息的传递与表达过程。

提高学生解决实际问题的能力和医学素养医学生物化学课程的学习,可以提高学生解决实际问题的能力和医学素养,为其未来的临床实践和科研工作打下坚实的基础。

02生物化学概述生物化学是一门以化学和生物学为基础,研究生物体内化学变化和化学物质相互转化的科学。

它涉及从分子水平上研究生命的本质和生物体在正常和异常情况下的物质和能量代谢。

生物化学定义生物化学是医学的基础学科之一,为医学提供了理论基础和工具。

它为医学提供了认识生命过程和疾病发生、发展机制的手段,为疾病的预防、诊断和治疗提供了依据。

生物化学与医学的关系生物化学的主要研究内容生物分子的结构与功能,如蛋白质、核酸、糖类等的结构和功能。

生物体内的能量代谢和物质代谢及其调控。

生物体内的酶和激素及其作用机制。

基因表达与调控等。

03蛋白质结构与功能按化学组成蛋白质可分为单纯蛋白质和结合蛋白质按功能分类结构蛋白与功能蛋白蛋白质分类与组成氨基酸序列:蛋白质的基本结构单元是氨基酸氨基酸之间的键:肽键与二硫键氨基酸序列的书写:NH2-C-COOH蛋白质一级结构蛋白质空间结构蛋白质的二级结构一级结构与空间结构的区别维持蛋白质空间结构的化学键蛋白质的三级与四级结构04核酸结构与功能根据化学组成脱氧核糖核酸(DNA)和核糖核酸(RNA)根据功能基因组DNA和RNA、非基因组DNA和RNA核酸分类与组成DNA双螺旋结构由两条反向平行的多核苷酸链组成,碱基互补配对DNA的功能储存和遗传信息,指导蛋白质合成DNA结构与功能RNA的种类RNA的结构RNA的功能单链,可折叠成复杂的三级结构在蛋白质合成过程中作为模板03RNA结构与功能02 01mRNA、tRNA、rRNA05酶的分类与功能酶的概述酶主要分为四类:氧化还原酶、转移酶、水解酶和合成酶酶在生物体内的反应中起着至关重要的作用酶是由活细胞产生的生物催化剂酶的分类催化氧化还原反应的酶氧化还原酶催化转基团从一个分子转移到另一个分子的酶转移酶催化水解反应的酶水解酶催化合成反应的酶合成酶酶促反应的机制酶与底物结合形成酶-底物复合物酶促反应分为四个步骤:结合、活化、转移和分解酶促反应的特点:高效性、专一性和可调节性06生物氧化生物氧化是指有机物质在细胞内经过一系列氧化还原反应,最终降解为小分子、无机物或水的过程。

生物化学第8章PPT课件

生物化学第8章PPT课件
33
脂肪酸的-氧化(第4步反应)
34
脂肪酸的-氧化小结
脂肪酸氧化的主要反应
36
软脂酸的β-氧化
37
Summarization of FA -oxidation
1.FA仅需活化一次,消耗1ATP的两个高能 磷酸键,活化的酶在线粒体膜外;
2.Acryl CoA(长链)需经肉碱运输才能进 入线粒体内,有肉碱转移酶I和II;
52
FA的-氧化途径
53
九、过氧化物酶体的β-氧化
线粒体是脂肪酸氧化的主要场所, 但一定细胞的特定膜结构也会氧 化脂肪酸,过氧化物酶体 (Peroxisomes)可以以与线粒 体相似但不完全相同的方式氧化 脂肪酸。
54
九、过氧化物酶体的β-氧化 过氧化物酶体氧化脂肪酸四步反
应的第一步黄素蛋白脱氢酶催化 脱氢生成FADH2,电子直接传递 给O2生成H2O2,后者被过氧化氢 酶分解解毒。
2-烯脂酰 CoA——→ -羟脂酰CoA
H2O
29
脂肪酸的-氧化(第2步反应
30
脂肪酸的-氧化(第3步反应)
3. 再脱氢:L(+)-羟脂酰CoA脱氢, 生成-酮脂酰CoA,由脱氢酶催化,酶 以NAD+为辅酶,只对L型底物有作用;
-羟脂酰CoA--羟-脂-酰-Co-A脱-氢→酶 -酮脂酰CoA
20
二、脂肪酸的活化(续)
脂肪酸+
ATP+
脂酰CoA合成酶
HS-CoA
脂酰CoA+ AMP+PPi
R-COO- +ATP+HS-CoA R-CO-SCoA+AMP+PPi(2Pi)
21
脂肪酸转变为脂酰-CoA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖金属激活酶(metal activated enzyme):金属 离子与酶结合疏松,但需金属离子活化,故金 属实际上是酶的激活剂。如激酶需Mg和Mn。
❖ 有的酶类兼含有机辅基和金属。如琥珀酸脱氢 酶含黄素腺嘌呤二核苷酸(FAD)和Fe。
8
❖ 金属离子能与酶、底物形成各种形式的三元络 合物,保证了酶与底物的正确定向结合,而且 还可作为催化基团。
10
维生素 V B1 V B2
学名 硫胺素 核黄素
辅酶形式 TPP FM N 、 FA D


