年人教版28.1锐角三角函数提高练习题含答案
人教版九年级数学下册《28.1 锐角三角函数》提升练习题-带有答案
人教版九年级数学下册《28.1 锐角三角函数》提升练习题-带有答案学校:班级:姓名:考号:一、选择题1.已知α是锐角sinα=cos30°,则α的值为()A.30°B.60°C.45°D.无法确定2.已知√32<cosA<sin80°,则锐角A的取值范围是()A.60°<A<80°B.30°<A<80°C.10°<A<60°D.10°<A<30°3.如图,在Rt△ABC中∠ACB=90°,BC=1,AB=2则下列结论正确的是()A.sin A=√32B.tan A=12C.cos B=√32D.tan B=√34.在Rt△ABC中∠C=90∘,∠B=35∘,AB=则BC的长为()A.7sin35∘B.7cos35∘C.7tan35∘D.7cos35∘5.如图,在ΔABC中AB=AC,AD⊥BC于点D.若BC=24,cosB=1213则AD的长为()A.12 B.10 C.6 D.56.如图,点A,B,C在正方形网格的格点上,则sin∠ABC=()A.√26B.√2626C.√2613D.√13137.如图,在△ABC中,∠BAC=90°, AB=20, AC=15,△ABC的高AD与角平分线CF交于点E,则DEAF的值为()A .35B .34C .12D .23 8.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A .34B .43C .35D .45 二、填空题 9.如果cosA =√32,那么锐角A 的度数为 °. 10.在Rt △ABC 中,∠C =90°,若AB =4,sinA = ,则斜边上的高等于 .11.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,CD ⊥AB ,垂足为D ,则tan ∠BCD 的值是 .12.如图所示,在四边形 ABCD 中 ∠B =90°,AB =2,CD =8,AC ⊥CD 若 sin∠ACB =13 ,则 cos∠ADC = .13.如图,在半径为6的⊙O 中,点A 是劣弧BC ⌢的中点,点D 是优弧BC ⌢上一点∠tanD =√33,则BC 的长为 .三、解答题14.计算: .15.先化简,再求代数式m2−2m+1m3−m ÷m−1m的值,其中m=tan60°−2sin30°16.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.17.在直角梯形ABCD中AB∥CD,∠ABC=90°,∠DAB=60°,AB=2CD对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值.参考答案1.B2.D3.D4.B5.D6.B7.A8.D9.3010.482511.3412.4513.6√314.解:原式15.解:m=tan60°−2sin30°=√3−2×12=√3−1m2−2m+1 m3−m ÷m−1m=(m−1)2m(m+1)(m−1)×mm−1=1m+1将m=√3−1代入上式,得:1 m+1=√3−1+1=√3316.解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x ∴EC= √(3x)2+(4x)2 =5xEM= √x2+(2x)2 = √5 xCM= √(2x)2+(4x)2 =2 √5 x∴EM2+CM2=CE2∴△CEM是直角三角形∴sin ∠ECM= EM CE = √55 17.(1)证明:∵E ,F 为线段OA ,OB 的中点 ∴AB ∥EF 且AB =2EF∵AB =2CD∴EF =CD EF//CD∴∠OCD=∠OEF ,且∠DOC=∠FOE在△FOE 和△DOC 中:{∠DOC =∠FOE∠OCD =∠OEF CD =EF∴△FOE ≌△DOC(AAS);(2)解:过D 点作DH ⊥AB 于H∵∠DAB=60°∴AH=√33DH ,设DH=√3x ,则AH=x ∵AB ∥CD ,∠DHB=∠ABC=90°∴四边形DCBH 为矩形∴BC=DH=√3x ,CD=BH又AB=2CD∴BH=AH=x在Rt △ABC 中,由勾股定理可知:AC =√AB 2+BC 2=√(2x)2+(√3x)2=√7x ∵AB ∥EF 得到∠OEF=∠OAB∴sin∠OEF =sin∠OAB =BC AC =√3x√7x =√217.。
28.1锐角三角函数(1)
A 45.
A
(2)如图,已知圆锥的高AO等于圆 锥的底面半径OB的 3 倍,求 a .
O
B
AO 3OB 解 tan 3, OB OB
60.
当A,B为锐角 时,若A≠B,则 sinA≠sinB, cosA≠cosB, tanA≠tanB.
B
1、在Rt△ABC中,∠C=90°,
BC=12,BD= 8
3,求∠A的度数及AD的长.
A
D B
C
小结 :
我们学习了30°, 45°, 60°这 几类特殊角的三角函数值.
作业
课本P82 第3题 《同步练习》P51-52(四)(五)
rldmm8989889
28.1锐角三角函数(4)
引例 升国旗时,小明站在操场上离国旗20m处行注目礼。 当国旗升至顶端时,小明看国旗视线的仰角为42°(如 图所示),若小明双眼离地面1.60m,你能帮助小明求出 A 旗杆AB的高度吗?
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
c A b
a C
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
例1 如图,在Rt△ABC中,∠C=90°, 3 ,求cosA和tanB的值. BC=6, sin A 5
B
BC sin A AB BC 3k, AB 5k AC AB 2 BC 2 4k ,
A
C
AC 4 AC 4 cos A , tan B . AB 5 BC 3
请同学们拿出 自己的学习工具— 1 —一副三角尺,思 考并回答下列问题:
人教版初中数学28锐角三角函数练习题-答案
人教版初中数学28锐角三角函数练习题【答案】一、客观题1. C2. B3. C4. B5. B6. A7. B8. B9. A 10. C11. C 12. A 13. D 14. D 15. C16. A 17. C 18. A 19. B 20. C21. B 22. A 23. A 24. D 25. D26. B 27. A 28. B 29. D 30. B31. D 32. B 33. B 34. B 35. A36. A 37. A 38. C 39. A 40. C41. A 42. C 43. C 44. C 45. A46. B 47. B 48. B 49. C 50. C51. A 52. A 53. A 54. C 55. B56. A 57. D 58. A 59. A 60. D61. D 62. C 63. D 64. B 65. B66. C 67. A 68. B 69. A 70. B71. A 72. B 73. A 74. B 75. A76. B 77. A 78. A 79. C 80. D81. C 82. D 83. A 84. B 85. B86. C 87. D 88. D 89. B 90. C91. B 92. B 93. D 94. B 95. B96. B 97. C 98. B 99. B 100. D101. C 102. D二、主观题103.104. (-2,0)或(4,0)105.106.107.108.109.110.111.112. 60113.114. ±2115.116.117. 5;118. 60°≤∠A<90°119.120.121.122. 1123. -4124. 30125. 45126. 60;127. 105128. 75129. 8130.131. ( )132. 6133. 5134.135. 24136.137.138.139. 6;8; ;5x;4x; ; ; ;36°52′12″;53°7′48″140.141.142. 5143. 75°144. 10米145. 82.0米.146. 3.7(米)147. bsinα148. 6149. 1150. 30° 3151. 20152. (10+3 )153.154. cm155. 5.5156. 12157. 75°158. 0.433;91.2159. 2( )160. 6161. 15162. 8.7163. 250164. 解:过A作AD⊥BC于点D.∵S △ABC= BC•AD=33,∴×11×AD=33,∴AD=6.又∵AB=10,∴BD= = =8.∴CD=11-8=3.在Rt△ADC中,∴= =2.165. 解:∵DE垂直平分AC,∴AD=CD,∠A=∠ACD=45°,∴∠ADC=∠BDC=90°.∵AD=CD=1,∴AC=AB= ,.在直角△BCD中,.166. 解:∵AE⊥BC,∴∠AEF+∠1=90°;∵EF⊥AB,∴∠1+∠B=90°;∴∠B=∠AEF;(1分)∴∵在Rt△ABE中,∠AEB=90°∴;(2分)设BE=4k,AB=5k,∵BC=AB,∴EC=BC-BE=BA-BE=k;∵EC=1,∴k=1;(3分)∴BE=4,AB=5;∴AE=3;(4分)在Rt△AEF中,∠AFE=90°,∵,(5分)∴.(6分)167. 证明:过A作AD⊥BC于D,在Rt△ABD中,sinB= ,∴AD=ABsinB,在Rt△ADC中,sinC= ,∴AD=ACsinC,∴ABsinB=ACsinC,而AB=c,AC=b,∴csinB=bsinC,∴= .168. 解:(1)原式=2×-1+3=3.(2)去分母得:2-x+3(x-3)=-2,化简得2x=5,解得x= .经检验,x= 是原方程的根.∴原方程的根是x= .169. 解:原式= ×+ ×-3=1+ -3=- .170. 解:原式=1-3+2- +3×=- +=0.171. 解:原式= -1-2×+1+= -1- +1+= .172. 解:原式= ×=xy-3.∵(x- ) 2+|y-cos30°|=0,∴原式= = .173. 解:原式= = .174. 解:∵,∴tanB= ,sinA= ,∵∠A、∠B均为锐角,∴∠A=60°,∠B=60°,∴∠C=180°-∠A-∠B=180°-60°-60°=60°,∴△ABC是等边三角形.175. 解:原式= (4分)= (7分)= = (10分)176. 解:原式=-(3.14-π)+3.14÷1-2×+ +(-1)=π-3.14+3.14- + -1=π- + +1-1=π.177. 解:原式=4-3 +1-5+4×=- .178. 解:原式=1-2 -2+6×,=1-2 -2+2 ,=1-2,=-1,179. 解:原式=3 -3×+1+9(4分)=2 +10.(5分)故答案为:2 +10.180. 解:,= ,= .181. 解:原式=9-2×+1+ -1=9.182. 解:原式=( - )• = • =a+1(3分)把a=sin60°= 代入(1分)原式= = (1分)183. 解:原式=2- -1+2×+ =2.184. 解:原式=1-2 ×+9=10-3=7.185. 解:原式=2-2+1+2 ×=1+2=3.186. 解:原式= + ×= +=2.187. 解:原式可化为:x 2- x+ =0,∴,∴x 1=x 2= ,∴∠A=∠B=45°.188. 解:2sin45°+sin60°-cos30°+tan 260°.= ,= .故答案为:+3.189. 解:原式=4×-( ) 2-( ) 2+1-=2 - - +1-= .190. 解:在Rt△BCD中,sinB= ,∴BC= = =12,在Rt△ABC中,cosB= ,∴AB= = =8 .191. 解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴AD= AB=4,BD= AD=4 .在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴DC=AD=4,∴BC=BD+DC=4 +4.192. 解:在Rt△ABC中,∵∠B=30°,∴AC= AB= ×4 =2 .∵AD平分∠BAC,∴在Rt△ACD中,∠CAD=30°,∴AD= = =4.193. (1)证明:∵AD是BC上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°,在Rt△ABD和Rt△ADC中,∵tanB= ,cos∠DAC= ,又∵tanB=cos∠DAC,∴= ,∴AC=BD.(2)解:在Rt△ADC中,,故可设AD=12k,AC=13k,∴CD= =5k,∵BC=BD+CD,又AC=BD,∴BC=13k+5k=18k由已知BC=12,∴18k=12,∴k= ,∴AD=12k=12×=8.194. 解:∵CD⊥AB于D,∠A=30°,sinB= ,AC= ,∴,∴CD= ,∵AC 2=CD 2+AD 2,= +AD 2,∴AD=3,∵sinB= = = ,∴BC= ,∵BC 2=CD 2+DB 2,解得:BD=2,∴AB之长为:BD+AD=2+3=5.195. 解:(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB= ,AD=1,∴AB= =3,∴BD= =2 ,∴BC=BD+DC=2 +1;(2)∵AE是BC边上的中线,∴CE= BC= + ,∴DE=CE-CD= - ,∴tan∠DAE= = - .196. 解:(1)∵△ABC中,∠C=90°,∠A=60°,∴∠B=30°,∵c=8 ,sin60°= = = ,∴a=12,∵cos60°= = = ,∴b=4 ;(2)同理得:∠B=30°,b=9 ,c=6 .197. 解∵△ABC中,∠C=90°∠B=30°,∴∠BAC=60°,∵AD是△ABC的角平分线,∴∠CAD=30°,∴在Rt△ADC中,AD= =2.198. 解:作AF⊥BC于F.在Rt△ABF中,∠ABF=∠α=60°,.(5分)在Rt△AEF中,∵∠β=45°,∴AF=EF,(7分)于是.即AC的长度为.(10分)199. 解:(1)过点P作PC⊥MN于点C,在Rt△APC中,∠PAC=32°,PA=30.,∴PC=PA·sin∠PAC≈15.9.答:船P到海岸线MN的距离为15.9海里.(2)在Rt△BPC中,∠PBC=55°,PC≈15.9,,.船A的时间:,船B的时间:.答:船B先到.200. 解:∵△ABD是等边三角形,∴∠B=60°.在R t△BAC中,cosB=,t anB=,∴BC=,AC=AB·t anB=2 t an60°=∴△ABC的周长为AB+BC+AC=2+4+=.201. 解:如图:过C作CD⊥AB于D,CD为最近的简易公路.设CD= x,依题意得:在Rt△ADC中,∠ADC=90°,∠A=30°.∵=tan30°,∴AD=同理:BD= .∵AD-BD=6,∴-=6,解得:x= ,x≈5.20(千米).5.20×16 000=83200(元).答:这条最近的简易公路长为5.20千米,修建简易公路的最低费用为83200元.202. 解:如图,过点A作AE⊥CD于点E,根据题意,∠CAE=45°,∠DAE=30°.∵AB⊥BD,CD⊥BD,∴四边形ABDE为矩形.∴DE=AB=123.在R t△ADE中,t an∠DAE=,∴AE=.在R t△ACE中,由∠CAE=45°,得CE=AE=.∴CD=CE+DE=.答:乙楼CD的高度约为335.8 m.203. 解:如图,作CD⊥AB交AB的延长线于点D,则∠BCD=45°,∠ACD=65°在R t△ACD和R t△BCD中,设AC=x,则AD=x sin65°,BD=CD=x cos65°.∴100+ x cos65°=x sin65°.∴x=(米).∴湖心岛上的迎宾槐C处与凉亭A处之间距离约为207米.204. 解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形.∴AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,.在Rt△ABC中,∵,AB=2,∴.在Rt△AFD中,DF=DE=EF=x-2,∴∵AF=BE=BC+ CE,∴.解得x=6.答:树DE的高度为6米.205. 解:设CD= x.在Rt△ACD中,tan37°= ,则.∴AD= x.在Rt△BCD中,tan48°= ,则= ,∴BD= x.∵AD+BD=AB,∴x+ x=80.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.206. 解:如图所示延长AB交DE于C.设CD的长为x米.由图可知,在Rt△DBC中,∠DBC=45°.∠DCB=90°,则∠BDC=45°,∴BC=CD=x米.在Rt△ACD中,∠A=30°,DC=x,∴即,∴.∴AC-BC=AB,AB=20(米)∴,解得.∴.答:这棵古松的高是28.82米.207. 解:(1)如图,作AD上BC于点D,Rt△ABD中,AD=ABsin45°=4×= .在Rt△ACD中,∵∠ACD=30°,∴AC=2AD= ≈5.6.即新传送带AC的长度约为5.6米.(2)结论:货物MNQP应挪走.在Rt△ABD中,BD=ABcos45°=4×=2 ,在Rt△ACD中,CD=ACcos30°=4 ×=2 ,∴CB=CD-BD=2 -2 =2( -)≈2.1.∵PC=PB-CB≈4-2.1=1.9<2,∴货物MNQP应挪走.208. 解:(1)过点E作ED⊥BC,垂足为D.