多光束干涉

合集下载

《多光束干涉原理》课件

《多光束干涉原理》课件

干涉光谱技术
光谱技术原理
01
多光束干涉原理在光谱技术中应用广泛,如傅里叶变换光谱仪
和干涉滤光器等。
光谱技术应用
02
干涉光谱技术可用于气体分析、化学反应动力学研究、天文学
和医学诊断等领域。
光谱技术优势
03
干涉光谱技术具有高分辨率、高灵敏度和高精度等优点,能够
提供更准确的光谱信息。
量子干涉
量子干涉原理
THANKS
感谢观看
多光束干涉的分类
多光束干涉是指多个光束在空间相遇并相互叠加的现象。根据干涉的形成方式,多 光束干涉可以分为分波面干涉和分振幅干涉两种类型。
分波面干涉是指多个光束通过不同的反射或折射路径,在空间某一点相遇并形成干 涉的现象。常见的分波面干涉实验有薄膜干涉、牛顿环等。
分振幅干涉是指多个光束经过不同的光学元件处理后,在空间某一点相遇并形成干 涉的现象。常见的分振幅干涉实验有双缝干涉、多缝干涉等。
多光束干涉原理
contents
目录
• 引言 • 多光束干涉的基本概念 • 杨氏双缝干涉实验 • 多光束干涉的应用 • 多光束干涉的实验演示 • 多光束干涉的未来发展
01
引言
干涉现象简介
干涉现象
当两个或多个波源的波发生叠加时,在某些区域波峰与波峰相遇,产生振幅增 强,即干涉加强;在某些区域波峰与波谷相遇,产生振幅相消,即干涉相消。
总结词
随着新材料技术的不断发展,多光束干涉有望在新型光学材料中得到更广泛的应用,为干涉现象提供更多的可能 性和灵活性。
详细描述
近年来,新型光学材料如拓扑绝缘体、超材料和光子晶体等不断涌现,这些材料具有独特的光学性质,能够实现 传统材料无法达到的光学行为。通过将这些新材料应用于多光束干涉中,有望创造出更复杂、更精确的干涉图案 ,进一步拓展干涉现象的应用领域。

多光束干涉原理

多光束干涉原理
A =
2
A0
2
4ρ ϕ 1+ ⋅ sin 2 (1 − ρ ) 2 2

ρ → 0 无论 ϕ 如何,A几乎不变
ρ →1 ϕ = 0,2π,4π,L 时,A=Amax,ϕ 稍有偏离,A→0。
纵坐标为透射光干涉的相对光强

作爱里函数曲线 亮条纹宽度↓ 暗条纹强度↓
ρ↑
条纹的锐度和可见度↑!
等比数列 等差数列
ϕ


透射光相互平行,通过L2在焦平面上形成薄膜干涉条纹。 ▲ 两束透射光的位相差: 2π 4π ϕ= δ= n2 h cos i2 I22 与 I11: δ = 2n2 h cos i2
λ
λ
I33 与 I11: 2δ I44 与 I11: …


与迈克耳孙干涉 仪的完全相同。
1897年发明 法布里—珀罗空腔谐振器
20世纪50年代中期,肖洛与美国著名物理学家汤斯共同研究微波激射问 题。当汤斯提出受激辐射放大原理时,肖洛第一个提出运用没有侧壁的开放 式法布里-珀罗腔作振荡器的设想。1960年,他和汤斯研制出第一台激光器。
法布里—珀罗干涉仪 为了得到十分狭窄、边缘清晰、十分明亮的干涉 条纹,采用位相差相同的多光束干涉系统。 一、实验装置 面光源 s 放在透镜L1的 焦平面上 。 接收屏s’放在透镜L2的 焦平面上。 透明板G1//G2,其相向的 平面上渡有高反射膜, 要求渡膜表面很平(与 标准样板的偏差不超过 1/20—1/50波长)。
----多缝的干涉 波前分割 ----多缝的干涉
提高介质表面的反射率, 提高介质表面的反射率,使多束反射光或透射光参与干涉
介质表面上的多次反射和透射
多次反射和透射产生的多光束干涉