α -酮 酸 脱 氢 酶 的 辅 酶
脱 氢 酶 的 辅 酶 ,传 递 氢 原 子 .
V pp 尼 克 酸 N A D +、 N A D P+ 不 需 氧 脱 氢 酶 的 辅 酶
V B6 吡 哆 醛 磷 酸 吡 哆 醛 泛 酸 遍 多 酸 COA
❖ 辅基(prosthetic group):共价键与酶蛋白牢固结合, 不易分离。
金属离子多为酶的辅基,小分子有机化合物有的属辅酶, 有的属辅基。
酶蛋白与辅助因子结合形成的复合物称为全酶,只有全 酶有催化作用。
71、金属ຫໍສະໝຸດ 子的作用:❖ 金属酶(metalloenzyme):金属离子与酶蛋 白结合紧密,成为酶结构中不可缺少的组成成 分。如碳酸酐酶含Zn;谷胱甘肽过氧化物酶含 硒;碱性磷酸酶含Zn,羧肽酶A含Zn。
活化分子比一般分子高出一定的能量称为活化 能:在一定温度下1摩尔底物全部进入活化态所需 要的自由能(kJ/mol)。
催化剂能瞬时地与反应物结合成过渡态,因而 降低了反应所需的活化能。
4
5
化学反应速率依赖三个因素:碰撞频率、能量因素、概率因素
+ R 1C H C O N H C H R 2+ H 2 O
❖多酶体系(multienzyme system):细胞内存
在着许多由几种不同功能的酶彼此聚合形成的 多酶复合物。
❖多功能酶(multifunctional enzyme):一些
多酶体系在进化过程中由于基因的融合,形成 由一条多肽链组成却具有多种不同催化功能的 酶。
12
第二节 酶促反应的特点和机制
降低活化能、升高温度可以加速化学反应。酶的催
化作用有赖于降低反应的活化能。活化能稍有降低,
速度会显著增大。
13

活化能阈

能 非催化反
应活化能
初态
催化反应活化能
自由能变化
终态
活化能
活化过程


Eact-2

有效碰撞百分数=e-Eact/RT
Eact-1
0
分子的动能
活化能与有效碰撞
14
2、酶促反应有高度的特异性或专一性 (specificity)
一种酶只能作用于某一类或某一种特定的物质。
❖底物专一性
1、结构专一性: (1)绝对专一性:只作用于一个底物。与底物结构类似
的化合物只能成为竞争性抑制剂或无影响。 (2)相对专一性:作用对象不只一种底物,要求略低一
一、酶促反应的特点
1、酶促反应具有极高的催化效率
酶促反应速度比非催化反应高108~1020倍,比一般催 化反应高107~1013。
A+B
A B C+D
初态
过渡态 终态
从初态转化为过渡态需要能量,即为活化能 (Energy of activation,EACT),活化能越大,中 间产物越难形成,反应越难进行。
一、 酶的分子组成
酶的化学本质就是蛋白质。 ❖ 单纯酶(simple enzyme):仅由氨基酸残基构成的酶 ,
如脲酶,淀粉酶,脂酶。 ❖ 结合酶(conjugated enzyme):
酶蛋白(apoenzyme)+辅助因子(cofactor)。辅助因 子是金属离子或小分子有机化合物。
❖ 辅酶(coenzyme)非共价键与酶蛋白疏松结合,可用透析、 超滤分离
第二章 酶
第一节 第二节 第三节 第四节 第五节 第六节 第七节
酶的分子结构与功能 酶促反应的特点和机制 酶促反应动力学 酶的调节 多酶体系 酶的分类与命名 酶与医学的关系
1
酶的研究历史
• 1878年,Kuhne提出Enzyme. • 1897年,德国科学家Hans Buchner和
Eduard Buchner 成功地用不含细胞的酵 母提取液实现了发酵. • 1926年,美国生化学家Sumner第一次从 刀豆分离到脲酶结晶,提出酶是蛋白质. • 1978年,Altman提出RNA有催化功能. • 1982年,Cech证实RNA有催化功能.
转氨酶的辅酶 酰基载体
叶酸
四氢叶酸
一碳单位的载体
生物素
羧化酶的辅酶
硫辛酸
传递氢
V B12 钴 胺 素 甲 基 钴 胺 素
转甲基酶的辅酶
11
酶的种类:
❖单体酶(monomeric enzyme):只有一条多
肽链构成的酶。
❖寡聚酶(oligomeric enzyme):由多个相同
或不同亚基以非共价键连接的酶。
N H 2
C O O H
N H 2 R 1C H C O O H R 2
N H 2 C H C O O H
A+B
初态
A B C+D
过渡态 终态
从初态转化为过渡态需要能量,即为活化能(Energy of activation,EACT),形成过渡态所需的活化能越大,中间产 物越难形成,反应越难进行。
6
❖ Fe、Cu及Mo等金属离子可以通过氧化还原而
传递电子完成多种物质的氧化还原。如铁卟 啉是很多血红素蛋白的辅基。
F2e+
3+ Fe
C+u
C2u+
9
2、小分子有机化合物:
❖小分子有机化合物主要参与酶的催化过程,在 反应中传递电子、质子或一些基团,多为维生素。 ❖维生素:维持细胞正常功能所必需,但需要量 很少,动物体内不能合成,必须由食物供给的一 类有机化合物。 ➢水溶性维生素:VB1、VB2、Vpp、VB6、VC、 VB12、泛酸、叶酸、肌醇 ➢脂溶性维生素:VA、VD、VE、VK
2
酶(enzyme)是由活细胞合成的,对其特 异底物(substrate)起高效催化作用的 蛋白质,是机体内催化各种代谢反应最 主要的催化剂。
核酶(ribozyme)是具有高效、特异催化 作用的核酸,主要作用参与RNA的剪接。
3
第一节 酶的分子结构与功能
催化反应的原理
一个化学反应体系中的各个分子所含的能量高 低不同,只有那些具有较高能量、处于活化态的活 化分子才能在分子碰撞中发生化学反应。反应物中 活化分子越多,反应速度越快。
相关文档
最新文档