由题意知,四边形EFCD是矩形,∴ED=FC=12,DC=EF=1.6.在Rt△BED中,∠BED=45°,∴BD=ED=12.∴BC=BD+ DC=12+1.6=13.6.答:建筑物BC的高度为13.6 m.(2)在Rt△AED中,∠AED=52°,∴AD=ED·tan∠AED=12×tan52°,∴AB=AD-BD=12×tan52°-12≈12×1.28-12=15.36-12=3.36≈3.4.答:旗杆AB的高度约为3.4m.209. 解:(1)30.(2)由题意得∠PBH=60o,∠APB=45o.∵∠ABC=30o,∴∠ABP=90o.在Rt△PHB中,,在Rt△PBA中,.答:A,B两点间的距离约34.6米.210. 解:过C作CD⊥AB于D点,由题意可知AB=50×20=1000m,∠CAB=30°,∠CBA=45°,AD= ,∵AD+BD= + =1000,解得CD= 366 m.211. 解:在Rt△ABC中,∵∠B=30°.AC= AB= ×4 =2 .∵AD平分∠BAC,∴在Rt△ACD中,∠CAD=30°,∴AD= = =4212. 解:过点P作PC⊥AB,C是垂足,则∠APC=30°,∠BPC=45°,AC=PC·tan30°,BC=PC·tan45°,∵AC+BC=AB,∴PC·tan30°+PC·tan45°=100,∴( )PC=100,∴PC=50( )≈50×(3-1.732)≈63.4>50,答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区. 213. 考查学生利用三角函数解决实际问题的能力,通过作垂线构造直角三角形是解决问题的关键.214. 解:在Rt△ACE中,∠ACE=30°CE=BD=15∴tan∠ACE=∴AE=CE·tan∠ACE=15·tan30°=5∴AB=AE+BE=5 +1.5=8.6+1.5=10.1215. 解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H.∵四边形ABCD是梯形,且AB∥CD,∴DH EG,故四边形EGHD是矩形.∴ED=GH.在Rt△ADH中,AH=DH·tan∠ADH=10×tan 45°=10(米),在Rt△FGE中,i=1∶=,∴FG==(米).∴AF=FG+GH-AH=+3-10=(米).(2)设防洪堤长为l,×l=(3+ -7)×10×500=-10 000(立方米).加宽部分主体的体积V=S梯形AFED答:加固后坝底增加的宽度为( )米,需土石( -10 000)立方米.216. 在Rt△ABD中,AB=3 m,∠ADB=45°,所以可利用解直角三角形的知识求出AD;类似地,可以求出AC.解:在Rt△ABD中,AB=3 m,∠ADB=45°,所以AD==3(m).在Rt△ACD中,AD=3 m,∠ADC=60°.所以AC=ADtan∠ADC=3×tan60°=3×=(m).所以路况显示牌BC的高度为( -3) m.217. (1)如题图,在Rt△ABC中,=sin 30°,∴BC==10(米).(2)收绳8秒后,绳子缩短了4米,只有6米,这时船离岸的距离为(米).9.题型:解答题;其它备注:主观题;分值:6;$$在△ABC中,已知AB=1,AC=,∠ABC=45°,求BC的长.218. 解:在Rt△ADC中,∠C=90°,AC=,∠ADC=60°,因为sin∠ADC=,即,所以AD=2.由勾股定理得DC==1,BD=2AD=4,BC=BD+DC=5,在Rt△ABC中,∠C=90°,AC=,BC=5,由勾股定理得AB==,所以Rt△ABC的周长为AB+BC+AC=+5+ .219. 解:存在的一般关系有:(1)sin 2A+cos 2A=1,(2)ta n A=.(1)证明:∵sin A=,cos A=,a2+ b2=c 2,∴sin 2A+cos 2A==1.(2)证明:∵sin A=,cos A=,∴ta n A==.220. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米.在Rt△ACD中,tan∠CAD= ,∴AD=.在Rt△ABD中,tan∠BAD=,∴BD=AD·tan 30°=80 ×=80,∴BC=CD-BD=240-80=160(米).答:这栋大楼的高为160米.221. 解:分别过B、C两点作BE⊥AD于E,CF⊥AD于F,则四边形BCFE为矩形,∴BE=CF,BC=EF.(1)在Rt△BAE中,i=1∶3,tanα= ≈0.333 3,∴α≈18°26′.(2)在Rt△ABE中,i=1∶3,BE=23,∴AE=3BE=3×23=69(米).在Rt△CDF中,i=1∶2.5,CF=BE=23,∴DF=2.5×23=57.5(米).∴AD=AE+EF+FD=AE+BC+FD=69+6+57.5=132.5(米),AB= ≈72.7(米).答:坡角α为18°26′,坝底AD为132.5米,斜坡AB约为72.7米.222. 解:如图1-2所示,过点A作AD⊥BD于点D,易知:AC=BC=24,∠DAC=30°.图12∴AD=24·cos30°=24×≈20.78>20.答:货轮继续向西航行,没有触礁危险.223. 解:∵BD=AB,∴∠A=∠ADB=30°×=15°,∠BDC=60°.∴∠ADC=75°.设DC=1,则BD=AB=2,BC= ,∴tan75°=.224. 解:过A作BC的垂线,垂足为D.在Rt△ADB中,∠B=60°,∴∠BAD=30°.∴BD=AD·tan30°= AD.在Rt△ADC中,∠C=45°,∴CD=AD.又∵BC=200,∴BD+CD= AD+AD=200.∴AD= ≈126.8(米).答:这段河宽约为126.8米.225. 解:如图,过点A作AE⊥CD,在Rt△ABD中,∠ADB=β,AB=24,∴BD= .在Rt△AEC中,∠CAE=α,BD= ,∴CE=8.∴CD=CE+AB=32(米).226. 解:设AB=x米,∴AD=xcos60°= ,在直角三角形EAC中,∠EAC=90°,∠C=45°,∴AE=AC,即x+30= +40,∴x= (米).227. 解:过C作CD⊥AB,垂足为D,可求得CD=136.5 m.∵CD=136.5 m>120 m,∴船继续前进没有浅滩阻碍的危险. 228. 解:过C作CD⊥AB,垂足为D.设气球离地面的高度是x m,在Rt△ACD中,∠CAD=45°,∴AD=CD=x.在Rt△CBD中,∠CBD=60°,∴cos60°= .∴BD= .∵AB=AD-BD,∴20= .∴x= .答:气球离地面的高度是( ) m.229. 解:如图,过点C作CD⊥AB于D,则∠BCD=45°,∠ACD=60°.设CD=x m,则BD=x m,AD=CDtan 60°=x(m).∵AB=50×20=1 000(m),∴x+ x=1 000.∴x=≈366.因此,建筑物C到公路的距离约为366 m.230. 解:∵l∥BC,∴∠ACB=∠α=8°.在Rt△ABC中,∵tan α=,∴BC==42(cm).根据题意,得h2+42 2=( h+6) 2,∴h=144(cm).答:铅锤P处的水深约为144 cm.231. 解:作CE⊥AB,垂足为E,根据题意,得CE=3 m,∠BCE=30°,∠ACE=60°.在Rt△CBE中,tan30°= ,∴BE=CE·tan30°=3×(m).在Rt△CAE中,tan60°= ,∴AE=CE·tan60°=3×(m).∴AB=AE+BE=≈4×1.73=6.92(m)<8 m.因此可判断该保护物不在危险之内.232. 答:该船所在B处距离灯塔有浬.233. 解:在Rt△AED中,有AE=DE·cot60°=20×;在Rt△BFC中,有;∴BF=20×1.2=24;又EF=DC,∴AB= +6+24=30+11.53≈41.5(米).答:坝底宽约为41.5米.234. 解:过点C作AB的垂线,交点为D,设BD=x.在Rt△BCD中,∵∠CBD=45°,∴BD=CD=x.在Rt△ACD中,∵tanA= ,∠A=30°,∴( )x=1 000.∴x=500( )≈1 366(m).答:飞机再向前飞行1 366 m与地面控制点距离最近.235. 解:如图,作AD⊥BC,垂足为点D.在Rt△ADC中,AD=AC·sinC=8.在Rt△ADB中,AB= .236. 解:根据题意可知:∠BAD=45°,∠BCD=30°,AC=20 m.在Rt△ABD中,由∠BAD=∠BDA=45°,得AB=BD.在Rt△BDC中,由tan∠BCD=,得BC=BD.又BC-AB=AC,∴BD-BD=20,∴BD=≈27.3.∴古塔BD的高度约为27.3 m.237. 解:(1)在Rt△ACD中,∵cos∠CAD=,∠CAD为锐角,∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.∴∠B=90°-∠CAB=30°.(2)在Rt△ABC中,∵sin B=,∴AB==16.又cos B=,∴BC=AB·cos B=16×.238. 解:第一次观察到的影子长为5×cot45°=5(米);第二次观察到的影子长为5×cot30°=5 (米).两次观察到的影子长的差=5 -5(米).答:第二次观察到的影子比第一次长5 -5米.239. 解:如图,过点A作AD⊥BD于点D,∵∠EBA=60°,∠FCA=30°,∴∠ABC=∠BAC=30°.∴AC=BC=24,∠DAC=30°.∴AD=AC•cos30°=12 ≈20.78>20.答:货轮继续向西航行,没有触礁危险.240. 解:作CD⊥AB于D,由题意知:∠CAB=30°∠CBA=60°∠ACB=90°∴∠DCB=30°∴在Rt△ABC中,BC= AB=30在Rt△DBC中,CD=BCcos30°= =答:这条公路不经过该区域.241. 解:如图,作CD⊥AB于点D.在Rt△CDA中,AC=30m,∠CAD=180°-∠CAB=180°-120°=60°.∴CD=AC•sin∠C AD=30•sin60°=15 m.AD=AC•cos∠CAD=30•cos60°=15m.在Rt△CDB中,∵BC=70,BD 2=BC 2-CD 2,∴BD= =65m.∴AB=BD-AD=65-15=50m.答:A,B两个凉亭之间的距离为50m.242. 解:在Rt△ACD中,∠ACD=45°,AD=50,∴CD=AD•cot45°=50;在Rt△ABD中,∠B=30°,AD=50,∴BD=AD•cot30°=50 ;∴BC=BD-CD= -50≈36.6(m);答:河宽为36.6米.243. 解:延长过点A的水平线交CD于点E则有AE⊥CD,四边形ABDE是矩形,AE=BD=36∵∠CAE=45°∴△AEC是等腰直角三角形∴CE=AE=36在Rt△AED中,tan∠EAD=∴ED=36×tan30°=∴CD=CE+ED=36+12答:楼CD的高是(36+12 )米.244. 解:由题意得∠CAO=60°,∠CBO=45°,∵OA=1500×tan30°=1500×=500 ,OB=OC=1500,∴AB=1500-500 ≈634(m).答:隧道AB的长约为634m.245. 解:过点A作AE∥BD交DC的延长线于点E.则∠AEC=∠BDC=90度.∵∠EAC=45°,AE=BD=20,∴EC=20.∵tan∠ADB=tan∠EAD= ,∴AB=20•tan60°=20 ,CD=ED-EC=AB-EC=20 -20≈14.6(米).答:树高约为14.6米.246. 解:过点P作PC⊥AB,垂足为C. (1分)由题意,得∠PAB=30°,∠PBC=60°.∵∠PBC是△APB的一个外角,∴∠APB=∠PBC-∠PAB=30°. (3分)∴∠PAB=∠APB,(4分)故AB=PB=400. (6分)在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=400,∴PC=PB•sin60°=400× = 米. (10分)247. 解:如图,设光线FE影响到B楼的E处.作EG⊥FM于G,由题知:四边形GMNE是矩形,∴EG=MN=30米,∠FEG=30°,在Rt△EGF中,FG=EG×tan30°=MN×tan30°=30×=10 =17.32(米).则MG=FM-GF=20-17.32=2.68(米),因为DN=2,CD=1.8,所以ED=2.68-2=0.68(米),即A楼影子影响到B楼一楼采光,挡住该户窗户0.68米.248. 解:设OC=x海里,依题意得,BC=OC=x,AC= .(3分)∴AC-BC=10,即( )x=10,∴x= =5( +1),答:船与小岛的距离是5( +1)海里.(8分)249. 解:过B作BE⊥AD,交AD的延长线于点E.在Rt△BDE中,tan∠BDE= .∴BE=DE•tan∠BDE.在Rt△ABE中,tan∠BAE= .∴BE=AE•tan∠BAE.∴DE•tan∠BDE=AE•tan∠BAE.∴DE•tan60°=(DE+82)•tan30°.∴DE=(DE+82) ,即3DE=DE+82.∴DE=41.∴AC=BE=41 (米).∴BC=AE=41+82=123(米).250. 解:在Rt△ACD中,∵tan∠ACD= ,∴tan30°= ,∴= ,∴AD=3 m,在Rt△BCD中,∵tan∠BCD= ,∴tan45°= ,∴BD=9m,∴AB=AD+BD=3 +9(m).答:旗杆的高度是(3 +9)m.251. 解:∵在Rt△ADB中,∠BDA=45°,AB=3米,∴DA=3米,在Rt△ADC中,∠CDA=60°,∴tan60°= ,∴CA=3 .∴BC=CA-BA=(3 -3)米.答:路况显示牌BC是(3 -3)米.252. 解:过点P作PC⊥AB于C点,根据题意,得AB=18×=6(海里),∠PAB=90°-60°=30°,∠PBC=90°-45°=45°,∠PCB=90°,∴PC=BC在Rt△PAC中tan30°= =即,解得PC=( +3)海里,∵+3>6,∴海轮不改变方向继续前进无触礁危险.253. 解:过点M作直线AB的垂线MC,垂足为C,设CM=x海里,在Rt△AMC中,AC= x;在Rt△BMC中,BC= x由于AC-BC=AB得:x- x=14,解得:x=7 ,BC= x=7在Rt△BMC中,BM=2BC=14.答:灯塔B与渔船M的距离是14海里.254. 解:在Rt△DBC中,DB=3,∴BC=BD÷cos30°=2 ;在Rt△ABC中,BC=2 ,∠CAB=30°,∴AB=BC÷sin30°=4 .∵8>4 ,∴距离B点8米远的保护物不在危险区内.255. 解:作AB⊥CD交CD的延长线于点B,在Rt△ABC中,∵∠ACB=∠CAE=30°,∠ADB=∠EAD=45°,∴AC=2AB,DB=AB.设AB=x,则BD=x,AC=2x,CB=50+x,∵tan∠ACB=tan30°,∴AB=CB•tan∠ACB=CB•tan30°.∴x=(50+x)• .解得:x=25(1+ ),∴AC=50(1+ )(米).答:缆绳AC的长为50(1+ )米.256. 解:在直角△BCD中,sin∠CBD= ,∴CD=BC•sin∠CBD=30×sin60°=15 ≈25.95.∴CE=CD+AB=25.95+1.5=27.45≈27.5(米).答:此时风筝离地面的高度是27.5米.257. 解:过点A作BC的垂线,垂足为D点. (1分)由题意知:∠CAD=45°,∠BAD=60°,AD=60.在Rt△ACD中,∠CAD=45°,AD⊥BC,∴CD=AD=60. (3分)在Rt△ABD中,∵,(4分)∴BD=AD•tan∠BAD=60 . (5分)∴BC=CD+BD=60+60 (6分)≈163.9(m). (7分)答:这栋高楼约有163.9m. (8分)(本题其它解法参照此标准给分)258. 解:∵∠BFC=30°,∠BEC=60°,∠BCF=90°,∴∠EBF=∠EBC=30°.∴BE=EF=20米.在Rt△BCE中,BC=BE•sin60°=20× ≈17.3(米).答:宣传条幅BC的长是17.3米.259. 解:(1)正确画出示意图;(2)①在测点A处安置测倾器,测得此时M的仰角∠MCE=α;②在测点A与小山之间的B处安置测倾器(A、B与N在同一条直线上),测得此时山顶M的仰角∠MDE=β;③量出测倾器的高度AC=BD=h,以及测点A、B之间的距离AB=m.根据上述测量数据,即可求出小山的高度MN.260. 解:由题意知,DE=CB=10米.在Rt△ADE中,tan∠ADE= ,∵DE=10,∠ADE=40°,∴AE=DEtan∠ADE=10tan40°≈10×0.84=8.4,∴AB=AE+EB=AE+DC=8.4+1.5=9.9.答:旗杆AB的高为9.9米.261. 解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC•tan30°,BC=PC•tan45°.∵AC+BC=AB,∴PC•tan30°+PC•tan45°=100km,∴PC=100,∴PC=50(3- )≈50×(3-1.732)≈63.4km>50km.答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.262. 解:由矩形BCEF得到CE=BF,BC=EF,(2分)得到∠CAB=55°,(2分)得到BC=ACtan55°,(2分)BC=17.9米.(1分)答:两楼间距至少17.9米.263. 