多光束干涉特点 -回复

多光束干涉特点 -回复

多光束干涉特点 -回复
多光束干涉是一种光学现象,它所具有的特点包括以下几个方面。

多光束干涉是指当两个或多个光束相遇时,它们会产生干涉现象。

这些光束可以来自同一光源的不同路径,也可以来自不同的光源。

在干涉过程中,光的波动性起到关键的作用。

多光束干涉显示出明暗相间的干涉条纹。

这些条纹由光的波长和路径差决定。

当两束光的波长相同且光程差为整数倍波长时,干涉达到最大,呈现出明亮的区域。

相反,当光程差为半整数倍波长时,干涉达到最小,呈现出暗淡的区域。

多光束干涉可以用于测量物体厚度、薄膜厚度及表面形貌等。

通过测量干涉条纹的移动或变化,可以推导出被测物体的相关参数。

这种干涉技术在科学研究、工业生产和医学诊断等领域有着广泛的应用。

多光束干涉还可用于制造光栅和分光仪等光学元件。

光栅是一种具有周期性结构的光学器件,能够将入射光分散成不同的波长。

而分光仪则利用光的干涉现象对不同波长的光进行分离和检测,从而实现光谱分析和测量等任务。

多光束干涉是一种重要的光学现象,具有干涉条纹明暗变化、广泛的应用领域以及用于制造光学元件等特点。

这些特点使得多光束干涉在光学研究和实际应用中发挥着不可替代的作用。

多光束干涉原理

多光束干涉原理

多光束干涉原理
多光束干涉是一种光学现象,它是由多束光线相互干涉而产生的。

在多光束干涉中,光线经过不同路径传播后再相遇,产生干涉现象。

多光束干涉原理是光的波动性质所决定的,它是光学中重要的现象之一。

多光束干涉的原理可以用干涉条纹来解释。

当两束光线相互干涉时,它们的光程差会导致光的相位发生变化,从而产生明暗交替的条纹。

在多光束干涉中,不同的光线经过不同的路径传播后再相遇,它们的光程差会导致不同的干涉条纹。

这些干涉条纹的分布规律可以用来研究光的波动性质和介质的光学性质。

多光束干涉的原理还可以用干涉仪来实验。

干涉仪是一种用来观察干涉现象的仪器,它可以产生多束光线并使它们相互干涉。

通过干涉仪可以观察到干涉条纹的形成和分布,从而研究光的波动性质和介质的光学性质。

多光束干涉的原理在实际应用中具有重要意义。

例如,在光学显微镜和干涉测量仪中,都会利用多光束干涉原理来实现光学成像和精密测量。

通过对多光束干涉原理的研究和应用,可以更好地理解光的波动性质和介质的光学性质,从而推动光学技术的发展和应用。

总之,多光束干涉原理是光学中重要的现象之一,它是由光的波动性质所决定的。

通过对多光束干涉原理的研究和应用,可以更好地理解光的波动性质和介质的光学性质,从而推动光学技术的发展和应用。

多光束干涉原理的研究不仅有理论意义,还具有重要的应用价值,对光学技术的发展和应用具有重要的推动作用。

多光束干涉

多光束干涉

光强最大.
由:N k (k 0,1 )
2
若 N k 2 k (k N,2N )
2
N
Imin 0 光强最小!
7
1 - 5 法布里-泊罗干涉仪 第1章 光的干涉
在相邻最大光强之间有(N-1)个最小光强,还 有次极大光强.
次极大光强位置:利用 dI / dδ = 0 可解得;

I
a2
(k’=2N)
存在的次极大光强.
将“超越函数”平方,可得:s in 2
N
/
2
N 2 tan2
1 N 2 tan2
/
2 /2
N
tan
tan
N
2
2
1
N (N
2 2
sin2 / 2 1)sin2
/
2
9
1 - 5 法布里-泊罗干涉仪 第1章 光的干涉
1
N (N
2 2
sin2 / 2 1)sin2
多光束合成的光强:
I
A2
~2 A
a2
(1 eiN )(1 eiN ) (1 ei )(1 ei )
a2
2 (eiN 2 (ei
eiN ) ei )
a2 1 cos N 1 cos
a2
sin2 N / 2 sin2 / 2
合成的光强!
3、讨论光强分布特点:
5
1 - 5 法布里-泊罗干涉仪 第1章 光的干涉
用一独立光源的
光线,入射到两个平
行的介质板中,利用
光的反射、折射形成
多光束干涉.
dn
其中:Δ 2nd cos
P
2 2nd cos (半波损失抵消) 0

多光束干涉.jsp

多光束干涉.jsp

k 2nh s in k
瑞 δθ>Δθk双谱线可分辨
利 判
δθ<Δθk双谱线不可分辨
据 δ θ =Δθ k刚刚能分辨
令δ θ =Δθ k
m
Rc
k
m
1 R R
k R
1 R
例题 : 一FP仪,腔长h〜2cm,镀膜反射率R〜0.98, 试求出在波长〜500nm附近的最小波长间隔和分辨本 领


~
U
~
1
(tt ) A0
射 多 光
U
~
2
r2 (tt)ei A0
U
~
3
r4 (tt)ei(2 ) A0
束 U 4 r6 (tt)ei(3 ) A0

n1 i nө n2
1 23 45
1’ 2’ 3’ 4’
公比:r2ei
2 2nhcos
公比:r2ei
3.反射、透射场的光强分布和特点
等比级数求和公式
k 2nh 2 2cm 8104
500nm
m
500nm
8104
1 0.98 1
4105 nm
Rc 107
这个分辨率是极高的,足可以分辨由塞曼效应导致的 谱线分裂。钠光双黄线589.0nm和589.6nm,在外磁 场103高斯(即0.1T)时所分裂的谱线差约10-4nm。
4. FP仪的自由光谱范围
§4.9 多光束干涉 法布里-珀罗干涉仪
一.多光束干涉的光强分布和特点
二.法布里--珀罗干涉仪用于分辨超精细光 谱
三.法布里-珀罗谐振腔的选频功能
一.多光束干涉的光强分布和特点 1.相干多光束的形成
n1 i
1 23 45

