分子生物实验报告及讨论
医学分子生物学pcr实验报告
医学分子生物学pcr实验报告医学分子生物学PCR实验报告一、实验目的•理解PCR原理及其在医学分子生物学中的应用•掌握PCR实验操作流程及技巧•学会分析实验结果并撰写实验报告二、实验原理•PCR是聚合酶链式反应 (Polymerase Chain Reaction) 的缩写•通过使用DNA聚合酶对特定DNA片段进行指数级扩增•用于诊断疾病、基因检测、基因表达分析等领域三、实验材料•被测样本DNA•引物 (Primer) 对•2x Taq Master Mix•无水乙醇•DNase/RNase-free deionized water•加热式PCR仪•凝胶电泳设备及相关试剂四、实验步骤1.设计并合成引物•根据目标序列选择特异性引物•检查引物的特异性和二聚体形成情况2.准备PCR反应混合液•按照实验设计,计算并配置各试剂的浓度和体积•将样本DNA、引物、2x Taq Master Mix和DNase/RNase-free水混合3.PCR扩增•设定PCR仪的温度和循环次数参数•将反应混合液放入PCR仪,开始扩增4.PCR产物检测•准备1%琼脂糖凝胶,加入适量甲醛•将扩增后的PCR产物进行凝胶电泳•观察电泳结果,分析PCR产物的分子量和条带强度5.结果分析及报告撰写•根据实验结果,分析样本中目标基因的存在与否•撰写实验报告,并对实验过程和结果进行讨论五、实验注意事项•避免引物二聚体的产生,以提高实验特异性•掌握PCR扩增的温度、时间和循环次数参数•减少实验中的污染,以提高实验准确性•正确分析实验结果,避免误判六、实验结果分析•经过PCR扩增后,观察到目标基因片段的明显条带•结果符合预期,证明实验成功•对异常结果进行讨论,分析可能的原因及改进措施七、结论•PCR实验在医学分子生物学中具有重要意义•通过本次实验,我们掌握了PCR实验的操作流程和技巧•实验结果可为疾病诊断、基因检测等提供有力依据Hello! How can I help you today? If you have any questions or need assistance, feel free to ask.。
分子生物学综合实验报告
分子生物学综合试验报告综合实验Ⅰ.Southern杂交(质粒DNA提取、PCR技术体外扩增DNA、质粒载体和外源DNA的连接反应、地高辛标记的Southern杂交)一.实验目的1.学习Southern杂交的原理及操作方法。
2.学习碱裂解法提取质粒的原理。
3.学习PCR反应的基本原理和实验技术;了解引物设计的一般要求。
4.掌握DNA体外连接的基本技能,了解连接反应的注意事项。
二.实验原理利用染色体DNA与质粒DNA的变性与复性的差异而达到分离的目的。
在碱变性条件下,染色体DNA的氢键断裂,双螺旋解开而变性,质粒DNA氢键也大部分断裂,双螺旋也有部分解开,但共价闭合环状结构的两条互补链不会完全分离,当pH=的乙酸钠将其pH调到中性时,变性的质粒DNA又恢复到原来的碱裂解法提取质粒的主要原理是:利用染色体DNA与质粒DNA的变性与复性的差异而构型,而染色体DNA不能复性,形成缠绕的致密网状结构,离心后,由于浮力密度不同,染色体DNA与大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
聚合酶链反应(PCR)是体外酶促合成DNA片段的一种技术,PCR进行的基本条件:DNA模板(在RT-PCR中模板是RNA)、引物、dNTP(dATP、dTTP、dGTP、dCTP)、Taq DNA聚合酶、反应缓冲体系。
PCR循环由三个步骤组成:变性、退火、延伸。
每一个循环的产物可作为下一个循环的模板,通过30个左右循环后,目的片段的扩增可达106倍。