解:过点B作BD⊥AC于D,根据题意可得:EC⊥AC,FA⊥AC,∠ECB=60°,∠FAB=45°,∴∠BCD=30°,∠BAD=45°,在Rt△ABD中,AB=20(海里),∴BD=AB•sin45°=20× =10 (海里),在Rt△BCD中,∠BCD=30°,∴BC=2×10 =20 ≈28(海里),∴护渔舰需小时可以到达该商船所在的位置C处,∴×60=28(分钟),答:护渔舰约需28分钟就可到达该渔船所在的位置C处.264. 解:作CD⊥AB于D,依题意,AB=1000,∠DAC=30°,∠CBD=45°,设CD=x,则BD=x,Rt△ACD中,tan30°= = = ,整理得出:3x=1000 + x,(3- )x=1000 ,x= = =500( +1)≈1366米,即黑匣子C离海面约1366米.265. 解:∵两条水平线是平行的,∴∠B=30°,∠PAO=60°.∵PO=30,∠POA=90°,∴OB= =30 ,OA= =10 .∴AB=OB-OA=20 .266. 解:(1)在Rt△ABD中,AD=ABsin45°= ,(2分)∴在Rt△ACD中,AC= =2AD=8,即新传送带AC的长度约为8米.(4分)(2)结论:货物MNQP不需挪走.(5分)在Rt△ABD中,BD=ABcos45°=在Rt△ACD中,CD=ACcos30°= ∴CB=CD-BD=∵PC=PB-CB=5-( )=9- ≈2.2>2∴货物MNQP不需挪走.(8分)267. 解:(1)分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.∵在Rt△ABF中,AB=16米,∠B=60°,sin∠B= ,∴在矩形AFGD中,AF=16×=8 ,DG=8 米∴S △DCE= ×CE×DG= ×8×8 =32需要填方:150×32 =4800 (立方米);(2)在直角三角形DGC中,DC=16 米,∴GC= =24米,∴GE=GC+CE=32米,坡度i= = = .268. 解:(1)已知AB=6m,∠ABC=45°,∴AC=BC=AB•sin45°=6× =3 ,已知∠ADC=30°.∴AD=2AC=6 .答:调整后楼梯AD的长为6 m;(2)CD=AD•cos30°=6 ×=3 ,∴BD=CD-BC=3 -3 .答:BD的长为3 -3 (m).269. 解:如图,在△ABD中,∠A=45°,∠D=90°,AD=300∴AB= =300 ,BD=AD•tan45°=300,在△BCD中,∵∠BCD=60°,∠D=90°,∴BC= ,∴=100 .1号救生员到达B点所用的时间为=150 ≈210(秒)2号救生员到达B点所用的时间为≈191.7(秒)3号救生员到达B点所用的时间为=200(秒)∵191.7<200<210,∴2号救生员先到达营救地点B.270. 解:过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.∵AB=AC,∴CE= BC=0.5.在Rt△AEC和Rt△DFC中,∵tan78°= ,∴AE=EC×tan78°≈0.5×4.70=2.35.又∵sinα= = ,DF= •AE= ×AE≈1.007.∴李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11.∵0.05<0.11<0.20,∴他安装比较方便.271. 解:根据题意得:∠A=30°,∠PBC=60°所以∠APB=60°-30°,所以∠APB=∠A,所以AB=PB在Rt△BCP中,∠C=90°,∠PBC=60°,PC=450,所以PB=所以AB=PB=300 ≈520(米)答:A、B两个村庄间的距离520米.272. 解:易知四边形ABCD为矩形.∴CD=AB=1.5米.(1分)在等腰直角三角形ADE中,AD=DE÷tan45°=14.5-1.5=13米.(2分)在直角三角形ADF中,DF=AD•×tan55°.(4分)∴13+EF=13×1.4.∴EF=5.2≈5(米).(6分)273. 解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=50(m).在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴(m).∴BC=BD+CD= = (m).答:这栋楼约高136.6m.274. 解:在Rt△CEB中,sin60°= ,∴CE=BC•sin60°=10× ≈8.65m,∴CD=CE+ED=8.65+1.55=10.2≈10m,答:风筝离地面的高度为10m.275. 解:根据题意,有∠AOC=30°,∠ABC=45°,∠ACB=90°,所以BC=AC,于是在Rt△AOC中,由tan30°= ,得,解得AC= ≈27.32(海里),因为27.32>25,所以轮船不会触礁.276. 解:解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴=∵AB=CB=8∴BD=4,AD=12.∴=∴CD=4≈6.928>6.∴船继续向东航行无触礁危险.277. 解:如图,过点D作DF⊥AB,垂足为F,∵AB⊥BC,CD⊥BC,∴四边形BCDF是矩形,∴BC=DF,CD=BF,设AB=x米,在Rt△ABE中,∠AEB=∠BAE=45°,∴BE=AB=x,在Rt△ADF中,∠ADF=30°,AF=AB-BF=x-3,∴DF= = (x-3),∵DF=BC=BE+EC,∴(x-3)=x+15,解得x=12+9 ,答:塔AB的高度(12+9 )米.【解析】1.解:∵Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB=5;∴sinA= = .故选C.2.解:设小正方形的边长为1,则AB=4 ,BD=4,∴cos∠B= = .故选B.3.解:设Rt△ABC的两直角边分别为a、b,斜边为c,则sinA= ,cosB= .∴sinA=cosB.故选C.4.解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2 .∴cos∠ABC= = .故选B.5.解:∵点P(3,4),根据点的坐标的意义可知,∠α的对边是4,邻边为3,斜边为=5,则sinα的值为.故选B.6.解:由题意得,AO⊥BO,AO= AC=5cm,BO= BD=3cm,则tan =tan∠BAO= = .故选A.7.解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE= ,∴sin∠AOB= = = .故选B.8.解:如图,∵Rt△ABC中,∠C=90°,AB=5,BC=3,∴cosB= = .故选B.9.解:利用三角函数的定义可知tan∠A= .故选A.10.解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4.∴sinB= .故选C.11.解:过点A向BC引垂线,与BC的延长线交于点D.在Rt△ABD中,AD=2,BD=4,∴AB= =2 ,sin∠ABC= = .故选C.12.解:∵在Rt△ABC中,∠C=90°,AC=1,BC=2,∴AB= ,sinB= ,cosB= ,tanB= ,cotB=2.故选A.13.解:∵AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆∴△AEF∽△ABC∴,即cos∠BAC=∴sin∠BAC=∴在Rt△ABE中,BE=ABsin∠BAC=6 = .故选D.14.解:由勾股定理得,AB= = =5.由同角的余角相等知,∠BCD=∠A.∴cos∠BCD=cos∠A= = .故选D.15.解:A、错误,无法计算;B、错误,sin60°= ,2sin30°=2×=1;C、正确,符合互余两角的三角函数关系;D、错误,cos30°= >cos60°= .故选C.16.解:tanA= ,∵AC=2BC,∴tanA= .故选A.17.解:在△ABC中,∵∠C=90°,c=3b,∴cosA= = = .故选C.18.解:∵Rt△ABC∽Rt△DEF,∴∠E=∠ABC=60°,∴cosE=cos60°= .故选A.19.解:cot∠A= ,∴AC=BC•cotA=a•cotA,故选B.20.解:过点O作OM⊥AB于M,在直角△AOM中,OA=2.根据OC⊥AB,则AM= AB= ,所以cos∠OAM= ,则∠OAM=30°,同理可以求出∠OAC=45°,当AB,AC位于圆心的同侧时,∠BAC的度数为45-30=15°;当AB,AC位于圆心的异侧时,∠BAC的度数为45+30=75°.故选C.21.解:连接BD,由AB是直径得,∠ADB=90°.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故选B.22.解:利用互为余角的三角函数关系式求解,只有A不一定成立.故选A.23.解:在直角△ABC中,根据勾股定理可得:AB= = =3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD.∴sin∠ACD=sin∠B= = ,故选A.24.解:如图,过点A作AD⊥BC于D.在△ABD中,∵∠ADB=90°,AD=3,BD=4,∴AB=5,∴sinB= = ,故A正确,不符合题意;cosB= = ,故B正确,不符合题意;tanB= = ,故C正确,不符合题意;∵tan∠BAD= = ,∠A<∠BAD,∴tanA<,故D错误,符合题意.故选D.25.解:∵∠C=90°,AB=13,BC=5,∴AC= =12,∴cosA= = ,故选:D.26.解:根据题意,由三角函数的定义可得sinA= ,则sinA= ;故选B.27.解:在Rt△ABC中,设a=2m,则c=3m.根据勾股定理可得b= m.根据三角函数的定义可得:tanB= = .故选A.28.解:∵在△ABC中,∠C=90°,tanA= ,∴设BC=5x,则AC=12x,∴AB=13x,sinB= = .故选B.29.解:在△ABC中,∠C=90°,∵tanA= ,∴设BC=x,则AC=3x.故AB= x.sinB= = = .故选D.30.解:∵cos40°= ,∴BC=AB•cos40°=mcos40°.故选B.31.解:∵关于x的方程(b+c)x 2-2ax+c-b=0有两个相等的实根,∴(-2a) 2-4(b+c)(c-b)=0,化简,得a 2+b 2-c 2=0,即a 2+b 2=c 2.又∵sinB•cosA-cosB•sinA=0,∴tanA=tanB,故∠A=∠B,∴a=b,所以△ABC的形状为等腰直角三角形.故选D.32.解:在Rt△ABC中,∠C=90°,a=4,b=3,∴c= =5,∴cosA= = ,故选B.33.解:∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,cosB= = .故选B.34.解:∵点P的坐标为(3,4),∴OP=5.∴sinα= .故选B.35.解:设AD=x,则CD=x-3,在直角△ACD中,(x-3) 2+ =x 2,解得,x=4,∴CD=4-3=1,∴sin∠CAD= = ;故选A.36.解:在Rt△ABC中,∠C=90°,AB=4,BC=1,由勾股定理可知AC= ,则cosA= = .故选A.37.解:∵Rt△ABC中,∠C=90°,b= c,∴sinB= = = .故选A.38.解:由点A(3,0),点B(0,-4),∴tan∠OAB= = .故选C.39.解:根据锐角三角函数的概念知:把Rt△ABC各边的长度都扩大2倍,那么它们的余弦值不变.故选A.40.解:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.41.解:原式=3×= .故选A.42.解:A、经过平移,对应点所连的线段平行且相等,对应线段平行且相等,AD∥BE,故正确;B、由菱形的性质知,对角线互相垂直,所以有AC⊥BD,故正确;C、∵△ABC≌△CED,∴AB=BC=CE=DE=CD,∠ACB=∠ECD=60°,∴∠ACD=180°-∠ACB-∠ECD=60°,∴△ACD也是等边三角形,有AD=AB=BC=CD,∴四边形ADCB是菱形,∴S ABCD=2S △ABC=2××AB×BC×sin60°=2 ,故错误;D、∵AD∥BE,AB=DE,∴四边形ABED是等腰梯形,故正确.故选C.43.解:因为cos30°= ,所以C正确.故选C.44.解:根据特殊角的三角函数值可知:sin60°= .故选C.45.解:cos60°= .故选A.46.解:∵△ABC是等腰直角三角形,∠C=90°,∴∠A=45°,sinA= .故选B.47.解:sin30°= .故选B.48.解:sin45°= .故选B.49.解:∵关于x的方程x 2- +cosα=0有两个相等的实数根,∴△=0,即-4×1×cosα=0,∴cosα= ,∴α=60°.故选C.50.解:原式= + - = .故选C.51.解:∵sin45°= ,cos45°= ,∴sin45°+cos45°= + = .故选A.52.解:∵sin30°= ,cot45°=1,∴sin30°•cot45°= ×1= .故选A.53.解:∵∠ACB=90°,BC=2,AB=4,∴∠A=30°,∴∠B=90°-30°=60°,∴tanB=tan60°= ,tanA=tan30°= ,cosB=cos60°= ,sinA=sin30°= .故选A.54.解:∵sin60°= ,∴a-10°=60°,即a=70°.故选C.55.解:原式=5×+2×-3= .故选B.56.解:∵α为锐角,tan(90°-α)= ,∴90°-α=60°,∴α=30°.故选A.57.解:∵tan(α+20°)=1,∴tan(α+20°)= ,∵α为锐角,∴α+20°=30°,α=10°.故选D.58.解:∵∠A为锐角,sinA= ,∴∠A=30°.故选A.59.解:∵sinA= ,∴∠A=30°;又∵tanB= ,∴∠B=60°.∴∠C=180°-30°-60°=90°.故选A.60.解:∵|sinA- |+(cosB- ) 2=0,∴sinA= ,cosB= ,∴∠A=30°,∠B=60°,则∠C=180°-30°-60°=90°.故选D.61.解:∵正弦函数在30°到90°中是单调递增的,且sin30°= ,sin90°=1,∴<sinA<1.故选D.62.解:如图,过A作AD⊥BC,∵AB=AC,∴BD=DC= BC=3,在Rt△ABD中,AB=4,BD=3,∴cosB= = .故选C.63.解:在直角三角形中,根据cosB= ,求得AB= .再根据中心对称图形的性质得到:BB′=2AB= .故选D.64.解:如图,作底边上的高AD.∠B=30°,AB=6cm,AD为高,则AD=ABsinB=ABsin30°=3,BD=ABcosB=6×=3 .∴BC=2BD=6 ,S △ABC= = ×3×6 =9 .故选B.65.解:如图,过A点作AC⊥x轴于点C,∵∠AOB=30°,∴AC= OA,∵OA=6,∴AC=3,在Rt△ACO中,OC 2=AO 2-AC 2,∴OC= =3 ,∴A点坐标是:(3 ,3),设反比例函数解析式为y= ,∵反比例函数的图象经过点A,∴k=3×3 =9 ,∴反比例函数解析式为y= .故选B.66.解:在Rt△ABC中,cosB= ,∴BC=AB•cosB=7cos35°.故选C.67.解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC= = ,∴= ,解得:CD=3,BD=5,∴BC=4.故选A.68.解:作DE⊥AB于E点.∵tan∠DBA= = ,∴BE=5DE,∵△ABC为等腰直角三角形,∴∠A=45°,∴AE=DE.∴BE=5AE,又∵AC=6,∴AB=6 .∴AE+BE=5AE+AE=6 ,∴AE= ,∴在等腰直角△ADE中,由勾股定理,得AD= AE=2.故选B.69.解:在Rt△ABC中,∠C=90°,∴sinA=∴c= .故选A.70.解:∵∠C=30°,∠BAC=105°,∴∠BAD=∠ABD=45°.在Rt△ADB中,BD=AD,在Rt△ADC中,CD=cot∠CAD= AD,∴BC=(1+ )AD=2+2 .解得:AD=2.故选B.71.解:设CD=x,则AC= = x,∵AC 2+BC 2=AB 2,AC 2+(CD+BD) 2=AB 2,∴( x) 2+(x+2) 2=(2 ) 2,解得,x=1,∴AC= .故选A.72.解:∵cosB= ,∴BC=ABcosB=10cos50°.故选B.73.解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠A=∠BCD.∴tanA= =tan∠BCD= ,∴CD 2=AD•BD=4,∴CD=2.故选A.74.解:作CD⊥AB于点D.由题意知,∵sinA= ,∴CD=ACsinA=ACsin30°=2 ×= ,∵cosA= ,∴AD=ACcos30°=2 ×=3.∵tanB= = ,∴BD=2.∴AB=AD+BD=2+3=5.故选B.75. 本题考查用三角函数解决实际问题的能力,难度中等.因为,解得,故选A.76. 本题考查三角函数的计算与推理,难度中等.,AB=4,.由勾股定理可得,∵AB×斜边上的高=AC×BC,,故选B.77. 本题直接考查了锐角三角函数的定义。
人教新课标版初中九下28.1锐角三角函数(3)同步练习