多光束干涉

多光束干涉

补充:自由光谱范围 设 1、2 1 2 ( )二光以相同方向射入F-P标准具,各生
一组同心环状亮条纹。 对同一级次 k(二波长亮圆环有一定位移)
(k 1)2 k 2 k 1
(k 1)1
设波长差大到某一 值,二圆环重合
2h cos i k1 (k 1)2
2 1
2
6.1
多光束干涉强度分布公式
A
P 1
i
P2
At
Atr 2 Atr 4
Ar Artt '
Ar 3tt ' Ar 5tt '
Atr Atr 3
Att '
Att ' r 2 Att ' r 4
r 2 为镀银面的强度反射系数
当 r 1 , t 1时,反射光中 t
r tt 1
ik 4 10 rad 0.001
(2) i 固定, 变化(非单色平行光入射) 由于多光束干涉,在很宽的光谱范围内只有某些特定 波长 k 附近出现极大。 当i
0 时,k 满足 2nh kk (k 0,1, 2...)
2nh k k
kc vk k 2nh
2
2
将此值代 入IT 表达式:
I0 I0 IT I0 2 2 2 4 R sin ( / 2) 4 R( 4) 1 1 2 (1 R) (1 R)2
可得
2(1 R ) (*) 定量说明R对干涉条纹锐 度的影响。 R
R 1, 0 ,即反射率越大,干涉条纹的锐度越大。
由等比级数公式
首项 级数和 1 公比

UT
Att 1 r 2 ei

多光束干涉条纹特点

多光束干涉条纹特点

多光束干涉条纹特点多光束干涉(DBI)是一种物理学现象,它是由多条平行的光束经过一个孔或立方体,然后形成一系列具有重复特征的条纹现象。

这些条纹也被称为多光束干涉条纹。

此外,多光束干涉条纹也可以被说明为由多个平行的光束在光的波长当中碰撞,产生的结果。

在物理学中,多光束干涉条纹的形成有一些关键的特点。

首先,当有多个光束通过一个孔或立方体时,彼此之间会产生干涉现象。

这是因为每一个光束都会在孔穴或立方体墙壁上反射,随后重新进入其他孔穴,从而形成了一种类似“相位差”的现象。

其次,在这种干涉现象下,最终实现的特征便是产生条纹。

此外,这些条纹也会随着时间发展变化,因此也有分为运动条纹和静止条纹的区分。

最后,由于条纹是由多条光束碰撞形成的,因此也可以说明多光束干涉条纹的特点,比如,光束的多少、多光束的相位差和共面波导路径等。

多光束干涉条纹特点的研究领域多光束干涉条纹的特点也影响了它在研究领域的应用。

首先,多光束干涉条纹的特点可以用于在光的波长当中测量和比较多光束的位移大小,从而增加了光学实验可以做的精确性和直观性。

此外,多光束干涉条纹的特点也可以用于检测多光束的时间延迟等特性,这可以极大的提升测量准确度。

此外,多光束干涉条纹的特点也有助于改善实验设备的测量性能,以及提高实验精确度。

多光束干涉条纹特点的实际应用多光束干涉条纹的特点也有多个实际应用。

首先,多光束干涉条纹的特点可以用于科学研究,例如,多光束干涉实验可以用来研究多光束的干涉现象,以及光线在量子范畴中的行为等。

此外,多光束干涉条纹的特点也可以用于实验仪器的设计和开发,例如,它可以用于激光测距仪的精确测量,以及光学探测器的特性测试和诊断等。

最后,多光束干涉条纹的特点也可以用于大规模的工业应用,例如,它可以用于实现军事卫星的技术发射以及精确的定位系统、运营模拟系统和工厂自动化控制系统等。

总结从上述可以看出,多光束干涉条纹的特点是当有多个光束通过一个孔或立方体时,彼此之间会产生干涉现象,最终实现的特征便是产生条纹。

多光束干涉

多光束干涉

法布里-珀罗干涉仪和陆末-盖尔克板
一、法布里-珀罗干涉仪:
S L1
F-P干涉仪由两块略带楔角
的玻璃或石英板构成。如图 所示,两板外表面为倾斜, G1 使其中的反射光偏离透射光 G2 的观察范围,以免干扰。 L2 两板的内表面平行,并镀有 高反射率膜层,组成一个具 有高反射率表面的空气层平 P 行平板。 法布里-珀罗干涉仪简图
r Im 0
平行平板的多光束干涉
对于透射光方向: 形成亮条纹和暗条纹的条件分别为 2m 和 2m 1 m 0,1,2 而强度分别为 1 t i t i I I IM I 和 m


1 F 可见,不论是在反射光方向或透射光方向,形成 亮条纹和暗条纹的条件都与双光束干涉时在相应 方向形成亮暗条纹的条件相同,因此条纹的位置 也相同。
平行平板的多光束干涉
3.条纹强度随反射率R的变化。 当反射率R很小时 4 R 由于 F 2 1 R 远小于1 2