DNA片段之间的连接是通过DNA连接酶的催化实现的。
DNA连接酶催化具有平末端或互补粘性末端的DNA片段间相邻碱基通过3’,5’磷酸二酯键连接起来。
最常用的来源于T4噬菌体的T4DNA连接酶。
对于平末端或互补的粘性末端可直接进行连接反应。
一个片段是平末端,另一片段为粘性末端或两个片段都是粘性末端但不配对,则需要通过各种方式使其可一匹配或通过平末端进行连接。
通常采用末端补平、加同聚物尾、加接头等方式是目的片段之间能够匹配。
分子生物学实验报告
分子生物学实验报告
实验目的:
通过本次实验,我们旨在探究DNA复制、基因表达和蛋白质合成等分子生物学的基本原理,加深对分子水平生物学过程的理解,培养实验操作技能和科学思维能力。
实验材料与方法:
1. 实验材料:大肠杆菌(E. coli)细菌菌斑、DNA提取试剂盒、PCR试剂盒、琼脂糖、琼脂糖电泳试剂、PCR扩增仪、电泳仪等。
2. 实验步骤:
a. DNA提取:取一支含E. coli细菌菌斑的移液管,用DNA提取试剂盒提取DNA。
b. PCR扩增:将提取的DNA加入PCR试剂盒中进行PCR扩增反应。
c. 原核表达:将扩增后的DNA片段转入大肠杆菌进行原核表达。
d. SDS-PAGE电泳:将蛋白质样品加入琼脂糖凝胶,通过电泳进行蛋白质分子量的分离。
实验结果与分析:
1. DNA提取:成功提取到E. coli细菌的DNA,并通过琼脂糖凝胶电泳观察到DNA的带型。
2. PCR扩增:成功扩增出目标DNA片段,并经过验证测序结果正确。
3. 原核表达:大肠杆菌成功表达了目标蛋白质,通过SDS-PAGE电泳观察到目标蛋白质的条带。
4. SDS-PAGE电泳:观察到蛋白质的分子量差异,验证了蛋白质的分离效果。
结论与讨论:
通过本次实验,我们成功实现了DNA提取、PCR扩增、原核表达和蛋白质分离等分子生物学实验步骤,从而全面了解了分子生物学过程的基本原理。
实验结果表明,实验操作规范,结果可靠,为今后的科研工作和实验基础奠定了坚实的基础。
同时,也发现了实验中的一些不足之处,提出了改进的建议,为进一步的研究工作提供了参考。
参考文献:
无。
分子生物学实验报告
分子生物学实验报告分子生物学实验报告引言分子生物学是一门研究生物大分子结构、功能和相互作用的学科,通过实验手段揭示生命现象的分子机理。
本实验旨在探究DNA复制过程中的关键步骤,以及RNA转录和蛋白质翻译的基本原理。
实验一:DNA复制DNA复制是细胞分裂过程中必不可少的步骤,它保证了遗传信息的传递和维持。
本实验通过模拟DNA复制过程,研究DNA复制酶的作用和复制的准确性。
材料:- DNA模板- DNA聚合酶- 引物- dNTPs- 缓冲液方法:1. 准备反应体系,包括DNA模板、DNA聚合酶、引物、dNTPs和缓冲液。
2. 在适当的温度下,将反应体系放入PCR仪中进行反应。
3. 取样并进行凝胶电泳分析,观察DNA复制产物。
结果:通过凝胶电泳分析,我们观察到DNA复制产物的出现。
这表明DNA聚合酶能够在模板DNA上合成新的DNA链,并且复制的过程较为准确。
讨论:DNA复制的准确性是生命传递遗传信息的基础。
DNA聚合酶具有校正功能,能够识别和修复错误的碱基配对。
这种精确性保证了基因组的稳定性和可靠性。
实验二:RNA转录RNA转录是将DNA信息转录成RNA的过程,它是基因表达的第一步。
本实验旨在研究RNA转录的机制和调控。
材料:- DNA模板- RNA聚合酶- 引物- NTPs- 缓冲液方法:1. 准备反应体系,包括DNA模板、RNA聚合酶、引物、NTPs和缓冲液。
2. 在适当的温度下,将反应体系放入PCR仪中进行反应。
3. 取样并进行凝胶电泳分析,观察转录产物。
结果:凝胶电泳分析显示出RNA转录产物的出现。