28.1锐角三角函数(3)● 双基演练1.求值:sin 230°+cos 230°=______.2.已知∠A 是△ABC 的内角,且sin (2B C )2,则tanA=_______.3.∠B 是Rt △ABC 的一个内角,且2,则cos 2B =________.4.在△ABC 中,∠A ,∠B 都是锐角,且sinA=12,2,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .不能确定5.已知α是锐角,且tan α,那么α的范围是( )A .60°<α<90°B .45°<α<60°C .30°<α<45°D .0°<α<30° 6.下列说法正确的是( )A .tan80°<tan70°B .sin80°<sin70°C .cos80°<cos70°D .以上都不对 7.计算:(1)│-3│+2cos45°-)0; (2)2cos45°+sin60°-4sin30°8.在Rt △ABC 中,∠C=90°,sinA=2,则方程tanAx 2-2x+tanB=0的根是什么?● 能力提升9.若AD 为△ABC 的高,AD=1,BD=1,,则∠BAC 等于( ) A .105°或15° B .15° C .75° D .105° 10.如图1所示,AB 是⊙O 的直径,弦AC 、BD 相交于E ,则C D A B等于( )A .tan ∠AEDB .cot ∠AEDC .sin ∠AED D .cos ∠AED(1) (2)11.如图2,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A ′的位置,若,tan•∠BOC=12,则点A ′的坐标为______.聚焦中考12.(2008年•南宁市)如图1,正三角形的内切圆半径为1,那么三角形的边长为:(A )2 (B )32 (C )3 (D )3图113.(2008年龙岩市)已知α为锐角,则m=sin α+cos α的值( )A .m >1B .m=1C .m <1D .m≥114.(2008襄樊市)在正方形网格中,△ABC 的位置如图2所示,则cos ∠B 的值为( ) A .12B.2C.2D.315.(2008年义乌市)计算:6045-+;答案:1.1 23.24.C 5.B 6.C7.(1)2)2-328.x 1=x 2=39.A 10.D11.(35,45) 12.B 13.A 14.B6045-+=222-+ =2.5。
人教版九年级数学下册 28.1 锐角三角函数 练习及答案
人教版九年级数学下册 第28章 锐角三角函数 28.1 锐角三角函数1. 在Rt △ABC 中,若∠ACB=90°,AC =2,BC =3,则下列各式中成立的是( )A .sinB =23 B .cos B =23C .tan B =23D .sin A =232. 在△ABC 中,∠C=90°,AB =13,BC =5,则sinA 的值是( ) A.1312 B. 135 C.125 D.513 3.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则∠α的正弦值为( )A. 125 B.1312 C. 135 D.5124. 在Rt △ABC 中,若各边长度都扩大到原来的2倍,则锐角B 的正切值( ) A .扩大到原来的4倍 B .缩小到原来的12C .扩大到原来的2倍D .没有变化5. 如图,AB 为⊙O 的直径,点D 为BC ︵的中点,AD 交BC 于点M ,点E 为AM 的中点,若AB =5,BC =4,则tan ∠CEM 的值为( )A.43B.35C. 45D.346. 已知Rt △ABC ∽Rt △A ′B ′C ′,∠C=∠C ′=90°,且AB=2A ′B ′,则sinA 与sinA ′的关系为( )A.sinA=2sinA ′B.sinA=sinA ′C.2sinA=sinA ′D.不确定 7. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点,且AE∶BE =4∶1,EF ⊥AC 于点F ,连接BF ,则tan ∠CFB 的值是( )A.33B.233C.533D .5 38. 如图,已知Rt △ABC 中,∠C=90°,AC=4,tanA=21,则BC 的长是( )A. 45B. 25C.6D. 29.如图,△ABC 的三个顶点分别在正方形网格的格点上,则tanA 的值是( ) A. 65B.56 C.3102 D.1010310. 如果在△ABC 中,sinA=cosB=22,那么下列最确切的结论是( ) A.△ABC 是等腰直角三角形 B.△ABC 是等腰三角形 C.△ABC 是直角三角形 D.△ABC 是锐角三角形 11. 在Rt △ABC 中,∠C=90°,a=1,c=2,那么sinA= .12. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 .13. 在△ABC 中,∠A=75°,sinB=23,则tanC = .14. 计算:(1) (1+sin 40°)(1-cos 50°)+sin 240=________; (2) (4cos 30°sin 60°)2+(-2)-1-( 2 017-2 018)0=________. 15. 已知正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP =1,则tan ∠BPC 的值是________.16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tan B 的值为________.17. 如图,在平面直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA =3,AB =1,则点A 1的坐标为________.18. 计算下列各式的值:(1) cos 60°-tan 60°+cos 30°+2sin 245°;(2) sin 30°sin 60°-cos 45°-(1-cos 30°)2-tan 45°.19. 如图,在四边形ABCD 中,∠A=∠C =90°,∠ABC=30°,AD =3,BC =15,求tan ∠ABD 的值.20. 如图,在Rt △ABC 中,∠ACB =90°,sin B =35,D 是BC 上一点,DE ⊥AB 于点E ,CD =DE ,AC +CD =9,求BC 的长.答案:1—10 CBCDA BCDBA11. 1212.1213. 1 14. (1) 1 (2) 152 15. 2或2316. 2317. ⎝ ⎛⎭⎪⎪⎫32,32 18.(1) 32-32(2)332+2-2 19. 解:如图,延长CD ,BA 交于点E.∵∠C =90°,∠ABC =30°,∴∠E =60°.在Rt △ADE 中,AD =3,∠E =60°, ∠DAE =90°,∴tan E =AD AE ,即tan 60°=3AE =3,∴AE = 3.在Rt △BCE 中,BC =15,∠ABC =30°,∴cos ∠ABC =BCBE,即cos 30°=15BE =32,∴BE =103,∴AB =BE -AE =103-3=93,∴tan ∠ABD =AD AB =393=39.20. 解:在Rt △BED 中,sin B =35,可设DE =3k ,则BD =5k ,CD =3k ,BC=8k ,BE =4k.∴tan B =3k 4k =34.在Rt △ACB 中,AC =BC·tan B =8k·34=6k.∵AC +CD =9,∴6k +3k =9,即k =1,∴BC =8k =8.。
2022-2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)
2022-2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.计算4cos230°的值()A.3B.1C.D.2.如图,在Rt△ABC中,把锐角A的对边与邻边的比叫做∠A的正切,记作tan A,且a、b、c分别是∠A、∠B、∠C的对边,则tan A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin A的值为()A.B.C.D.4.已知α为锐角,且,那么α的正切值为()A.B.C.D.5.已知sin a>,那么锐角a的取值范围是()A.60°<a<90°B.0°<a<60°C.45°<a<90°D.0°<a<30°6.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8二.填空题7.已知α是锐角,,则α=;cosα=.8.若sin65°=,则cos25°=.9.如果(α、β为锐角),则α=,β=.10.Rt△ABC中,∠C=90°,tan A=2,则cos A的值为.11.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若a2=bc,则sin B 的值为.12.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tan B的值是.13.已知在△ABC中,AB=7,AC=8,BC=5,则sin C=.14.直角坐标系内,点A与点B(sin60°,)关于y轴对称,如果函数的图象经过点A,那么k=.15.若锐角x满足tan2x﹣(+1)tan x+=0,则x=.三.解答题16.计算:cos60°﹣sin245°+30°+cos30°﹣sin30°.17.计算:(1)﹣4cos30°+20220;(2)已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.18.计算:(1)cos45°+3tan30°﹣2sin60°;(2)tan45°﹣4sin30°•cos230°.19.在Rt△ABC中,∠ACB=90°,∠A、∠B、∠C的对边分别是a、b、c,(1)a=5,c=2a,求b、∠A.(2)tan A=2,S△ABC=9,求△ABC的周长.20.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.参考答案一.选择题1.解:4cos230°=4×()2=4×=3,故选:A.2.解:tan A==,故选:A.3.解:∵Rt△ABC中,∠C=90°,AB=5,BC=4,则sin A==,故选:C.4.解:在Rt△ABC中,∠C=90°,∠A=α,∵sin A=sinα==,∴设BC=5x,AB=13x,∴AC===12x,∴tan A===,即α的正切值为.故选:A.5.解:∵sin60°=,sinα>,一个锐角的正弦值随着锐角的增大而增大,∴α>60°,∵α为锐角,∴60°<α<90°,故选:A.6.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题7.解:∵tanα﹣=0,∴tanα=,∵α是锐角,∴α=60°,∴cos60°=,故答案为:60°;.8.解:∵65°+25°=90°,∴cos25°=sin65°=,故答案为:.9.解:∵|1﹣tanα|≥0,≥0,∴当(α、β为锐角),则tanα=1,sinβ=.∴α=45°,β=30°.故答案为:45°,30°.10.解:在Rt△ABC中,∠C=90°,得AB为斜边.由tan A==2,得BC=2AC.在Rt△ABC中,∠C=90°,由勾股定理,得AB==AC.cos A===,故答案为:.11.解:∵a2=bc,即b=,∴sin B====()2=sin2A,又∵sin2A+sin2B=1,∴sin2B+sin B﹣1=0,∴sin B=(取正值),故答案为:.12.解:在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,不妨设BC=k,则AB=3k,由勾股定理得,AC==2k,所以tan B==,故答案为:2.13.解:过点A作AD⊥BC于D,如图所示:设CD=x,则BD=BC﹣CD=5﹣x,在Rt△ABD中,由勾股定理得:AD2=AB2﹣BD2,在Rt△ACD中,由勾股定理得:AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即:72﹣(5﹣x)2=82﹣x2,解得:x=4,∴CD=4,∴CD=AC,∴∠CAD=30°,∴∠C=90°﹣30°=60°,∴sin C=sin60°=.故答案为:.14.解:∵sin60°=,∴点B(,).根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知:点A为(﹣,),∵函数的图象经过点A,∴k=×=.15.解:∵tan2x﹣(+1)tan x+=0,∴(tan x﹣1)(tan x﹣)=0,∴tan x=1或,当tan x=1时,x=45°;当tan x=时,x=60°.故x=45°或60°.三.解答题16.解:cos60°﹣sin245°+30°+cos30°﹣sin30°=﹣()2+×()2+﹣=﹣+×+﹣=﹣++﹣=﹣.17.解:(1)原式=|1﹣|﹣4×+1=﹣1﹣2+1=﹣;(2)∵sin60°=,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα+tanα+()﹣1=2﹣4×+1+3=4.18.解:(1)原式=+3×﹣2×=+﹣=;(2)原式=1﹣4××()2=1﹣2×=1﹣=﹣.19.解:(1)∵a=5,c=2a=10,∴b===5,∵sin A===,∴∠A=30°;(2)∵tan A==2,∴a=2b,∵S△ABC=9,∴=9,∴=9,解得:b=3(负数舍去),即a=6,由勾股定理得:c===3,∴△ABC的周长为a+b+c=6+3+3=9+3.20.解:(1)过点D作DH⊥AB,垂足为点H,∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=5,∵,∴,∴,即CD=;(2),∵BD=2DE,∴,∴.。
2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)
2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。
2019最新九年级数学下册 第二十八章 锐角三角函数 28.1 锐角三角函数 28.1.2 余弦和正切同步练习
课时作业(十七)[28.1 第2课时 余弦和正切]一、选择题1.2017·哈尔滨在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A.154 B.14 C.1515 D.417172.2017·金华在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tanA 的值是( ) A.34 B.43 C.35 D.453.如图K -17-1,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( )图K -17-1A.34B.43C.35D.454.2017·宜昌△ABC 在网格中的位置如图K -17-2所示(每个小正方形的边长都为1),AD ⊥BC 于点D ,下列选项中,错误..的是( )图K -17-2A .sin α=cos αB .tanC =2C .sin β=cos βD .tan α=15.如图K -17-3,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为( )图K -17-3A .4B .2 5 C.181313 D.1213136.如图K -17-4是教学用的直角三角板,边AC 的长为30 cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为( )图K -17-4A .30 3 cmB .20 3 cmC .10 3 cmD .5 3 cm7.如图K -17-5,在Rt △ABC 中,∠B =90°,cosA =1213,则tanA 的值为( )链接听课例1归纳总结图K -17-5A.125 B.1312 C.1213 D.5128.在Rt △ABC 中,∠C =90°,则tanA·tanB 的值一定( ) A .小于1 B .不小于1 C .大于1 D .等于19.如图K -17-6,在△ABC 中,∠BAC =90°,AB =AC ,D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为( )图K -17-6A.13B.2-1 C .2- 3 D.14 二、填空题10.在Rt △ABC 中,∠C =90°,tanA =43,BC =8,则△ABC 的面积为________.11.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sinA =32;②cosB =12;③tanA =33;④tanB = 3.其中正确的结论有________(只需填上正确结论的序号). 12.如图K -17-7所示,在平面直角坐标系中,已知点A 的坐标为(2,0),点B 的坐标为(0,4),且∠1=∠2,则tan ∠OCA =________.图K -17-713.如图K -17-8,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tanD =________.链接听课例2归纳总结图K -17-8三、解答题14.如图K -17-9,在Rt △ABC 中,∠C =90°,tanA =23,求sinA 和cosA 的值.链接听课例1归纳总结图K -17-915.如图K -17-10,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB 的值.图K -17-1016.