I
r
I t
F 2 2 I F sin 1 cos 2 2 1 F sin 2 2 1 F i 2 I 1 F sin 1 1 cos 2 2 2 1 F sin 2
i
F sin
平行平板的多光束干涉

与双光束干涉强度分布公式
比较可知 上两式正是双光束干涉条纹的强度分布, 其表明,当反射率R很小时,可以只考虑 头两束光的干涉。
I I1 I 2 2 I1I 2 cos 0
平行平板的多光束干涉
透射光条纹
反射光条纹
透射光条纹:
(1)、当R很小时,极大→极小变化不大,条纹对比度很差。

物理光学-多光束干涉

物理光学-多光束干涉

不难看出i 不难看出i=0对应于各级圆形干涉 对应于各级圆形干涉 条纹共有的圆心。 条纹共有的圆心。
L1 G1
d G2 L2 P
∆ t = 2d n 2 − sin 2 i
此处光程差最大,干涉级最大: 此处光程差最大,干涉级最大:
S
i
i
法布里-珀罗干涉仪简图 法布里-
m ( 0) =
2nd
λ0
m (i ) =
干涉仪用扩展光源发出的发 散光束照明,如图所示, 散光束照明,如图所示,在 透镜L2焦平面上将形成一 透镜 焦平面上将形成一 系列很窄的等倾亮条纹。 系列很窄的等倾亮条纹。
d L1 G1 G2 L2 P S
i
i
2.干涉条纹分布规律 干涉条纹分布规律
法布里- 法布里-珀罗干涉仪简图
∆ϕ =

λ0
d n − sin i
两相邻透射光线的光程差: 两相邻透射光线的光程差:
∆ t = 2n AB − AD
E0 i
n
Er1 Er2 Er3
= 2nd cos i '
= 2d n 2 − sin 2 i
两相邻透射光线的相位差: 两相邻透射光线的相位差:
B
i'
A D C
d
∆ϕ =

λ0
∆t =

λ0
d n − sin i
反射率越高,条纹越细锐。 反射率越高,条纹越细锐。
2π π R N= = b 1− R
3.4.3 F-P干涉仪的应用 干涉仪的应用 1.研究光谱的精细结构 研究光谱的精细结构 常用来测量波长相差很小的两条光谱线的波长差, 常用来测量波长相差很小的两条光谱线的波长差,即光谱 学中的超精细结构。 学中的超精细结构。

1.10多光束干涉(Multiple-beam interference)

1.10多光束干涉(Multiple-beam interference)

三、光强计算 多束透射光叠加的合振幅(计算过程见附录1-5):
A2 = A0
2
4ρ 2 1 + (1 ρ ) 2 sin 2
1 4ρ 2 1+ sin 2 (1 ρ ) 2
爱里函数
4ρ F = (1 ρ ) 2
精细度,描述干涉 条纹的细锐程度
四、极值条件 由
A =
2
1897年发明 法布里—珀罗空腔谐振器
20世纪50年代中期,肖洛与美国著名物理学家汤斯共同研究微波激射问 题。当汤斯提出受激辐射放大原理时,肖洛第一个提出运用没有侧壁的开放 式法布里-珀罗腔作振荡器的设想。1960年,他和汤斯研制出第一台激光器。
法布里—珀罗干涉仪 为了得到十分狭窄、边缘清晰、十分明亮的干涉 条纹,采用位相差相同的多光束干涉系统。 一、实验装置 面光源 s 放在透镜L1的 焦平面上 。 接收屏s’放在透镜L2的 焦平面上。 透明板G1//G2,其相向的 平面上渡有高反射膜, 要求渡膜表面很平(与 标准样板的偏差不超过 1/20—1/50波长)。
N 等

}
Nφ/2
φ/2
6 时 的 等 振 幅 多 光 束 干 涉 光 强 分 布 曲 线
ρ ↑ 可见度愈显著
讨论 ▲ A与 ρ 的关系 由
A =
2
A0
2
4ρ 1+ sin 2 (1 ρ ) 2 2
ρ → 0 无论 如何,A几乎不变
ρ →1 = 0,2π ,4π ,L 时,A=Amax, 稍有偏离,A→0。
纵坐标为透射光干涉的相对光强

作爱里函数曲线 亮条纹宽度↓ 暗条纹强度↓
2
0 2 A1 则其折射率为 γ = 1 ρ = A 0

多光束干涉原理

多光束干涉原理

多光束干涉原理
多光束干涉是一种光学现象,它是由多束光波相互叠加而产生的干涉现象。


多光束干涉中,多束光波相互叠加后会形成一种特殊的干涉图样,这种图样可以用来研究光的波动性质,也可以用来测量光的波长、光的相位等。

多光束干涉的原理可以用菲涅尔-基尔霍夫原理来解释。

根据菲涅尔-基尔霍夫
原理,光波在传播过程中会受到各种障碍的影响,这些影响会导致光波的相位发生变化。

当多束光波相互叠加时,它们的相位差会导致干涉现象的产生。

具体来说,当两束光波相遇时,如果它们的相位差为整数倍的波长,那么它们就会发生相长干涉;如果相位差为半波长的奇数倍,那么它们就会发生相消干涉。

通过这种方式,多光束干涉就可以形成一系列明暗条纹,这些条纹的位置和形状可以用来研究光波的性质。

多光束干涉在实际应用中有着广泛的用途。

例如,在光学显微镜中,可以利用
多光束干涉来观察微小物体的细节结构;在光栅光谱仪中,可以利用多光束干涉来测量光的波长和频率;在激光干涉仪中,可以利用多光束干涉来测量物体的形状和表面质量。