这表明RNA聚合酶能够在DNA模板上合成RNA链。
讨论:RNA转录是基因表达的第一步,它决定了细胞内特定基因的表达水平。
RNA聚合酶通过与DNA模板的互作用,选择性地合成特定的RNA链。
这种选择性转录是基因调控的关键。
实验三:蛋白质翻译蛋白质翻译是将RNA信息翻译成蛋白质的过程,它是生物体内蛋白质合成的关键步骤。
分子生物学实验报告
分子生物学实验报告重组质粒的pcr验证(目的基因的pcr扩增)姓名:xxx学号:xxx专业:xxx界别:xxx同组者:xxxx一.实验目的(1)自学掌控pcr反应的基本原理和实验技术。
(2)了解引物设计的基本要求。
1.pcr基本原理聚合酶链式反应(polymerasechainreaction),简称pcr,是一种分子生物学技术,用于在体外快速扩增dna,类似dna的细胞内复制过程:由一对引物介导,通过温度的调节,使双链dna变性为单链dna、单链dna能与引物复性(退火)成为引物-dna单链复合物、以及在dntps存在下dna聚合酶能使引物沿单链模板延伸成为双链dna(引物的延伸);这种热变性-复性-延伸的过程,就是一个pcr循环;一般通过20-30个循环之后,就可获得大量的要扩增的dna片段。
pcr技术的基本原理类似dna的天然激活过程,其特异性依赖与靶序列两端优势互补的寡核苷酸引物。
pcr由变性--淬火--延展三个基本反应步骤形成:①模板dna的变性:模板dna经加热至90~95℃左右一定时间后,使模板dna双链或经pcr扩增形成的双链dna解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板dna与引物的淬火(复性):模板dna经冷却变性成单链后,温度降到55℃左右,引物与模板dna单链的优势互补序列接合融合;③引物的延伸:dna模板--引物结合物在taqdna聚合酶的作用下,以dntp为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板dna链互补的复制链。
经过“变性—淬火—延展”三个过程就可以赢得代莱dna分子,而且这种崭新dna分子又可以沦为下次循环的模板。
因此,变性、淬火和延展循环反复25~30次后,即可从少量的模板dna中扩充出来大量的目的产物。
pcr引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板dna序列,因此,引物的优劣直接关系到pcr的特异性与成功与否。
分子生物学实验报告
PCR扩增HBV-S1.实验原理1.1采用PCR扩增出HBV-S基因。
PCR是一种体外由引物介导的特定DNA序列的酶促扩增技术。
其前提是一对人工合成的15-20bp的寡核苷酸引物,其序列与待扩增的DNA两侧的碱基序列互补。
PCR包括下列三个基本步骤:变性、复性、延伸。
经过上述变性、退火、延伸步骤的25-35次循环,导致特异的靶序列的2n指数扩增。
1.2此次扩增的目的基因用于后续的表达,为了保证碱基不发生错配,不采用无矫正功能的Taq酶,而用高保真酶。
1.3为了使目的基因能和载体正确连接,本次实验选择在目的基因末端加尾(A)的方法。
2.实验目的获得HBV-S基因,为后续克隆做准备。
3.实验材料3.1模板3.2 PCR扩增引物3.3二甲基亚砜3.410×PCR 缓冲液(含Tris-HCl 100mmol/L; MgCl2 15mmol/L 、KCl 500mmol/L, pH8.3,0.1%明胶)3.5脱氧核苷三磷酸dNTPs:配成10mM- dATP,dTTP,dGTP,dCTP各10mM,用NaOH溶液调节至pH8.3。
)3.6水:要求不含DNA聚合酶抑制剂,不含离子,一般为去离子二蒸水(ddH2O), 灭菌以后即可使用。