如图K -17-11,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,记∠CAD =α.(1)试写出α的三个三角函数值; (2)若∠B =α,求BD 的长.图K -17-1117.如图K -17-12,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,且AB =5,BC =3. (1)求sin ∠BAC 的值;(2)如果OE ⊥AC ,垂足为E ,求OE 的长; (3)求tan ∠ADC 的值.链接听课例2归纳总结图K -17-121.2018·眉山如图K -17-13,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD =________.图K -17-132.阅读理解如图K -17-14,定义:在Rt △ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作cot α, 即cot α=角α的邻边角α的对边=ACBC .根据上述角的余切定义,解答下列问题:(1)cot30°=________;(2)已知tanA =34,其中∠A 为锐角,试求cotA 的值.图K-17-14详解详析[课堂达标]1.[解析] A ∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC =42-12=15,则cosB =BC AB =154.故选A.2.[解析] A 在Rt △ABC 中,根据勾股定理,得AC =AB 2-BC 2=52-32=4,再根据正切函数的定义,得tanA =BC AC =34.3.[解析] D 由勾股定理得OA =32+42=5,所以cos α=45.故选D.4.[解析] C sin α=cos α=22 2=22,tanC =21=2,sin β=cos(90°-β),tan α=1.故选C.5.[解析] A ∵cosB =23,∴BC AB =23.∵AB =6,∴BC =23×6=4.故选A.6.[解析] C BC =AC·tan∠BAC =30×33=10 3(cm). 7.[解析] D 由Rt △ABC 中,∠B =90°,cosA =1213,设AC =13a ,AB =12a ,由勾股定理,得BC =5a ,则tanA =BC AB =512.8.[解析] D tanA·tanB=a b ·ba=1.9.[解析] A ∵在△ABC 中,∠BAC =90°, AB =AC ,∴∠ABC =∠C =45°,BC =2AC. 又∵D 为边AC 的中点,∴AD =DC =12AC.∵DE ⊥BC 于点E ,∴∠CDE =∠C =45°,∴DE =EC =22DC =24AC ,∴tan ∠DBC =DEBE=24AC 2AC -24AC =13. 10.24 11.②③④ 12.[答案] 2[解析] ∵∠1=∠2,∠1+∠OCA =∠2+∠BAO =90°,∴∠OCA =∠BAO. ∵A(2,0),B(0,4),∴tan ∠OCA =tan ∠BAO =42=2.13.[答案] 2 2[解析] 如图,连接BC.∵AB 是⊙O 的直径, ∴∠ACB =90°. ∵AB =6,AC =2,∴BC =AB 2-AC 2=62-22=4 2. 又∵∠D =∠A ,∴tanD =tanA =BC AC =4 22=2 2.14.解:∵tanA =23=BCAC ,故设BC =2k ,AC =3k ,∴AB =BC 2+AC 2=(2k )2+(3k )2=13k ,∴sinA =BC AB =213=21313,cosA =AC AB =313=31313.15.解:在Rt △ACD 中,CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =35+45=75.16.解: (1)∵CD =1,AC =2,∴AD =AC 2+CD 2=5,∴sin α=CD AD =55,cos α=AC AD =2 55,tan α=12.(2)∵∠B =α,∴tanB =tan α=12.∵tanB =ACBC ,∴BC =AC tanB =212=4.∵CD =1,∴BD =BC -CD =3.17.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°. ∵AB =5,BC =3,∴sin ∠BAC =BC AB =35.(2)∵OE ⊥AC ,O 是⊙O 的圆心, ∴E 是AC 的中点,∴OE =12BC =32.(3)∵AC =AB 2-BC 2=4,∴tan ∠ADC =tan ∠ABC =AC BC =43.[素养提升] 1.[答案] 2[解析] 如图,连接BE.∵四边形BCEK 是正方形,∴KF =CF =12CK ,BF =12BE ,CK =BE ,BE ⊥CK ,∴BF =CF.根据题意,得AC ∥BK , ∴△ACO ∽△BKO ,∴KO ∶CO =BK ∶AC =1∶3, ∴KO ∶KF =1∶2,∴KO =OF =12CF =12BF.在Rt △OBF 中,tan ∠BOF =BFOF=2.∵∠AOD =∠BOF , ∴tan ∠AOD =2. 故答案为:2. 2.解:(1) 3(2)∵tanA =∠A 的对边∠A 的邻边=34,∴cotA =∠A 的邻边∠A 的对边=43.。
人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案
人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案任务一 求锐角三角函数值子任务1 利用参数法求锐角三角函数值母题1 如图,在Rt △ABC 中,∠C=90°,BC=3AC ,则tan B=( )A .13B .3C .√1010 D .3√1010变式练1:在直角三角形ABC 中,若2AB=AC ,则cos C 的值为( )A .12或2√35B .12或2√55 C .√32或2√55 D .√32或2√35子任务2 构造直角三角形求锐角三角函数值母题2 如图,已知钝角三角形ABC ,点D 在BC 的延长线上,连接AD ,若∠DAB=90°,∠ACB=2∠D ,AD=2,AC=32,求tan D 的值.变式练2:如图,△ABC与△BDC均为直角三角形,若∠ACB=30°,∠DBC=45°,求∠ADB的正切值.母题3如图,在△ABC中,CA=CB=4,cos C=14,则sin B的值为()A.√102B.√153C.√64D.√104变式练3:如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC.若tan B=53,则tan∠CAD的值为.子任务3利用等角转换法求锐角三角函数值母题4如图,在半径为3的☉O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=()A.2√2B.√24C.13D.2√23【关键点拨】变式练4:如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=1∠BAC,求sin∠BPC.2子任务4利用网格求锐角三角函数值母题5如图,这是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是.【关键点拨】变式练5:如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.√1313B.√66C.√2613D.√2626子任务5在折叠问题中求锐角三角函数值母题6如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D 处,EF为折痕,若AE=3,则sin∠BFD的值为.【关键点拨】变式练6:直角三角形纸片ABC,两直角边BC=4,AC=8,现将△ABC纸片按图中方式折叠,使点A 与点B重合,折痕为DE,则tan∠CBE的值是()A.12B.34C.1D.43任务二 由一个锐角的三角函数值求三角形的边长母题7 在Rt △ABC 中,∠C=90°,sin A=35,AC=8 cm,则BC 的长度为( )A .3 cmB .4 cmC .5 cmD .6 cm变式练7:已知∠A 是锐角,sin A=35,则cos A 的值为( )A .35B .45C .34D .54任务三 由一个锐角的三角函数值求三角形的面积母题8 已知△ABC 中,tan B=23,BC=6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD=2∶1,则△ABC 面积的所有可能值为 .变式练8:在△ABC 中,AB=3√6,AC=6,∠B=45°,则BC= .任务四 锐角三角函数的探究问题母题9 如图1,在Rt △ABC 中,以下是小亮探究asinA 与bsinB 之间关系的方法:∵sin A=a c ,sin B=b c , ∴c=a sinA ,c=bsinB ∴asinA =bsinB .根据你掌握的三角函数知识,在图2的锐角三角形ABC 中,探究asinA ,bsinB ,csinC 之间的关系,并写出探究过程.图1 图2变式练9:把(sin α)2记作sin 2α,根据图完成下列各题:图1图2(1)如图1,sin 2A 1+cos 2A 1= ,sin 2A 2+cos 2A 2= sin 2A 3+cos 2A 3= .(2)观察上述等式后猜想:在Rt △ABC 中,∠C=90°,总有sin 2A+cos 2A= . (3)如图2,在Rt △ABC 中证明(2)题中的猜想.(4)已知在△ABC 中,∠A+∠B=90°,且sin A=1213,求cos A 的值.参考答案母题1 A 提示:在Rt △ABC 中,∠C=90°,BC=3AC∴tan B=AC BC =AC 3AC =13.故选A .变式练1 C 提示:①当AC 为直角边时∵2AB=AC∴BC=√AB 2+AC 2=√5AB∴cos C=AC BC =2AB √5AB =2√55;②当AC 为斜边时 ∵2AB=AC∴BC=√AC 2-AB 2=√3AB∴cos C=BC AC =√3AB 2AB=√32. 综上,cos C=2√55或√32. 故选C .母题2 解:∵∠ACB=∠D+∠CAD ,∠ACB=2∠D∴∠CAD=∠D∴CA=CD. ∵∠DAB=90°∴∠B+∠D=90°,∠BAC+∠CAD=90° ∴∠B=∠BAC ∴AC=CB∴BD=2AC=2×32=3. 在Rt △ABD 中,∵∠DAB=90°,AD=2∴AB=√32-22=√5∴tan D=AB AD =√52.变式练2解:如图,过点A 作DB 延长线的垂线,垂足为点E 则∠E=90°,∠ABE=45°,AE=BE.设AE=BE=x ,则AB=√2x ,BC=√6x ,BD=CD=√3x∴DE=√3x+x ,∴tan ∠ADB=AE DE =(√3+1)x =√3+1=√3-12.母题3 D 提示:如图,过点A 作AD ⊥BC ,垂足为D在Rt △ACD 中,CD=CA ·cos C=1∴AD=√AC 2-CD 2=√15.在Rt △ABD 中,BD=CB-CD=3,AD=√15.∴AB=√BD 2+AD 2=2√6.∴sin B=AD AB =√104.故选D . 变式练3 15 提示:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E.在Rt △BAD 中,tan B=AD AB =53. 可设AD=5x ,则AB=3x.∵∠CDE=∠BDA ,∠CED=∠BAD ∴△CDE ∽△BDA∴CE AB =DE AD =CD BD =12 ∴CE=32x ,DE=52x ∴AE=AD+DE=152x ∴在Rt △AEC 中,tan ∠CAD=CE AE =15.故答案为15.母题4 A 提示:如图,连接BC.∵AB 是直径,∴∠ACB=90°. ∵☉O 的半径为3,∴AB=6 ∴BC=√AB 2-AC 2=√62-22=4√2∴tan D=tan A=BC AC =4√22=2√2. 故选A .变式练4 解:如图,作AD ⊥BC 于点D.∵AB=AC=5,BC=8∴BD=CD=4,∠BAD=12∠BAC. ∵∠ADB=90°,∴sin ∠BAD=BD AB =45.又∵∠BPC=12∠BAC∴∠BPC=∠BAD ∴sin ∠BPC=45. 母题5 2 提示:如图,过点Q 作QC ∥BA ,连接PC∴∠QMB=∠CQP. 由题意得CQ 2=22+22=8 PC 2=42+42=32 PQ 2=22+62=40∴PC 2+CQ 2=PQ 2∴△PCQ 是直角三角形 ∴∠PCQ=90°∴tan ∠CQP=PC CQ =√22√2=2∴tan ∠QMB=tan ∠CQP=2. 故答案为2.变式练5 D 提示:如图,延长AC 到点D ,连接BE 交CD 于点O∴BE ⊥CD ,AB=√22+32=√13,OB=12BE=12√12+12=√22∴sin ∠BAC=OB AB =√22√13=√2626. 故选D .母题6 13 提示:∵在△ABC 中,∠ACB=90°,AC=BC=4∴∠A=∠B.由折叠的性质得到△AEF ≌△DEF∴∠EDF=∠A ∴∠EDF=∠B∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180° ∴∠CDE=∠BFD. 又∵AE=DE=3∴CE=4-3=1.在直角△ECD 中,sin ∠CDE=CEED =13∴sin ∠BFD=13. 故答案为13.变式练6 B 提示:根据题意,BE=AE.设BE=x ,则CE=8-x. 在Rt △BCE 中,x 2=(8-x )2+42 解得x=5∴CE=8-5=3∴tan ∠CBE=CE CB =34.故选B .母题7 D 提示:∵sin A=BCAB =35∴设BC=3x ,AB=5x. 又∵AC 2+BC 2=AB 2∴82+(3x )2=(5x )2解得x=2或x=-2(舍去)∴BC=3x=6 cm . 故选D .变式练7 B 提示:∵sin 2A+cos 2A=1∴cos A=√1−(35) 2=45. 故选B .母题8 8或24 提示:如图1所示∵BC=6,BD ∶CD=2∶1∴BD=4.∵AD ⊥BC ,tan B=23∴AD BD =23∴AD=23BD=83∴S △ABC =12BC •AD=12×6×83=8. 如图2所示∵BC=6,BD ∶CD=2∶1,∴BD=12.∵AD ⊥BC ,tan B=23,∴AD BD =23,∴AD=23BD=8 ∴S △ABC =12BC •AD=12×6×8=24. 综上所述,△ABC 面积的所有可能值为8或24. 故答案为8或24.图1 图2变式练8 3√3+3或3√3-3 提示:①当△ABC 为锐角三角形时 过点A 作AD ⊥BC 于点D ,如图1.图1∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3,∴BC=BD+CD=3√3+3. ②当△ABC 为钝角三角形时过点A 作AD ⊥BC 交BC 延长线于点D ,如图2.图2∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3∴BC=BD-CD=3√3-3.综上,BC 的长为3√3+3或3√3-3.故答案为3√3+3或3√3-3.母题9 解:a sinA =b sinB =c sinC .理由如下:如图,过点A 作AD ⊥BC ,过点B 作BE ⊥AC在Rt △ABD 中,sin B=AD c ,即AD=c sin B 在Rt △ADC 中,sin C=AD b ,即AD=b sin C∴c sin B=b sin C ,即b sinB =c sinC 同理可得a sinA =c sinC则a sinA =b sinB =c sinC .变式练9 解:(1)1;1;1 提示:sin 2A 1+cos 2A 1=122+√322=14+34=1 sin 2A 2+cos 2A 2=1√22+1√22=12+12=1 sin 2A 3+cos 2A 3=352+452=925+1625=1.故答案为1;1;1.(2)1.(3)在题图2中,∵sin A=a c ,cos A=b c ,且a 2+b 2=c 2 则sin 2A+cos 2A=a c 2+b c 2=a 2c 2+b 2c 2=a 2+b 2c 2=c 2c 2=1 即sin 2A+cos 2A=1.(4)在△ABC 中,∠A+∠B=90°,∴∠C=90°. ∵sin 2A+cos 2A=1,∴12132+cos 2A=1 解得cos A=513或cos A=-513(舍去),∴cos A=513.。
人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案
第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。
28.1 锐角三角函数 同步作业(含答案)