由于多光束干涉具有高分辨率、高灵敏度和非接触性等优点,因此在科学研究和工程技术中得到了广泛的应用。

总之,多光束干涉是一种重要的光学现象,它可以用来研究光的波动性质,也
可以用来测量光的波长、光的相位等。

在实际应用中,多光束干涉具有广泛的用途,它在科学研究和工程技术中发挥着重要的作用。

希望通过对多光束干涉原理的深入理解和研究,可以进一步推动光学领域的发展,为人类社会的进步做出更大的贡献。

10.2 多光束干涉

10.2 多光束干涉
2n 2 n ′ 2θ 1 h
一般h使用范围为(1,200mm),特殊情况下 可以达到1m, 实际分析是还要注意到介质中的吸收问题!
应用一:研究谱线的精细结构
h固定(标准具)往往用来测量波长差非常小 的两条谱线的波长差,光谱学中的超精细结 构。 问题:有哪些一起可以用来分光或者研究波 长差?优缺点是什么?
瑞利判据
只有当合强度曲线中央的最小值低于两边极大值的0.81倍才能被区分!!! 倍才能被区分!!! 只有当合强度曲线中央的最小值低于两边极大值的 倍才能被区分
可分辨
刚可分辨
不可分辨 非相干叠加
分辨本领(透射光多光束干涉)
刚可分辨
I=I
(t ) 1
+I
(t ) 2
=
I (i ) 1 + F sin 2
n: tt ′r ′(2 n −3) A( i ) E n ( r ) = tt ′r ′(2 n −3) A( i ) exp[i (ϕ0 − ωt + (n − 1)δ )]
A( r ) = rA( i ) + tt ′r ′A( i ) exp(iδ ) + tt ′r ′3 A( i ) exp(2iδ ) +tt ′r ′5 A( i ) exp(3iδ ) + ... + tt ′r ′(2 n −3) A(i ) exp[i (n − 1)δ ] + ... + = {r + tt ′r ′ exp(iδ )[1 + r ′2 exp(iδ ) + r ′4 exp(2iδ ) + ...+]} A( i ) = [r + tt ′r ′ exp(iδ ) 1 ] A( i ) 2 1 − r ′ exp(iδ )

多光束干涉FP干涉仪

多光束干涉FP干涉仪

U(z)
0
0 z
0 1
时间相干性的反比公式 两列波到达某点光程差大于波列长度时,它们不能相遇,因 而不可能进行叠加 波列的有效长度
两列波的光程差 L0, 到达的时间差t 0,
可以相遇,进行干涉。
两列波的光程差 L0, 到达的时间差t 0,
不能相遇, 无法进行干涉。
非单色波不是定态光波,所以其在空间是一有限长的波列。 不是在所有的地方,两列光波都能够相遇。
光源谱宽之间的关系
2 I( ) C ( )[e 2 x i) p d ] ( 4 ( ) E
2 2 对
进行傅立叶变换后,得到以
是 衰减常数,对(3)
为中心的光谱图,自相关函数的衰减而使得光谱 展宽。从光谱学可知,可以把(3-2)式写成指数 形式:
0式进行傅立叶变换后, 得到洛仑兹型光纤光谱:
2
工作点选取:
选择工作点在谐振曲线 的斜率最大点,
这时的灵敏度最大。
对于干涉式光纤传
感器,其的光学灵
G () d y 4 a2{ K 2 (2 b c )(2 b c )2 8 c 2 4 c 敏2 度2 (2 用b c )2 } 1 /2
d
{ 6 b 3 c(c 2 b )2 示 8 c :2 } 2
i[0(n1)]
A1/2(1)ei0
e N n1i(n1)
n2
A1/2(1)ei0 e N1nin n1
1e NA1/2ei0[1(11e)eii]
1/2 i0
i
A e (1e ) A1/2(1)ei0ei[11Nei1e(N1)]
i
2 A1/2ei0(11eeii)
2A (1cos) A2(11eeii)(11eeii) 12cos2 A211(eeiieeii)12