4.实验仪器4.1PCR仪Thermo Hybaid4.2水平式琼脂糖凝胶电泳槽4.3恒压电泳仪Bio-Rad4.4凝胶成像仪JY04S—3C北京君毅东方4.5垂直流超净工作台上海智域分析仪器制造有限公司4.6微量加样器5.1获得模板5.1.1取100ul血清,加入50ul裂解液,颠倒混匀,100℃金属浴10min;5.1.2 12000rpm的转速下离心5min;取2ul作为模板。
5.2扩增HBV-S基因(PCR)5.2.1PCR体系材料体积5*buffer 2.5mMdNTP Phire模板HBV-S1 HBV-S2 ddH2O总体积4ul 1.6ul 0.4ul 2ul 1 ul 1 ul 10ul 20 ul5.2.2 PCR设置参数1)98℃预变性30s;2)98℃变性5s、60℃复性5s、72℃延伸10s,循环30次;3)72℃终延伸1min.6.琼脂糖凝胶电泳6.1量取100ml5×TBE电泳缓冲液加蒸馏水至1000ml,配置成0.5×TBE电泳缓冲液;6.2称取琼脂糖3g,加入0.5×TBE电泳缓冲液200ml,加热熔化,当凝胶冷却至60℃左右时,加入溴化乙锭溶液5ul,充分混匀;6.3先用透明胶带封固胶托边缘,放好梳子,然后再倒入凝胶(凝胶厚度在5~10mm左右);6.4在凝胶完全凝固后,小心移去透明胶带,将凝胶放入电泳槽中,加入电泳缓冲液,再小心取出梳子;6.5取已制备好的DNA样品10ul,加入染料2ul,充分混匀后用移液器将样取加入点样孔,在另一点样孔中,加入maker10ul;6.6盖上电泳槽,打开电源,电泳40~60分钟;(注意:DNA样品从负极向正极泳动);6.7将凝胶置于紫外仪下观察;将剩余的10ul保存于4℃扩增的HBV-S基因片段长度为750bp框内所标识的条带为本组实验结果(从左置右,前两管的引物体积为1ul,后两管的引物体积为0.5ul)。
分子生物学实验报告
分子生物学实验报告实验目的:探究基因在DNA复制过程中的作用及其表达机制。
实验材料与方法:材料:1. DNA模板:提取自大肠杆菌细胞中的质粒DNA。
2. DNA聚合酶:用于合成新的DNA链。
3. 引物:用于DNA聚合酶的引导和定向合成DNA。
4. dNTPs:脱氧核苷酸三磷酸盐,提供新的核苷酸单位供DNA聚合酶使用。
方法:1. DNA复制反应:将DNA模板、DNA聚合酶、引物和dNTPs混合在一起,加入适量缓冲液和镁离子,并在适温条件下进行DNA复制反应。
2. DNA扩增:通过PCR技术,利用引物的特异性,从DNA模板中扩增目标序列。
3. 聚丙烯酰胺凝胶电泳:用于分离和检测PCR产物,通过电泳迁移率差异判断扩增产物的大小。
实验结果:1. DNA复制反应成功进行,获得了新的DNA链。
2. PCR反应成功扩增目标序列,观察到明显的放大带。
3. 聚丙烯酰胺凝胶电泳显示PCR产物的大小符合预期。
实验分析与讨论:本实验通过模拟DNA的复制过程,成功合成了新的DNA链,并通过PCR技术扩增了目标序列。
这一结果验证了基因在DNA复制过程中的作用。
在DNA复制过程中,DNA聚合酶是关键的酶类。
DNA聚合酶能够识别DNA的模板链,并根据模板链的信息合成新的互补链。
在实验中,添加了引物和dNTPs,引物可以定向和引导DNA聚合酶的合成,dNTPs则提供了能量和碱基单位,支持DNA聚合酶的复制活动。
PCR技术是一种重要的生物分子技术,其通过引物的特异性识别和引导,扩增目标序列。
实验中,选择了适当的引物序列,使其能够与目标序列特异性地结合,并保证扩增反应的特异性和选择性。
PCR反应可以在短时间内扩增大量的目标DNA序列,为后续的分析和研究提供了足够的样品。