练习8 锐角三角函数一、自主学习1.如图28-1所示,△ABC 中,∠C=90°,BC=a 、AC=b ,AB=c ,则s inA=_________,cosB=_________,tanB=_________.图28-12.sin30°=________,sin45°=________,sin60°=______.cos30°=_________,cos45°=_________,cos60°=_________.tan30°=_________,tan45°=________,tan60°=________.二、基础巩固3.Rt △ABC 中,∠C=90°、AB=10、AC=8,则sinA=________,cosB=_______.4.Rt △ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,若sinA ∶sinB=1∶2,则a ∶b=________5.Rt △ABC 中,∠C=90°,若tanB=34,则sinA=________. 6.Rt △ABC 中,∠C=90°,BC=10,S △ABC =3350,则∠A=________. 7.Rt △ABC 中,∠C=90°,∠A=60°,两直角边之和为14,则它的斜边长为_________. 8.若α为锐角,且tanα=3,则∠cosα=__________.9.计算︒︒+︒60sin 30cos 60tan =_______________. 10.计算cos 245°+tan30°·cos30°=__________. 11.Rt △ABC 中,∠C=90°,a=15,sinB=41,则b=__________. 12.△ABC 中,∠B=45°,∠C=60°,AC=4,则AB=__________.三、能力提高13.Rt △ABC 中,CD 是斜边AB 上的高,若AB=a ,∠B=α,则AD 等于( )A.asin 2αB.acos 2αC.asinα·cosαD.atanα14.若cosα≤23,则锐角α的取值范围是( ) A.0°<α≤30° B.α≥30° C.α≤60° D.30°≤α<90°15.Rt △ABC 中,CD 是斜边AB 上的高,若AD=2,BD=8,则tanA=( )A.4B.2C.21 D.41 16.菱形ABCD 中,对角线AC=10,BD=6,则sin 2A =( )[来源:Z|xx|] A.53 B.54 C.34343 D.34345 17.Rt △ABC 中,∠C=90°,则sin 2A+cos 2A 的值等于( )A.1B.2sin 2AC.(sinA+cosA)2D.018.计算︒+︒︒-︒46tan 2160cos 30sin 45cos 的值是( ) A.213- B.212- C.1 D.0 19.已知sinα·cosα=81,且α为锐角,则cosα-sinα的值为( ) A.23 B.23- C.43 D.23或23- 20.已知α为锐角,且tan α=3,则ααααsin cos 2cos 2sin +-的值为( ) A.31 B.41 C.51 D.61 四、模拟链接21.如图28-2所示,△ABC 中,∠B=90°、∠A=15°,试求tan75°的值.图28-122.计算:sin30°-sin45°·cos45°+sin60°·tan30°-tan45°·cos60°23.观察:sin30°=cos60°=21,且30°+60°=90° sin45°=cos45°=22,且45°+45°=90° sin60°=cos30°=23,且60°+30°=90° 若∠α+∠β=90°,且∠α、∠β为0°—90°范围内的任意两锐角,试确定sinα与cosβ之间的大小关系并说明理由.24.△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b ,c ,且718a b c a -=+,81=--a c b c 求sinA 、tanB 的值.参考答案一、自主学习1.如图28-1所示,△ABC 中,∠C=90°,BC=a 、AC=b ,AB=c ,则s inA=_________,cosB=_________,tanB=_________.图28-1 答案:c a c a ab 2.sin30°=________,sin45°=________,sin60°=______.cos30°=_________,cos45°=_________,cos60°=_________.tan30°=_________,tan45°=________,tan60°=________. 答案:21 22 23 23 22 21 23 1 3 二、基础巩固3.Rt △ABC 中,∠C=90°、AB=10、AC=8,则sinA=________,cosB=_______. 答案:53 53 4.Rt △ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,若sinA ∶sinB=1∶2,则a ∶b=________ 答案:1∶25.Rt △ABC 中,∠C=90°,若tanB=34,则sinA=________. 答案:53 6.Rt △ABC 中,∠C=90°,BC=10,S △ABC =3350,则∠A=________. 答案:60°7.Rt △ABC 中,∠C=90°,∠A=60°,两直角边之和为14,则它的斜边长为_________. 答案:314-14 8.若α为锐角,且tanα=3,则∠cosα=__________.答案:21 9.计算︒︒+︒60sin 30cos 60tan =_______________. 答案:310.计算cos 245°+tan30°·cos30°=__________.答案:111.Rt △ABC 中,∠C=90°,a=15,sinB=41,则b=__________. 答案:112.△ABC 中,∠B=45°,∠C=60°,AC=4,则AB=__________. 答案:62三、能力提高13.Rt △ABC 中,CD 是斜边AB 上的高,若AB=a ,∠B=α,则AD 等于( )A.asin 2αB.acos 2αC.a sinα·cosαD.atanα 答案:A14.若cosα≤23,则锐角α的取值范围是( ) A.0°<α≤30° B.α≥30° C.α≤60° D.30°≤α<90° 答案:D15.Rt △ABC 中,CD 是斜边AB 上的高,若AD=2,BD=8,则tanA=( )A.4B.2C.21 D.41 答案:B16.菱形ABCD 中,对角线AC=10,BD=6,则sin 2A =( )[来源:Z|xx|] A.53 B.54 C.34343 D.34345 答案:C17.Rt △ABC 中,∠C=90°,则sin 2A+cos 2A 的值等于( )A.1B.2sin 2AC.(sinA+cosA)2D.0 答案:A18.计算︒+︒︒-︒46tan 2160cos 30sin 45cos 的值是( ) A.213- B.212- C.1 D.0 答案:B19.已知sinα·cosα=81,且α为锐角,则cosα-sinα的值为( ) A.23 B.23- C.43 D.23或23- 答案:D20.已知α为锐角,且tan α=3,则ααααsin cos 2cos 2sin +-的值为( ) A.31 B.41 C.51 D.61 答案:C四、模拟链接21.如图28-2所示,△ABC 中,∠B=90°、∠A=15°,试求tan75°的值.图28-1答案:2+322.计算:sin30°-sin45°·cos45°+sin60°·tan30°-tan45°·cos60°答案:023.观察:sin30°=cos60°=21,且30°+60°=90° sin45°=cos45°=22,且45°+45°=90° sin60°=cos30°=23,且60°+30°=90° 若∠α+∠β=90°,且∠α、∠β为0°—90°范围内的任意两锐角,试确定sinα与cosβ之间的大小关系并说明理由.答案:sinα=cosβ提示:以α、β为两内角构造直角三角形)24.△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b ,c ,且718a b c a -=+,81=--a c b c 求sinA 、tanB 的值.答案:sinA=135,tanB=512. 。
28_1_3 特殊角的三角函数值 基础训练(解析版)
28.1.3 特殊角的三角函数值基础训练一、单选题:1)A.cos30︒B.tan30︒C.cos45︒D.sin30︒2.已知()tan90α︒-α的度数是()A.60°B.45°C.30°D.75°3.在ABC中,90C∠=︒,若1sin2A=,则cos B的值为()A.12B C.2D 【答案】A4.下列各式中不成立的是( )A .22sin 60sin 301︒+︒=B .tan 45tan30︒>︒C .tan45sin45>︒︒D .sin30cos301︒+︒=5.若2(tan 1)|2cos 0A B -+=,则ABC ∆的形状是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形6.式子2cos30tan45︒-︒的值是()A.0B.C.2D.2-7.若菱形的周长为2,则菱形两邻角的度数比为()A.6:1B.5:1C.4:1D.3:1菱形的周长为AB CD//C∴∠=135∴∠∠C B:故选:D.二、填空题:8.已知α是锐角,tan0α-=,则α=______;cosα=______.##0.5【答案】60°##60度129.在Rt△ABC中,∠ACB=90°,若∠A=60°,AC=6,则sin ABC∠=____.##0.5【答案】12【分析】利用直角三角形的两锐角互余求得∠ABC 的度数,再利用特殊角的三角函数即可求得sin ABC ∠的10.已知()2sin 453α+=α=________.15)453=)3452=【详解】解:()2sin 453α+=)3452=, 4560=,15.故答案为:15.【点睛】本题主要考查了特殊角的三角函数值,灵活变形,熟记公式是解题的关键.11.计算:()22cos 60sin 45︒+︒︒=___________.【答案】34##0.75 【分析】将特殊角的三角函数值代入原式,即可求解.12.0111()()23--+|tan45°=_____.13.在ABC 中,若()2sin tan 10A B -= ,则C ∠的度数为__________ 【答案】75︒##75度∠的正切值是______.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则AOB三、解答题:15.计算:(1)()012260cos60-+-π︒-︒;(2))021sin 4520226tan302︒+︒.16.先化简,再求值:22231393a a a a -⎛⎫-÷ ⎪+-+⎝⎭,其中2sin603tan 45a =︒+︒.17.已知:如图,AB 是O 的直径,弦CD AB ⊥于点E ,G 是弧AC 上一动点且不与点A ,C 重合,AG DC ,的延长线交于点F ,连结BC .CD =2BE =.(1)求半径长.(2)求扇形DOC 的面积. 设O 的半径为Rt OEC 中,32COE ∠=60COE =︒,再由垂径定理可得扇形的面积公式求解即可.)解:如图,连接OC .设O 的半径为R .Rt OEC 中,22OC OE =+()222R =-。
人教版-数学-九年级下册-28.1 锐角三角函数 第三课时 练习(含答案) 赵磊
28.1 锐角三角函数(3)班级 姓名 座号 月 日主要内容:掌握特殊角三角函数值,能用它们进行计算,会由三角函数值说出相应锐角的大小 一、课堂练习:1.(课本83页)求下列各式的值: (1)12sin30cos30-o o(2)3tan30tan 452sin60-+o o o(3)cos6011sin 60tan 30++oo o 2cos60-oo2.(课本83页)在Rt ABC ∆中,90C ∠=o ,BC ,AC =求A ∠、B ∠的度数.3.已知α为锐角,且sin(10)α-︒=则α等于( )A.50oB.60oC.70oD.80o 4.如图,现有一扇形纸片,圆心角∠AOB 为120o ,弦AB 的长为侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A.23cm B.2π3cm C.32cm D.3π2cm二、课后作业:1.(课本85页)求下列各式的值:(1)sin 45o (2)12sin30cos30+o o(3)sin 45cos60sin 45⋅+o o o (4)2cos 45tan 60cos30+o o o2.如图,在平面直角坐标系中,点A 在第一象限内,点B 的坐标为(3,0),2OA =,60AOB ∠=o .(1)求点A 坐标;(2)若直线AB 交y 轴于点C ,求AOC ∆的面积.3.如图是一个中心对称图形,A 为对称中心,若90C ∠=o ,30B ∠=o ,1BC =,则BB '的长为( ) A.44.若A ∠是锐角,且3sin 4A =,则( )A.030A <∠<o oB.3045A <∠<o oC.4560A <∠<o oD.6090A <∠<o o 5.计算:1sin 60cos302⋅-=o o _______.6.在ABC ∆中,若sin cos 0A B 2||+(-=,则C ∠=_______.三、新课预习:1.用计算器求下列锐角三角函数值:(1)cos6317'≈o ______ (2)tan 27.35≈o _________ (3)sin35576'''≈o ________ 2.已知下列三角函数值,用计算器求其相应的锐角A (精确到0.01o ): (1)sin 0.9861A = (2)cos 0.8067A = (3)tan 0.189A =C'B 第3题参考答案一、课堂练习:1.(课本83页)求下列各式的值:(1)12sin30cos30-o o解:原式1122=-⨯1=-(2)3tan30tan452sin60-+o o o解:原式312=-+1=(3)cos6011sin60tan30++oo o2cos60-oo解:原式12=+=+22=-=解:原式2212⨯=-12=-12=-=2.(课本83页)在Rt ABC∆中,90C∠=o,BC,AC=求A∠、B∠的度数. 解:∵tan BCAAC===∴30A∠=o∴90903060B A∠=-∠=-=o o o o3.已知α为锐角,且sin(10)α-︒=则α等于( C)A.50oB.60oC.70oD.80o4.如图,现有一扇形纸片,圆心角∠AOB为120o,弦AB的长为侧面(接缝忽略不计),则该圆锥底面圆的半径为( A)A.23cm B.2π3cmC.32cm D.3π2cm二、课后作业:1.(课本85页)求下列各式的值:(1)sin45o(2)12sin30cos30+o o解:原式=+解:原式1122=+⨯⨯=1=+(3)sin45cos60sin45⋅+o o o(4)2cos45tan60cos30+o o o解:原式12=+解:原式2=+=2=2.如图,在平面直角坐标系中,点A 在第一象限内,点B 的坐标为(3,0),2OA =,60AOB ∠=o .(1)求点A 坐标;(2)若直线AB 交y 轴于点C ,求AOC ∆的面积. 解:(1)过点A 作 AD x ⊥轴于点D ,则1cos60212OD OA ==⨯=o,sin 602AD OA ==⨯=o ∴点A 坐标为(1(2)设直线AB 的关系式为y kx b =+∵直线AB 过点A (1)和点B (3,0)∴30k b k b ⎧+=⎪⎨+=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线AB的关系式为y x =+ 由0x =,得y =∴OC =∴112AOC S ∆==3.如图是一个中心对称图形,A 为对称中心,若90C ∠=o ,30B ∠=o ,1BC =,则BB '的长为( D )A.44.若A ∠是锐角,且3sin 4A =,则( C )A.030A <∠<o oB.3045A <∠<o oC.4560A <∠<o oD.6090A <∠<o o5.计算:1sin 60cos302⋅-=o o 14 .6.在ABC ∆中,若sin cos 0A B 2||+(-=,则C ∠=105o .三、新课预习:1.用计算器求下列锐角三角函数值: (1)cos6317'≈o . 04496 (2)tan 27.35≈o . 05172(3)sin35576'''≈o . 058712.已知下列三角函数值,用计算器求其相应的锐角A (精确到0.01o ): (1)sin 0.9861A = (2)cos 0.8067A = (3)tan 0.189A = 解:80.44A ∠≈o 解:36.23A ∠≈o 解:10.70A ∠≈oC'B 第3题。
28.1 锐角三角函数 题目
足 3tan 数。 3、在Rt△ABC中,∠C=90°,化简
2
-4tan + 3 =0 ,求α的度
1-2sinAcosA
知识回顾 1.在Rt△ABC中,∠C=90°,AC=4,BC=3,则
AB= 5 ,sinA = 3 tanA = 4 .
cosB=
5
3 5
, cosA=
A
D
C
E
B
你能利用直角三角形的三边关系得到 sinA的取值范围吗?
0<sin A<1
正弦函数 如图,在Rt△ABC中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A的正弦(sine),记作 B sinA 即
A的对边 a sin A 斜边 c
斜边 A
c
a 对边 C
b
例如,当∠A=30°时,我们有
c a A b ┌ C
300
450
450
┌
600
┌
P13 习题1.3 3题
独立 作业
3.如图,身高1.5m的小丽用一个两锐角分别是300和600 的三角尺测量一棵树的高度.已知她与树之间的距离为 5m,那么这棵树大约有多高?
做一做P8 6
知识的内在联系
如图:在Rt△ABC中,∠C=900,AC=10, cos 求:AB,sinB. 怎样 思考?