平行平板的多光束干涉

平行平板的多光束干涉
*
从平板反射出的各个光束的复振幅
根据菲涅耳公式,可以证明
由平板表面反射系数、透射系数与反射率、透射率的关系
反射光在P点合成光场的复振幅
所有反射光在P点叠加,其合成场复振幅
由I=E·E*, 得到反射光强与入射光强的关系为
式中
精细度,描述干涉条纹的细锐程度
类似地,也可得到透射光强与入射光强的关系式:
相邻透射光相位差处于半宽度Δ内的光才能透过平行平板。
在平板结构(n,h)给定,入射光线方向()一定的情况下,仅与波长有关。- -滤波
将改写
滤波宽度
滤波特性
It/Ii-曲线 可得滤波带宽 可见,R愈大,滤波效果愈好。- -高反膜F-P可以用白光作光源,也可以得到细而亮的多光束干涉条纹。 可作单色滤波器使用。 中心频率 频宽
光强分布与反射率R有关
条纹宽度
It/Ii-曲线 若用条纹的半峰值全宽度(简称半值宽度)ε=Δ表征干涉条纹的锐度,则当 时 若F很大(即R较大),ε必定很小,有sinε/4≈ε/4,F(ε/4) 2=1, 因而可得 ε是单色光照射下多光束干涉条纹的半值宽度,称为”仪器宽度“。
(3)频率特性
It/Ii-曲线
概述
双光束干涉的不足与多光束干涉 平行平板多光束的光场分布 平行平板多光束的光强分布 多光束干涉图样特点 透射光的特点
2.2 平行平板的多光束干涉
双光束干涉的不足与多光束干涉
1
平行平板双光束干涉,仅是在表面反射率较小情况下的一种近折射,如图所示
3
平行平板多次反射、折射对反射光、透射光在无穷远处或透镜焦平面上的干涉均有贡献;
(2) 等倾性
由爱里公式可以看出,干涉光强随R和变化。 在特定的R条件下,仅随变化。

多光束干涉原理的应用

多光束干涉原理的应用

多光束干涉原理的应用引言多光束干涉原理是光学中重要的基础原理之一,它在科学研究和工程应用中有着广泛的应用。

本文将介绍多光束干涉原理的基本概念,以及其在实际应用中的几个典型案例。

多光束干涉原理简介多光束干涉原理是指两个或多个光波在空间中相遇时,根据波的叠加原理产生相干干涉的现象。

在干涉中,光波的波动特性会相互干涉,使得干涉图样的强弱和形状发生变化。

多光束干涉主要包括Young干涉和Michelson干涉等。

多光束干涉在光学显微镜中的应用光学显微镜是一种非常常见的光学仪器,用于放大和观察微小物体。

多光束干涉在光学显微镜中有着重要的应用。

通过在显微镜中引入多光束干涉,可以提高显微镜的分辨率和成像清晰度,使得微观物体的细节更加清晰可见。

具体应用中,可以使用多光束干涉技术构建一种称为共焦显微镜的显微镜系统。

共焦显微镜利用不同光束的干涉特性,可以产生非常高分辨率的图像,使得观察物体的分辨率可以达到纳米级别。

这种显微镜在生物医学研究和材料科学等领域有着广泛的应用。

多光束干涉在光谱分析中的应用光谱分析是一种重要的物质检测和分析手段,通过分析物质的吸收、发射或散射光谱,可以获得物质的组成和性质信息。

多光束干涉在光谱分析中也发挥着关键的作用。

多光束干涉可以通过分光仪将不同波长的光波分离出来,并进行干涉分析。

例如,Michelson干涉仪可以将入射的白光分解成不同波长的光束,并通过干涉现象来分析各波长光的强弱和相位差。

这种方法在光谱仪器中应用广泛,可以用于分析物质的组成和测量光学材料的性质。

多光束干涉在全息投影中的应用全息投影是一种基于多光束干涉原理的先进影像技术,它可以产生逼真的三维图像。

多光束干涉在全息投影中的应用使得投影出的图像具有立体感和深度,可以提供更加真实的观感体验。

在全息投影中,光波经过干涉后产生的光栅可以将物体的三维信息编码到光场中。

通过适当的光栅和成像系统,可以实现透过特定光场观察到真实的三维图像,产生出立体投影效果。

多光束干涉

多光束干涉
2

4
1/ 2 )
2 , sin( / 4) / 4
4 2(1 R) F R
4
R越大 越小—条纹越细锐
可化成以折射角为自变量的半值宽度
Δ
亮环越细 1 R Δi 2nh sin i R 角半宽度 同一透射亮纹的两个半强度点的角宽度 Δi
总的透射光束在P’的合振幅
~ ~ ET Ei tt A(1 r 2ei r 4ei2 r 6ei3 ...)
无穷级等比级数
~ ET
tt A 1 r 2 e i
利用斯托克斯公式
r r ,1 r tt
2
2
~ (1 r ) A ET 1 r 2ei
2
4R (1 R) 2
IT I 0
1
2
4 R sin ( ) 2

1 F sin ( ) 爱 2 里 F sin ( ) 2
2 2


I R I0
1 F sin ( ) 2

公 式
二. 干涉条纹特点
1. 条纹的形状和定域
I 0 , R 一定 I R , IT 取决于 i, i
P’点光强
~ ~ I T ET ET
(1 r ) A 1 r 2 cos r 4
2 2
R r , I0 A
2
2
IT
I0
2
4 R sin ( ) 2 1 (1 R ) 2