聚丙烯酰胺凝胶电泳是一种常用的分析方法,通过电场驱动DNA分子在凝胶中迁移,根据分子大小的差异来判断扩增产物的大小。
在实验中,聚丙烯酰胺凝胶电泳结果显示出明显的PCR产物带,与预期的目标序列大小相符,说明PCR扩增反应成功,目标序列得到了扩增。
分子生物学实验报告
分⼦⽣物学实验报告PCR基因扩增实验⽬的:通过本实验学习PCR反应的基本原理与实验技术。
实验原理:聚合酶链式反应(polymerase chain reaction,PCR),是⼀种在体外快速扩增特定基因或DNA序列的⽅法,故⼜称为基因的体外扩增法。
在待扩增的DNA⽚断两侧和与其两侧互补的两个寡核苷酸引物,经变性、退⽕和延伸若⼲个循环后,DNA扩增2的n 次⽅倍。
实验仪器:基因扩增仪移液器实验试剂:10×PCR缓冲液(含Mg2+)4种dNTPTaq酶DNA模板两种引物(正向引物和反向引物)实验步骤:`1、按顺序向微量离⼼管中依次加⼊:ddH2O 20µlDNA 样品5µl10×PCR 缓冲液5µldNTP 4µl引物I 5µl引物Ⅱ5µl混匀。
2、PCR反应参数(1) 94℃变性2min(2) 94℃变性30sec,(3) 66℃退⽕30sec,(4) 72 ℃延伸1min。
(5) 重复(2)-(4)40次(6)72 ℃延伸7min。
(7)4℃保存3、琼脂糖凝胶电泳检测PCR的结果:取10µl PCR扩增产物,琼脂糖凝胶电泳检测。
保持电流40mA。
电泳结束后,⽤EB染⾊15min,紫外灯下观察结果。
实验结果:照⽚结果图1 2 3 41.10ul样品2.样品3.DNA相对分⼦质量标准4.对照DNA琼脂糖凝胶电泳实验⽬的:通过本实验学习琼脂糖凝胶电泳检测DNA的⽅法和技术。
实验原理:DNA分⼦在琼脂糖凝胶中泳动时有电荷效应和分⼦筛效应,DNA在碱性的溶液中带有负电荷,因此,在电场作⽤下朝正极移动。
在琼脂糖凝胶中电泳时,由于琼脂糖凝胶具有⼀定孔径,长度不同的DNA分⼦由于所受凝胶的阻遏作⽤⼤⼩不⼀,迁移的速度不同,从⽽可以按照分⼦量⼤⼩得到有效分离。
在⼀定的电场强度下,DNA分⼦的迁移速度取决于分⼦筛效应,即分⼦本⾝的⼤⼩和构型。
分子生物学实验报告
分子生物学实验报告----绿色荧光蛋白(GFP)基因的克隆、表达和纯化一、实验背景绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP发射绿色荧光。
它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。
GFP由3个外显子组成,长2.6kb;GFP是由238个氨基酸所组成的单体蛋白,相对分子质量为27.0 kMr,其蛋白性质十分稳定,能耐受60℃处理。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
实验使用的EGFP蛋白取自原核-真核穿梭质粒pEGFP-NB3B的蛋白质编码序列。
此质粒原本被设计于在原核系统中进行扩增,并可在真核哺乳动物细胞中进行表达。
本质粒主要包括位于PCMV真核启动子与SV40 真核多聚腺苷酸尾部之间的EGFP编码序列与位于EGFP上游的多克隆位点;一个由SV40 早期启动子启动的卡那霉素/新霉素抗性基因,以及上游的细菌启动子可启动在原核系统中的复制与卡那抗性。
在EGFP编码序列上下游,存在特异的BamH I及Not I限制性内切酶位点,可切下整段EGFP编码序列。
表达EGFP 蛋白使用的pET-28 原核载体包含有在多克隆位点两侧的His-tag polyHis 编码序列;用于表达蛋白的T7 启动子,T7 转录起始物以及T7 终止子;选择性筛选使用的lacI 编码序列及卡那霉素抗性序列,pBR322 启动子,以及为产生单链DNA 产物的f1 启动子。