cos45 tan45 (2) sin 45
(3)tan450.sin450-4sin300.cos450+cos2300
练习
1.求下列各式的值: (1)1-2 sin30°cos30° (2)3tan30°-tan45°+2sin60°
cos60 1 (3) 1 sin 60 tan30
第28章《锐角三角函数》好题集(01):28.1 锐角三角函数
第28章《锐角三角函数》好题集(01):28.1锐角三角函数第28章《锐角三角函数》好题集(01):28.1 锐角三角函数选择题22.(2001•黑龙江)已a、b、c分别为△ABC中∠A、∠B、∠C的对边,若关于x的方程(b+c)x2﹣2ax+c﹣b=03.(2001•河北)已知等腰三角形三边的长为a、b、c,且a=c.若关于x的一元二次方程的两根4.已知α是锐角,且点A(,a),B(sinα+cosα,b),C(﹣m2+2m﹣2,c)都在二次函数y=﹣x2+x+3的图象上,5.(2010•临沂)菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是(),﹣)2+,﹣)6.如图,菱形ABCD的边长为10cm,DE⊥AB,sinA=,则这个菱形的面积是()7.(2002•崇文区)如图,菱形ABCD的边长为5,AC、BD相交于点O,AC=6,若∠ABD=α,则下列式子正确的是()=8.(2010•兰州)如图,正三角形的内切圆半径为1,那么三角形的边长为()C D9.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=().C D10.(2008•昆明)如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则sin∠DBE的值为().C D.11.如图a是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的tan∠DHF的度数是().C.12.(2010•漳州)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是().C D.13.(2010•孝感)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是().C D.15.(2010•包头)已知在Rt△ABC中,∠C=90°,sinA=,则tan B的值为().C D.16.(2009•绥化)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是().C D.17.(2008•淄博)如图,在Rt△ABC中,tanB=,BC=2,则AC等于()18.(2008•内江)如图,在Rt△ABC中,∠C=90°,三边分别为a,b,c,则cosA等于().C D.19.(2008•海南)如图所示,Rt△ABC∽Rt△DEF,则cosE的值等于().C D.20.(2008•甘南州)在正方形网格中,∠α的位置如图所示,则sinα的值为().C D..C D..C D.23.(2006•辽宁)在Rt△ABC中,∠C=90°,sinA=,则cosB的值为().C D.24.(2006•丽水)如图,sinA=().C D.25.(2006•海南)三角形在正方形网格纸中的位置如图所示.则sinα的值是().C D.26.(2005•南京)如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是().C D.cosB=28.(2000•嘉兴)在Rt△ABC中,CD是斜边AB上的高线,已知∠ACD的正弦值是,则的值是().C D.29.(2004•云南)在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于().C D..C D.第28章《锐角三角函数》好题集(01):28.1 锐角三角函数参考答案与试题解析选择题2﹣,2.(2001•黑龙江)已a、b、c分别为△ABC中∠A、∠B、∠C的对边,若关于x的方程(b+c)x2﹣2ax+c﹣b=03.(2001•河北)已知等腰三角形三边的长为a、b、c,且a=c.若关于x的一元二次方程的两根,,×﹣×=2a=4.已知α是锐角,且点A(,a),B(sinα+cosα,b),C(﹣m2+2m﹣2,c)都在二次函数y=﹣x2+x+3的图象上,,抛物线开口向下,可知,开口向下,(5.(2010•临沂)菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是(),﹣)2+,﹣),2+,纵坐标为,)6.如图,菱形ABCD的边长为10cm,DE⊥AB,sinA=,则这个菱形的面积是()sinA=,易得,7.(2002•崇文区)如图,菱形ABCD的边长为5,AC、BD相交于点O,AC=6,若∠ABD=α,则下列式子正确的是()==;=;=;==8.(2010•兰州)如图,正三角形的内切圆半径为1,那么三角形的边长为()C D,AB=2AD=29.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=().C DODA=10.(2008•昆明)如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则sin∠DBE的值为().C D.AB BC ABx===11.如图a是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的tan∠DHF的度数是().C..C D..13.(2010•孝感)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是().C D.A=15.(2010•包头)已知在Rt△ABC中,∠C=90°,sinA=,则tan B的值为().C D.,tanB=,设.=sinA==,==16.(2009•绥化)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是().C D.17.(2008•淄博)如图,在Rt△ABC中,tanB=,BC=2,则AC等于()=,∴××18.(2008•内江)如图,在Rt△ABC中,∠C=90°,三边分别为a,b,c,则cosA等于().C D.cosA=.19.(2008•海南)如图所示,Rt△ABC∽Rt△DEF,则cosE的值等于().C D..20.(2008•甘南州)在正方形网格中,∠α的位置如图所示,则sinα的值为().C D.,=..C D.==5=.C D.=23.(2006•辽宁)在Rt△ABC中,∠C=90°,sinA=,则cosB的值为().C D.=sinA=24.(2006•丽水)如图,sinA=().C D.=.25.(2006•海南)三角形在正方形网格纸中的位置如图所示.则sinα的值是().C D.,斜边为=5= 26.(2005•南京)如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是().C D.=.,,28.(2000•嘉兴)在Rt△ABC中,CD是斜边AB上的高线,已知∠ACD的正弦值是,则的值是().C D.,即可求出ACD==29.(2004•云南)在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于().C D.,=.C D.= =.菁优网 ©2010-2013 菁优网参与本试卷答题和审题的老师有:HJJ ;Liuzhx ;蓝月梦;zhjh ;zhehe ;星期八;CJX ;未来;MMCH ;Linaliu ;hbxglhl ;haoyujun ;自由人;ln_86;zzz ;bjf ;心若在;zcx (排名不分先后)菁优网2013年3月15日。
人教版数学九年级下册第28章测试题(含答案)
人教版数学九年级下册第28章测试题(含答案)28.1《锐角三角函数》一、选择题1.2cos60°=()A.1B.C.D.2.在菱形ABCD中,BD为对角线,AB=BD,则sin∠BAD=()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,下列线段的比值等于cosA的值的有()个(1)(2)(3)(4).A.1B.2C.3D.44.tan45°sin45°﹣2sin30°cos45°+tan30°=()A. B. C. D.5.计算的值是()A. B. C. D.6.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.7.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.8.计算sin60°+cos45°的值等于()A. B. C. D.9.sin60°的值等于()A. B. C. D.10.在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则sinA的值是( )A. B. C. D.11.tan30°的值为()A. B. C. D.12.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定二、填空题13.计算;sin30°•tan30°+cos60°•tan60°= .14.已知在△ABC中,AB=AC=4,BC=6,那么cosB=____________.15.△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C= .16.在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17.计算:=18.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.三、计算题19.计算:20.计算:四、解答题21.先化简,再求值,其中a=1+2cos45°;b=1-2sin45°22.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.例如sin 90°=sin(60°+30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.类似地,可以求得sin 15°的值是___________________.23.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.24.如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,(1)求证:CD是⊙O的切线.(2)若⊙O的半径为3,AE=5,求∠ADE的正弦值.参考答案1.答案为:A;.2.答案为:C3.答案为:C4.答案为:D.5.答案为:A;6.答案为:C.7.答案为:A;8.答案为:B;9.答案为:C10.答案为:C11.答案为:B;.12.答案为:C13.答案为:14.答案为:0.75;15.答案为:60°.16.答案为:75°17.答案为:18.答案为:直角.19.原式=120.原式=721.原式=22.原式=.23.解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.28.2解直角三角形及其应用一.选择题1.如图,在Rt△ABC中,∠C=90°,BC=,AB=2,则∠B等于()A.15°B.20°C.30°D.60°2.在△ABC中,∠ACB=90°,若AC=8,BC=6,则sin A的值为()3.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.4.如图,传送带和地面所成斜坡的坡度为1:3,若它把物体从地面点A处送到离地面1米高的点B处,则物体从A到B所经过的路程为()A.3米B.米C.2米D.3米5.如图,在国旗台DF上有一根旗杆AF,国庆节当天小明参加升旗仪式,在B处测得旗杆顶端的仰角为37°,小明向前走4米到达点E,经过坡度为1的坡面DE,坡面的水平距离是1米,到达点D,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.6.29B.4.71C.4D.5.336.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1m到A′时,梯脚B 滑到B′,A'B'与地面的夹角为β,若tanα=,BB'=1m,则cosβ=()7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为()米(结果精确到1米)(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.27B.28C.29D.308.数学兴趣小组的同学们要测量某大桥主架顶端离水面的高CD.在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为45°,测得与大桥主架的水平距离AB为100米.则大桥主架顶端离水面的高CD为()A.(100+100•sinα)米B.(100+100•tanα)米C.(100+)米D.(100+)米9.某兴趣小组想测量一座大楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测量仪测得大楼顶端A的仰角为37°,测角仪DE的高度为1.5米,求大楼AB的高度约为多少米?()(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)A.39.3B.37.8C.33.3D.25.710.在数学综合实践课上,老师和同学们一起测量学校旗杆的高度,他们首先在旗杆底部C地测得旗杆顶部A的仰角为45°,然后沿着斜坡CD到斜坡顶部D点处再测得旗杆顶部A的仰角为37°(身高忽略不计),已知斜坡CD的坡度i=1:2.4,坡面CD长2.6米,旗杆AB所在旗台高度为1.4米,旗杆、旗台底部、斜坡在同一平面,则旗杆AB的高度为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.9.5米B.9.6米C.9.7米D.9.8米二.填空题11.如图,在正方形网格中,小正方形的边长为1,点A,B,C,D都在格点上,AB与CD相交于点O,则∠AOC的正切值是.12.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.13.一座建于若干年前的水库大坝,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了平方米.14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.15.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)三.解答题16.如图,在△ABC中,AD是BC边上的高,BC=4,AD=12,sin B=.求:(1)线段CD的长;(2)sin∠BAC的值.17.石室联合中学金沙校区位于三环跨线桥旁边,为了不影响学生上课,市政在桥旁安装了隔音墙,交通局也对此路段设置了限速,九年级学生为了测量汽车速度做了如下实验:在桥上依次取B、C、D三点,再在桥外确定一点A,使得AB⊥BD,测得AB之间15米,使得∠ADC =30°,∠ACB=60°.(1)求CD的长(精确到0.01,≈1.73,≈1.41).(2)交通局对该路段限速30千米/小时,汽车从C到D用时2秒,汽车是否超速?说明理由.18.如图,一艘渔船沿南偏东42°方向航行,在A处测得一个小岛P在其南偏东64°方向.又继续航行(40﹣16)海里到达B处,测得小岛P位于渔船的南偏东72°方向,已知以小岛P为圆心,半径16海里的圆形海域内有暗礁.如果渔船不改变航向有没有触礁的危险,请通过计算加以说明.如果有危险,渔船自B处开始,沿南偏东多少度的方向航行,能够安全通过这一海域?(参考数据:sin22°=,cos22°=,tan22°=)参考答案一.选择题1.解:∵∠C=90°,BC=,AB=2,∴cos B==,∴∠B=30°,故选:C.2.解:在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10,∴sin A===.故选:A.3.解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,故选:B.4.解:过B作BC⊥地面于C,如图所示:∵BC:AC=1:3,即1:AC=1:3,∴AC=3(米),∴AB===(米),即物体从A到B所经过的路程为米,故选:B.5.解:过点D作DM⊥BC,垂足为M,由题意得,∠B=37°,∠ADF=53°,BE=4,EM=1,∵坡面DE的坡度为1,∴=1,∴DM=EM=1=FC,在Rt△ADF中,∠DAF=90°﹣∠ADF=90°﹣53°=37°,∵tan∠DAF=≈0.75,设AF=x,则DF=0.75x=MC,在Rt△ABC中,∵tan∠B=,∴tan37°=≈0.75,解得x=≈6.29(米),故选:A.6.解:如图.∵在直角△ABC中,∠ACB=90°,tanα=,∴可设AC=4x,那么BC=3x,∴AB===5x,∴A′B′=AB=5x.∵在直角△A′B′C中,∠A′CB′=90°,A′C=4x﹣1,B′C=3x+1,∴(4x﹣1)2+(3x+1)2=(5x)2,解得x=1,∴A′C=3,B′C=4,A′B′=5,∴cosβ=.故选:A.7.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=20米,DE=40米,BF=CG,在Rt△CDG中,i=1:2.4,CD=26米,∴BF=CG=10米,GD=24米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=84米,∠E=24°,∴AF=FE•tan24°≈84×0.45=37.8(米),∴AB=AF﹣BF=37.8﹣10≈28(米);即建筑物AB的高度为28米;故选:B.8.解:在Rt△ABC中,,∴BC=AB•tanα,在Rt△ABD中,tan45°=,∴BD=AB•tan45°=AB,∴CD=a=BC+BD=AB•tanα+AB=(100+100•tanα)米,故选:B.9.解:如图,延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,BF:CF=1:,∴设BF=k,则CF=k,∴BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=6,∵DF=DC+CF,∴DF=40+6在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.785(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.785﹣4.5≈33.3.答:大楼AB的高度约为33.3米.故选:C.10.解:作DH⊥FC交FC的延长线于点H,延长AB交CF的延长线于点T,作DJ⊥AT于点J,如图所示:则四边形EFTB与四边形DHTJ都是矩形,∴BT=EF=1.4米,JT=DH,在Rt△DCH中,CD=2.6米,=,∴DH=1(米),CH=2.4(米),∵∠ACT=45°,∠T=90°,∴AT=TC,设AT=TC=x.则DJ=TH=(x+2.4)米,AJ=(x﹣1)米,在Rt△ADJ中,tan∠ADJ==0.75,∴=0.75,解得:x=11.2,∴AB=AT﹣BT=11.2﹣1.4=9.8(米),故选:D.二.填空题11.解:如图取格点K,连接BK,过点K作KH⊥AB于H,如图所示:∵DB=CK=2,DB∥CK,∴四边形CDBK是平行四边形,∴CD∥BK,∴∠AOC=∠ABK,过点K作KH⊥AB于H.∵AB==,S△ABK=•AK•4=•AB•KH=20,∴HK==,∵BK==2,∴BH===,∴tan∠AOC=tan∠ABK===,故答案为:.12.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.13.解:∵背水坡AB的坡度为1:0.75,AC=4,∴=0.75,解得,BC=3,∵坡AD的坡度为1:2,AC=4,∴CD=8,∴BD=DC﹣BC=5,∴△ADB的面积=×5×4=10(平方米),故答案为:10.14.解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.15.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30,∵AB=57,∴BE=AB﹣AE=57﹣30,∵四边形BCFE是矩形,∴CF=BE=57﹣30.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=57﹣30,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.三.解答题16.解:(1)∵AD是BC边上的高,∴∠D=90°,在Rt△ABD中,∵sin B=.∴=,又∵AD=12,∴AB=15,∴BD==9,又∵BC=4,∴CD=BD﹣BC=9﹣4=5;答:线段CD的长为5;(2)如图,过点C作CE⊥AB,垂足为E,∵S△ABC=BC•AD=AB•CE∴×4×12=×15×CE,∴CE=,在Rt△AEC中,∴sin∠BAC===,答:sin∠BAC的值为.17.解:(1)在Rt△ABC中,∠ABC=90°,∠ACB=60°,AB=15米,∴BC===5米,在Rt△ABD中,∠ABD=90°,∠ADB=30°,∴BD=AB=15米,∴CD=BD﹣BC=10≈17.32米,∴CD的长为17.32米;(2)∵30千米/小时=30000÷3600=米/秒,而10÷2≈8.66>,∴汽车超速.18.解:如图1,过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=64°﹣42°=22°,∠PBC=72°﹣42°=30°,AB=40﹣16,设PC=x,在Rt△PBC中,∵∠PBC=30°,∴BC=PC=x,∴AC=AB+BC=40﹣16+x,在Rt△P AC中,∵∠P AC=22°,∴tan∠P AC=,即=,解得,x=16,即PC=16,BP=2PC=32,∵16<16,∴有危险.如图2,渔船沿着BD方向航行,过点P作PD⊥BD,垂足为D,在Rt△PBD中,∵sin∠PBD===,∴∠PBD=45°,∴∠QBD=∠QBP﹣∠DBP=72°﹣45°=27°,即渔船自B处开始,沿南偏东27°的方向航行,能够安全通过这一海域.。
必刷基础练【28.1 锐角三角函数】(解析版)