对应 i 的入射光 屏上 P’点
引入精细系数 F
I 0 IT I R I R I 0 IT 1 I0 (1 R) 2

多光束干涉的过程和原理

多光束干涉的过程和原理

多光束干涉的过程和原理
多光束干涉是一种干涉现象,它涉及到两个或更多个光波的干涉。

这些光波可以来自不同的光源,也可以来自同一光源的不同部分。

以下是多光束干涉的原理和过程。

1. 原理
多光束干涉的原理基于光波的相位差。

当两个或更多个光波相遇时,它们会相互干涉。

如果它们处于同一相位,它们将会增强,而如果它们处于相反相位,它们将会抵消。

2. 过程
多光束干涉的过程可以通过杨氏双缝干涉实验来理解。

在这个实验中,一束单色光穿过两个非常细小的缝隙,这些缝隙被称为“双缝”。

光线通过双缝后形成了一系列的光波,这些光波会相互干涉。

在某些地方,这些光波会相加,形成亮条纹,而在其他地方,这些光波会相消,形成暗条纹。

这种亮暗条纹的形成是由于光波的相位差所引起的。

另一种多光束干涉的例子是薄膜干涉。

在这种情况下,光线穿过一个薄膜,因为不同的波长具有不同的相位差,所以会产生干涉条纹。

这些条纹可以用来确定薄膜的厚度。

总之,多光束干涉是一种重要的干涉现象,它可以用来测量光学元件的性质,如薄膜的厚度和折射率。

光学实验中多光束干涉的技巧与应用

光学实验中多光束干涉的技巧与应用

光学实验中多光束干涉的技巧与应用光学实验中多光束干涉是一种重要的实验技术,广泛应用于光学领域的研究与实践中。

本文将介绍多光束干涉的原理和技巧,并探讨它在实验研究和应用中的一些典型案例。

一、多光束干涉的原理多光束干涉是指当多束光线相互叠加或相互干涉时所产生的干涉效应。

其原理基于光波的波动性和叠加原理。

实验中常用的多光束干涉装置包括杨氏双缝干涉实验、光栅干涉实验等。

杨氏双缝干涉实验是最基础的多光束干涉实验之一。

其装置包括一块具有两个狭缝的屏幕、一束单色光和一个幕后观察屏。

单色光通过两个狭缝后,将形成一系列等间距的亮暗条纹。

这些条纹是由两束光线的干涉所产生的,亮条纹对应着相长干涉,暗条纹则对应着相消干涉。

光栅干涉实验则是一种更加复杂的多光束干涉实验。

光栅是由许多平行等间距的透明或不透明条纹组成的光学元件。

入射光通过光栅后,会发生衍射和干涉现象,形成一系列明暗相间的光斑。

这些光斑的位置和强度分布可用于研究光的波长、线宽以及对物质的相互作用等。

二、多光束干涉的技巧在进行多光束干涉实验时,我们需要注意一些实验技巧,以确保实验结果的准确性和稳定性。

首先,实验室应具备良好的光学实验条件,包括光线稳定、实验装置对齐准确以及干涉环境的控制等。

光线的稳定性对于多光束干涉实验至关重要,我们需要保证光源的稳定性,以及用于探测干涉图样的光学设备的准确性。

其次,调整实验装置时,应注重各个光学元件的对齐和调整。

例如,在杨氏双缝干涉实验中,我们需要将两个狭缝和观察屏之间的距离、狭缝的宽度以及入射光的角度等参数进行调整,以获得清晰的干涉条纹。

此外,实验中还需要注意光的偏振状况对干涉实验的影响。

偏振光干涉实验可以通过调整偏振片的方向来研究光的偏振特性,并且在一些特殊材料的研究中具有广泛的应用。

三、多光束干涉的应用多光束干涉在科学研究和实际应用中发挥着重要的作用。

下面将介绍一些典型的应用案例。

1. 光学液晶显示器光学液晶显示器是一种利用多光束干涉原理来控制光的透射和反射的装置。

多光束干涉与光学薄膜

多光束干涉与光学薄膜

光学薄膜制备与测试
根据需要选择合适的薄膜材料和制备 技术,如真空镀膜、化学气相沉积等 。
对制备好的光学薄膜进行光学性能测 试,如反射光谱、透射光谱、偏振特 性等。
02
多光束干涉原理
多光束干涉现象
当两束或多束相干光波在空间某一点叠加时,光波的振幅会发生变化,导致光强分 布出现周期性的变化,这种现象称为多光束干涉。
未来研究的方向与建议
1 2
加强基础研究
未来应加强多光束干涉与光学薄膜的基础研究, 深入了解其物理机制和光学特性,为实际应用提 供理论支持。
创新加工工艺
研究新型的多光束干涉与光学薄膜加工工艺,提 高加工精度和效率,降低生产成本。
3
跨学科合作
加强多学科之间的合作,如物理学、化学、材料 科学等,以推动多光束干涉与光学薄膜技术的快 速发展。
和寿命。
光学仪器
用于制造各种光学仪器 中的薄膜元件,如望远 镜、显微镜、照相机等。
能源领域
用于太阳能光伏发电中 的薄膜制备,提高光电
转换效率和稳定性。
装饰和防护
用于制造各种装饰和防 护用的薄膜,如汽车玻 璃贴膜、建筑玻璃贴膜
等。
04
多光束干涉与光学薄膜的结合应用
多光束干涉在光学薄膜设计中的应用
优化光学性能
当前研究的挑战与问题
稳定性问题
01
多光束干涉与光学薄膜在实际应用中面临稳定性问题,需要进
一步研究以提高其长期稳定性和可靠性。
加工工艺还存在一定的限制,难
以实现大规模生产。
光学性能优化
03
如何进一步提高多光束干涉与光学薄膜的光学性能,如反射率、
透过率等,是当前研究的重点问题。
多光束干涉与光学薄膜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章多光束干涉
4.1法布里-珀罗(F-P)标准具两反射面的反射系数为0.8944,求(1)条纹的位相差半宽度;(2)条纹精细度。