实验报告生物大分子的结构测定
实验报告生物大分子的结构测定实验报告实验目的:探究生物大分子的结构测定方法及其应用。
实验方法:1. 准备样品:选择一种生物大分子,如蛋白质,DNA或多糖。
获取样品并进行纯化和浓缩处理。
2. 红外光谱技术:运用红外光谱仪测量样品,记录红外光谱图谱,通过分析谱图中吸收峰的位置和强度,确定样品中化学键的类型和存在的官能团。
3. 核磁共振技术:运用核磁共振仪测量样品,记录核磁共振谱图,通过分析谱图中峰的位置和相对积分峰面积,确定样品中各原子核的数量、化学位移和耦合关系。
4. X射线晶体学方法:通过将样品制备成晶体,进行X射线衍射的测量,得到衍射数据,再利用计算机程序分析,获得样品的三维结构信息。
5. 分子对接方法:通过计算机模拟方法,利用已知的生物大分子结构,预测与之相关的其他小分子结构,以预测其相互作用及模拟药物设计等。
实验结果与讨论:针对不同的生物大分子,实验结果如下:1. 蛋白质结构测定:采用X射线晶体学方法,成功获得了蛋白质的三维结构。
通过分析蛋白质的结构,可以推测其功能和相应的生物活性部位,为药物设计和疾病治疗提供重要依据。
2. DNA结构测定:通过核磁共振技术,确定了DNA双螺旋结构中碱基的化学位移和耦合关系。
这些信息对于理解DNA的复制、转录和修复过程至关重要。
3. 多糖结构测定:利用红外光谱技术,分析多糖样品中特定官能团的吸收峰,确定多糖的组成和结构。
这对于多糖的应用研究和相关领域的发展具有重要意义。
实验结论:生物大分子的结构测定方法多种多样,包括红外光谱技术、核磁共振技术、X射线晶体学方法和分子对接方法等。
不同方法的选择取决于待测样品的性质和研究目的。
通过结构测定,可以更好地理解生物大分子的功能和作用机制,为相关领域的研究与应用提供基础支持。
致谢:感谢实验中的指导老师对本实验的指导和支持。
感谢实验中的团队成员的协助和合作。
此外,还要感谢实验室提供的设备和相关实验条件。
参考文献:1. Smith A, et al. (2018). Protein structure determination using X-ray crystallography. Journal of Molecular Biology, 429(3), 375-386.2. Zhang H, et al. (2017). Nuclear magnetic resonance spectroscopy in protein structure determination. Archives of Biochemistry and Biophysics, 628, 33-46.3. Lu F, et al. (2019). Infrared spectroscopy in carbohydrate research. Carbohydrate Research, 472, 15-27.4. Wang C, et al. (2018). Molecular docking and drug discovery in structure-based virtual screening. Nature Protocols, 13(6), 1332-1347.注意:这是一份实验报告的示例,具体内容和格式要根据实际实验情况进行调整和修改。
分子生物学实验报告全解(有图有真相)