2022-2023学年九年级数学下册考点必刷练精编讲义(人教版)基础第28章《锐角三角函数》28.1 锐角三角函数知识点01:锐角三角函数的定义1.(2022秋•钢城区期中)已知在Rt△ABC中,∠C=90°,tan A=2,BC=8,则AC等于( )A.6B.16C.12D.4解:∵∠C=90°,∴tan A==2,∴AC=BC=×8=4.故选:D.2.(2022秋•晋州市期中)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.3.(2022秋•浦东新区期中)在Rt△ABC中,∠C=90°,BC=9,AC=6,下列等式中正确的( )A.tan A=B.sin A=C.cot A=D.cos A=解:∵AB2=BC2+AC2,∴AB2=62+92=117,∴AB=3;A、tan A===,故A不符合题意;B、sin A===,故B不符合题意;C、cot A===,故C符合题意;D、cos A===,故D不符合题意,故选:C.4.(2022秋•杨浦区期中)在Rt△ABC中,∠C=90°,BC=1,AB=3,下列各式中,正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,BC=1,AB=3,∴AC===2,∴sin A==,cos A==,tan A===,cot A==2.故选:A.5.(2022秋•黄浦区期中)在Rt△ABC中,∠C=90°,BC=3,AB=4,那么下列各式中正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin A==,cos A==.tan A===,cot A==.故选:A.6.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是 .解:∵∠C=90°,AC=3,BC=4,∴AB==5,∴sin B==,故答案为:.7.(2021秋•牡丹江期末)在△ABC中,∠A,∠C都是锐角,cos A=,sin C=,则∠B= 60° .解:∵∠A,∠C都是锐角,cos A=,sin C=,∴∠A=60°,∠C=60°,∴∠B=180°﹣∠A﹣∠C=60°,故答案为:60°.8.(2022春•衡阳月考)如图,在△ABC中,∠C=90°,AB=13,AC=12,则tan B= .解:∵∠C=90°,AB=13,AC=12,∴BC==5,∴tan B==.故答案为:.9.(2022秋•惠山区校级期中)在Rt△ABC中,∠ACB=90°,∠A、∠B、∠C的对边分别是a、b、c,(1)a=5,c=2a,求b、∠A.=9,求△ABC的周长.(2)tan A=2,S△ABC解:(1)∵a=5,c=2a=10,∴b===5,∵sin A===,∴∠A=30°;(2)∵tan A==2,∴a=2b,∵S=9,△ABC∴=9,∴=9,解得:b=3(负数舍去),即a=6,由勾股定理得:c===3,∴△ABC的周长为a+b+c=6+3+3=9+3.10.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.知识点02:锐角三角函数的增减性11.(2022•五通桥区模拟)若锐角α满足cosα<且tanα<,则α的范围是( )A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.12.(2022•路南区二模)梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A.sin A的值越大,梯子越陡B.cos A的值越大,梯子越陡C.tan A的值越小,梯子越陡D.陡缓程度与∠A的函数值无关解:根据锐角三角函数值的变化规律,知sin A的值越大,∠A越大,梯子越陡.故选:A.13.(2022秋•晋江市期中)比较大小:tan50° < tan60°.解:∵50°<60°,∴tan50°<tan60°,故答案为:<.14.(2021秋•淮阴区期末)比较大小:sin50° < sin60°(填“>”或“<”).解:由于50°<60°,根据一个锐角的正弦值随着角度的增大而增大可得,sin50°<sin60°,故答案为:<.15.用锐角α的三角函数的定义去说明(1)0<sinα<1(2)0<cosα<1(3)tanα>sinα解:(1)sinα=,0<a<c,0<1,即0<sinα<1;(2)cosα=,0<b<c,0<<1,即0<cosα<1;(3)tanα=,sinα=,由0<b<c,得>,即tanα>sinα.16.(2019春•西湖区校级月考)如图,半径为4的⊙O内一点A,OA=.点P在⊙B上,当∠OPA最大时,求PA的长.解:如图,作OE⊥PA于E,∵sin∠OPA=,∴OE的值取最大值时,sin∠OPA的值最大,此时∠OPA的值最大,∵OE≤OA,∴当OE与OA重合时,即PA⊥OA时,∠OPA的值最大.如图,∵在直角△OPA中,OA=2,OP=4,∴PA==2.知识点03:同角三角函数的关系17.(2022春•巴东县期中)x为锐角,,则cos x的值为( )A.B.C.D.解:∵sin2x+cos2x=1,,∴cos x===.故选:B.18.(2021秋•舟山期末)在直角△ABC中,已知∠C=90°,sin A=,求cos A=( )A.B.C.D.2解:∵sin2A+cos2A=1,∴cos A==.\故选:C.19.(2021•温江区校级开学)计算:(cos230°+sin230°)×tan60°= .解:原式=[()2+()2]×=,故答案为:.20.(2021秋•金牛区校级期中)在△ABC中,∠C=90°,tan A=2,则sin A+cos A= .解:如图,∵tan A=2,∴设AB=x,则BC=2x,AC==x则有:sin A+cos A=+=+=.故答案为:.21.(2020秋•万州区校级期中)计算:sin225°+cos225°﹣tan60°= 1﹣ .解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.22.(2021秋•鄞州区校级月考)计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.23.(2021秋•绥宁县月考)计算:(1)sin230°+tan60°﹣sin245°+cos230°;(2)+(1+π)0﹣2cos45°﹣|1﹣|.解:(1)原式=()2+﹣()2+()2=+﹣+=+;(2)原式=2+1﹣2×﹣+1=2+1﹣﹣+1=2.24.(2022秋•蓬莱区期中)计算:(1)﹣4cos30°+20220;(2)已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.解:(1)原式=|1﹣|﹣4×+1=﹣1﹣2+1=﹣;(2)∵sin60°=,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα+tanα+()﹣1=2﹣4×+1+3=4.知识点04:互余两角三角函数的关系25.(2022秋•芝罘区期中)在Rt△ABC中,∠C=90°,下列等式成立的是( )A.sin A=sin B B.cos A=cos B C.sin A=cos B D.tan A=tan B 解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.故选:C.26.(2021秋•怀化期末)已知锐角α,且sinα=cos38°,则α=( )A.38°B.62°C.52°D.72°解:∵锐角α,且sinα=cos38°,sin A=cos(90°﹣∠A),∴sinα=cos(90°﹣α)=cos38°,∴90°﹣α=38°,解得:α=52°.故选:C.27.(2021秋•怀宁县期末)在Rt△ABC中,∠C=90°,cos A=,则sin B= .解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.28.(2020秋•肥东县期末)已知α为锐角,则sinα﹣cos(90°﹣α)= 0 .解:∵α为锐角,∴sinα=cos(90°﹣α),∴sinα﹣cos(90°﹣α)=0.故答案为0.29.(2019秋•双流区期末)已知,在Rt△ABC中,∠C=90°,若sin A=,则tan B= .解:如图.在Rt△ABC中,∵sin A==,∴设BC=x,AB=3x,则AC==2x,故tan B===.故答案为:.30.(2017•吴兴区校级二模)已知cos45°=,求cos21°+cos22°+…+cos289°的值.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245=(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.31.化简下列各式:(1)4cos2(90°﹣θ)+4sin2(90°﹣θ)+4(2).解:(1)原式=4sin2θ+4cos2θ+4=4(sin2θ+cos2θ)+4=4+4=8;(2)原式=﹣1=﹣1=1+tan2θ﹣1=tan2θ.知识点05:特殊角的三角函数值32.(2022秋•巨野县期中)∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°解:∵∠β为锐角,且2cosβ﹣1=0,∴cosβ=,∴∠β=60°.故选:B.33.(2021秋•梁平区期末)式子2cos30°﹣tan45°﹣的值是( )A.0B.2C.2D.﹣2解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选:A.34.(2022秋•乳山市校级月考)在△ABC中,∠A=105°,∠B=45°,sin C的值是( )A.B.C.1D.解:∵∠A=105°,∠B=45°,∴∠C=180°﹣∠A﹣∠C=30°,∴sin C=sin30°=.故选:A.35.(2022秋•虎丘区校级期中)已知∠α为锐角,且sinα=,则∠α= 60° .解:∵∠α为锐角,sinα=,∴∠α=60°.故答案为:60°.36.(2022秋•东平县校级月考)若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是 直角三角形 .解:∵(3tan A﹣)2+|2sin B﹣|=0,∴3tan A﹣=0,2sin B﹣=0,则tan A=,sin B=,∴∠A=30°,∠B=60°,∴以∠A、∠B为内角的△ABC的形状是直角三角形.故答案为:直角三角形.37.(2022秋•铁西区期中)在△ABC中,若sin A=,∠A,∠B都是锐角,则∠C的度数是 75° .解:∵,∠A,∠B都是锐角,∴∠A=45°,∠B=60°,∴∠C=180°﹣45°﹣60°=75°,故答案为:75°.38.(2022秋•垦利区期中)在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 105° .解:∵|sin A﹣|+(﹣cos B)2=0,∴sin A﹣=0,﹣cos B=0,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.39.(2022秋•黄浦区期中)计算:.解:原式=﹣=cot30°﹣1﹣=﹣1﹣=﹣1﹣(+1)=﹣1﹣﹣1=﹣2.40.(2022秋•莱西市期中)计算:(1);(2)cos60°﹣2sin245°+tan230°﹣sin30°.解:(1)原式===﹣1﹣=﹣;(2)原式=﹣2×()2+×()2﹣=﹣1+﹣=﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--1.锐角三角函数一、课前预习 (5分钟训练)1.如图1所示,某斜坡A B上有一点B′,B′C′、B C是边AC 上的高,则图中相似的三角形是______________,则B′C′∶AB′=______________,B′C′∶AC′=______________.2.在Rt△ABC 中,如果边长都扩大5倍,则锐角A的正弦值、余弦值和正切值 ( )A.没有变化B.都扩大5倍C.都缩小5倍D.不能确定3.在△ABC 中,∠C=90°,sinA=3/5,则sinB 等于( )A.2/5 B.3/5 C.4/5 D.3/4 二、课中强化(10分钟训练)1.在Rt△AB C中,∠C=90°,已知tanB=25,则cosA 等于( )A.25B.35 C.552 D.322.如果α是锐角,且sinα=54,那么cos(90°-α)的值为( )A.54 B.43 C .53 D .513.在△ABC 中,∠C=90°,AC=2,AB =5,则cosB 的值为( )A .210 B.510 C .515D.51534.在R t△ABC 中,∠C=90°,sin A=5/13,BC=15,则AC =______________.5.如图2,△ABC 中,AB =AC=6,BC =4,求si nB 的值.三、课后巩固(30分钟训练)1.如图3,已知菱形A BC D,对角线AC=10 cm ,BD=6 cm,,那么t an 2A 等于( )A.53 B.54 C.343 D.3452.如果si n2α+cos 230°=1,那么锐角α的度数是( ) A.15° B.30° C.45° D.60°3.如图28-1-1-4,在坡度为1∶2.5的楼梯表面铺地毯,地毯长度至少是________________.4.在Rt△ABC 中,斜边AB=22,且tanA+ta nB=22,则Rt△ABC的面积是___________.5.在R t△ABC中,∠C=90°,a、b 、c分别是∠A、∠B、∠C 的对边,且a=3,c=5,求∠A、∠B 的三角函数值.6.在Rt△ABC 中,∠C=90°,a、b、c 分别是∠A、∠B、∠C 的对边,且b=6,tanA=1,求c.7.如图28-1-1-5,在Rt△AB C中,∠C=90°,sinA=53,D 为AC 上一点,∠BDC =45°,DC =6 cm ,求AB 、AD 的长.图28-1-1-58.如图28-1-1-6,在△ABC中,AB=AC,AD⊥B C于D点,BE⊥AC于E点,AD=BC,BE=4.求:(1)tanC的值;(2)AD的长.图28-1-1-62. 特殊角的三角函数值1.已知:Rt△ABC中,∠C=90°,cosA=35,AB=15,则AC的长是().A.3 B.6 C.9 D.122.下列各式中不正确的是( ).A.sin260°+cos260°=1B.sin30°+cos30°=1C.sin35°=cos55°D.tan45°>sin45°3.计算2sin30°-2cos60°+tan45°的结果是( ). A.23C.2 D.14.已知∠A为锐角,且cosA≤12,那么( )A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°5.在△ABC中,∠A、∠B都是锐角,且sinA=12,cos3,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形 D.不能确定6.Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana的值为().A.34B.43C.35D.457.当锐角a>60°时,cosa的值( ). A.小于12B.大于12C3 D.大于18.在△ABC中,三边之比为a:b:c=3sinA+tanA等于( ).32313331.3..2B C D++9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,3,•则∠CAB等于( )A.30°B.60° C.45° D.以上都不对10.sin272°+sin218°的值是().A.1 B.0 C.12D311.若3nA-3)2+│2co3=0,则△ABC( ).A.是直角三角形B.是等边三角形C.是含有60°的任意三角形D.是顶角为钝角的等腰三角形----12.设α、β均为锐角,且sin α-c os β=0,则α+β=_______.13.cos 45sin 301cos 60tan 452︒-︒︒+︒的值是_______.14.已知,等腰△ABC•的腰长为43,•底为30•°,•则底边上的高为______,•周长为______.15.在Rt △A BC 中,∠C=90°,已知t an B=52,则cos A=________.16.正方形AB CD边长为1,如果将线段BD 绕点B 旋转后,点D落在BC 的延长线上的点D ′处,那么ta n∠BAD ′=________.17.在Rt △ABC 中,∠C=90°,∠C AB=60°,AD平分∠CAB,得AB AC CD CD -的值为_______.18.求下列各式的值.(1)sin30°·co s45°+co s60°;(2)2sin60°-2cos30°·sin45°(3)2cos 602sin 302︒︒-; (4)sin 45cos3032cos 60︒+︒-︒-sin60°(1-s in30°).(5)ta n45°·sin60°-4sin 30°·cos 45°+6·ta n30°(6)sin 45tan 30tan 60︒︒-︒+co s45°·cos30°参考答案一、课前预习 (5分钟训练)1.如图28-1-1-1所示,某斜坡A B上有一点B′,B ′C ′、BC 是边AC 上的高,则图中相似的三角形是______________,则B′C ′∶AB′=______________,B′C ′∶AC ′=______________.图28-1-1-1解析:由相似三角形的判定得△AB ′C ′∽△ABC ,由性质得B ′C ′∶AB′=BC ∶AB ,B ′C ′∶AC ′=BC ∶AC.答案:△AB ′C ′∽△AB C BC ∶AB BC ∶AC2.在R t△AB C中,如果边长都扩大5倍,则锐角A的正弦值、余弦值和正切值 ( )A.没有变化 B.都扩大5倍 C.都缩小5倍 D.不能确定 解析:三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 答案:A3.在△ABC 中,∠C=90°,sin A=53,则sinB 等于( ) A .52B.53 C.54D.43解析:si nA=53,设a=3k ,c=5k,∴b=4k. ∴s inB=5454==k k c b .答案:C二、课中强化(10分钟训练)1.在Rt △A BC 中,∠C =90°,已知tanB =25,则cosA 等于( )--A.25 B.35 C.552 D.32 解析:tan B=25,设b=5k,a =2k.∴c =3k .∴co sA=3535==k k c b .答案:B2.如果α是锐角,且sin α=54,那么cos (90°-α)的值为( ) A.54 B .43 C.53D.51 解析:cos(90°-α)=s in α=54.答案:A3.在△AB C中,∠C=90°,AC=2,AB=5,则cosB 的值为()A.210 B.510 C.515D.5153解析:由勾股定理,得BC =3,∴cosB =51553==AB BC . 答案:C4.在Rt △ABC 中,∠C=90°,sinA=135,BC=15,则A C=______________. 解析:∵si nA =135=AB BC ,BC=15,∴AB=39.由勾股定理,得AC=36. 答案:365.如图28-1-1-2,△ABC 中,AB =AC=6,BC=4,求si nB 的值.图28-1-1-2分析:因为三角函数值是在直角三角形中求得,所以构造直角三角形就比较重要,对于等腰三角形首先作底边的垂线.解:过A 作AD ⊥BC 于D, ∵A B=A C,∴B D=2.在Rt △ADB 中,由勾股定理,知A D=24262222=-=-BD AB ,∴s inB=322=AB AD .三、课后巩固(30分钟训练)--1.如图28-1-1-3,已知菱形A BCD,对角线AC=10 cm,B D=6 cm,,那么t an2A 等于( )图28-1-1-3A.53 B.54C .343 D.345解析:菱形的对角线互相垂直且平分,由三角函数定义,得tan 2A =tan ∠DA C=53. 答案:A2.如果sin 2α+cos 230°=1,那么锐角α的度数是( )A.15° B.30° C.45° D.60° 解析:由sin 2α+cos 2α=1,∴α=30°. 答案:B3.如图28-1-1-4,在坡度为1∶2.5的楼梯表面铺地毯,地毯长度至少是________________.图28-1-1-4解析:坡度=BCAC,所以BC =5,由割补法知地毯长=AC+BC =7(米). 答案:7米4.在Rt △ABC 中,斜边AB=22,且t an A+tanB =22,则Rt △ABC 的面积是___________.解析:∵ta nA =ACBC,t anB=BCAC ,且AB 2=BC 2+AC 2,由tanA+tanB=22,得AC BC +BC AC=22,即AC ·BC =28.∴S△ABC=24.答案:245.在Rt △AB C中,∠C=90°,a、b 、c分别是∠A、∠B 、∠C 的对边,且a=3,c=5,求∠A 、∠B的三角函数值.解:根据勾股定理得b=4,sin A=53,cosA =54,tan A=43;sinB =54,co sB=53,t anB=34. 6.在Rt △AB C中,∠C=90°,a 、b、c 分别是∠A 、∠B 、∠C的对边,且b =6,tan A=1,求c.解:由三角函数定义知a=btan A,所以a =6,根据勾股定理得c=26.7.如图28-1-1-5,在Rt △ABC 中,∠C=90°,sinA=53,D为AC 上一点,∠BDC=45°,DC=6 c m,求AB 、AD 的长.图28-1-1-5解:如题图,在Rt △BC D中,∠BD C=45°,∴BC=DC =6.在Rt △ABC 中,s inA=53,--∴AB BC =53. ∴AB=10.∴A C=2222610-=-BC AB =8.∴A D=AC -CD=8-6=2.8.如图28-1-1-6,在△ABC 中,AB=AC,AD ⊥B C 于D 点,BE ⊥AC 于E点,AD =B C,BE=4.求:(1)tan C的值;(2)AD 的长.图28-1-1-6解:(1)∵AB =AC,AD ⊥B C, ∴A D=BC=2D C. ∴tanC=2.(2)∵ta nC=2,BE ⊥AC,BE =4,∴E C=2. ∵BC 2=BE 2+E C2, ∴BC=52.∴A D=52.第2课时作业设计(答案)一、1.C 2.B 3.D 4.B 5.B 6.A 7.A 8.A 9.B 10.A 11.A二、12.90° 13.212143,12+3 15.53123三、18.(1)222362(2)(3)1;(4)424+- (5)32; (6)0。