4.2分别计算R=0.5, 0.8, 0.9, 0.98时,F-P标准具条纹的精细度。

4.3F-P标准具的间隔h=2mm,所使用的单色光波长=632.8nm,聚焦透镜的焦距f=30cm,试求条纹图样中第5个环条纹的半径。

(设条纹图样中心正好是一亮点。


4.4将一个波长稍小于600nm的光波与一个波长为600nm的光波在F-P干涉仪上进行比较。

当F-P干涉仪两镜面间距离改变1.5mm时,两光波的条纹系就重合一次,试求未知光波的波长。

4.5F-P标准具的间隔为2.5mm,问对于=500nm的光,条纹系中心的干涉级是多少?如果照明光波包含波长500nm和稍小于500nm的两种光波,它们的环条纹距离为1/100条纹间距,问未知光波的波长是多少?
4.6F-P标准具两镜面的间隔为0.25mm,标准具产生的
1谱线的干涉环系中第2环和第5环的半径为2mm和3.8mm,
2谱线的干涉环系中第2环和第5环的半径分别为2.1mm和
3.85mm。

两谱线的平均波长为500nm,试决定两谱线的波长差。

4.7在4.3题中,如果标准具两镜面的反射率为R=0.98,(1)标准具所能测量的最大波长差是多少?(2)所能分辨的最小波长差是多少?
4.8已知汞同位素在绿光的四条特征谱线的波长分别为
546.0753nm,546.0745nm,
546.0734nm, 546.0728nm,它们分别属于汞的同位素Hg198, Hg200, Hg202, Hg204。

问用F-P标准具分析这一结构时,如何选取标准具的间隔?(设标准具两镜面的反射率R=0.9。


4.9如果把激光器的谐振腔看作为一个F-P标准具,激光器的腔长h=0.5m,两反射镜的反射率为R=0.99,试求输出激光的频率间隔和线宽(设气体折射率n=1,输出谱线的中心波长=632.8nm)。

4.10F-P干涉仪两反射镜的反射率为0.5,试求它的最大透射率和最小透射率。

若干涉仪为一折射率为n=1.6的玻璃平板所代替,最大透射率和最小透射率又是多少?(不考虑系统的吸收。


4.11在上题中,若考虑到干涉仪镜面的吸收,其吸收率为0.05,试求干涉仪最大透射率和最小透射率。

4.12如图所示,F-P标准具两镜面的间隔为1cm,在其两侧各放一个焦距为15cm的准直透镜L
1和会聚透镜L
2。

直径为1cm的光源(中心在光轴上)置于L
1的焦平面,光源发射波长为589.3nm的单色光;空气的折射率为1。

(1)计算L
2焦点处的干涉级。

在L
2的焦面上能观察到多少个亮条纹?其中半径最大条纹的干涉级和半径是多少?(2)若将一片折射率为1.5,厚为0.5mm的透明薄片插入标准具两镜面之间,插至一半位置,干涉环条纹将发生怎样的变化?
12题图
4.13法布里—珀罗干涉仪中镀金属膜的两玻璃板内表面的反射系数为
r0.8944,试求(1)锐度系数;(2)条纹半宽度;(3)条纹锐度。

4.14法布里—珀罗干涉仪常用来测量波长相差很小的两条谱线的波长差。

设干涉仪两板的间距为0.25mm,它产生的
1谱线的干涉环系中第2环和第5环的半径分别为2mm和3.8mm,
2谱线的干涉环系中第2环和第5环的半径分别为2.1mm和3.85mm。

两谱线的平均波长为500nm。

试决定两谱线的波长差。

4.15已知汞绿线的超精细结构为546.0753nm,546.0745nm,546.0734nm,546.0728nm,它们分别属于汞的同位素Hg100,Hg200,Hg202,Hg204。

问用法布里—珀罗标准具(两板间距固定的法布里—珀罗干涉仪)分析这一结构时如何选取标准具的间距?(设标准具板面的反射率R0.9)。

4.16激光器的谐振腔可以看作是一个法布里—珀罗标准具。

(1)导出激光器输出激光的频率间隔表示式;(2)导出输出谱线宽度的表示式;(3)若氦氖激光器腔长h0.5m,两反射镜的反射率R0.99,输出激光的频率间隔和谱线宽度是多少?(设气体折射率n1,输出谱线的中心波长632.8nm)。

相关文档
最新文档