分子生物学实验报告慕蓝有志班梦想学院目录实验一细菌的培养 (2)实验二质粒DNA的提取 (4)实验三琼脂糖凝胶电泳法检测DNA (7)实验四质粒DNA酶切及琼脂糖电泳分析鉴定 (9)实验五聚合酶链反应(PCR)技术体外扩增DNA (11)实验六植物基因组DNA提取、酶切及电泳分析 (14)实验七RNA分离与纯化 (17)实验八RT-PCR扩增目的基因cDNA (19)实验九质粒载体和外源DNA的连接反应 (21)实验十感受态细胞的制备及转化 (23)实验十一克隆的筛选和快速鉴定 (25)实验十二地高辛标记的Southern杂交 (27)实验十三阿拉伯糖诱导绿色荧光蛋白的表达 (31)思考题 (32)分子实验心得总结 (33)实验一细菌的培养一、目的学习细菌的培养方法及培养基的配置。
二、原理在基因工程实验和分子生物学实验中,细菌是不可缺少的实验材料。
质粒的保存、增殖和转化;基因文库的建立等都离不开细菌。
特别是常用的大肠杆菌。
大肠杆菌是含有长约3000kb的环状染色体的棒状细胞。
它能在仅含碳水化合物和提供氮、磷和微量元素的无机盐的培养基上快速生长。
当大肠杆菌在培养基中培养时,其开始裂殖前,先进入一个滞后期。
然后进入对数生长期,以20~30min复制一代的速度增殖。
最后,当培养基中的营养成分和氧耗尽或当培养基中废物的含量达到抑制细菌的快速生长的浓度时,菌体密度就达到一个比较恒定的值,这一时期叫做细菌生长的饱和期。
此时菌体密度可达到1×109~2×109/mL。
培养基可以是固体的培养基,也可以是液体培养基。
实验室中最常用的是LB培养基。
三、实验材料、试剂与主要仪器(一)实验材料大肠杆菌(二)试剂1. 胰蛋白胨2. 酵母提取物3. 氯化钠4. 1mol/L NaOH5. 琼脂粉6. 抗生素(氨苄青霉素、卡那霉素等)(三)仪器1. 培养皿2. 带帽试管3. 涂布器4. 灭菌锅5. 无菌操作台(含酒精灯、接种环、灭菌牙签等)6. 恒温摇床四、操作步骤(一)LB培养基的配制配制每升培养基,应在950m1去离子水中加入:细菌培养用胰蛋白胨10g细菌培养用酵母提取物5gNaCl 10g摇动容器直至溶质完全溶解,用1mol/L NaOH调节pH位至7.0。
分子生物学实验报告
根据测得的O.D值,从标准曲线上查出相对应的RNA含量,按下式计算出制品中RNA的百分含量:
×100%
(4)醋酸纤维素薄膜电泳法分离测定RNA的四种碱基
1)RNA的碱水解:
称取0.20gRNA,溶于5ml 0.3mol/L KOH溶液中,使RNA的浓度达到20~30mg/ml。沸水浴加热30min。将水解液转入到锥形瓶中。冰浴,在冰浴过程中用高锰酸溶液滴定到水解液的PH值为3.5.在2500rpm离心10min。出去沉淀,上层液即是样品。
2)RNA基团鉴定和地衣酚法测定RNA含量的基本原理:
RNA含有核糖、嘌呤碱、嘧啶碱和磷酸组分,加硫酸煮沸可使其水解,用硝酸银、地衣酚和定磷试剂可分别鉴定嘌呤碱、核糖和磷酸组分。
A:嘌呤鉴定:
嘌呤碱与硝酸银反应可生成白色的嘌呤银化物沉淀。
H2SO4AgNo3
RNA嘌呤嘌呤银化物(白色或红棕色)
100℃
酵母含RNA 达2.67—10.0%,DNA 则少于0.03—0.516%。为此,提取RNA多以酵母为原料。
由于RNA得来源很多,因而提取制备方法也各异,一般有苯酚法、稀碱法和浓盐法、去污剂法和盐酸胍法。其中苯酚法又是实验室最常用的方法,次方法能够较好地除去DNA和蛋白质,提取的RNA具有生物活性,两种常见的方法原理为:
核糖定量反应:
RNA
HCl
93℃
4)使用电泳技术进行RNA鉴定的基本原理:
任何物质质点,由于其本身在溶液中的解离或是由于其表面对其他带电质点的吸附,会在电场中向一定的电极移动。一般来说,在碱性溶液中,分子带负电荷,在电场中向正极移动;而在酸性溶液中,分子带正电荷,在电场中向负极移动。不同质点在电场中的移动速度不同,常用泳动度(迁移率)来表示。即带电质点在单位电场强度下的泳动速度。电泳快慢与电场强度、溶液的PH值、溶液的离子强度、电渗现象有关。
分子生物学实验报告
分子生物学实验报告实验二从 cDNA 文库中靶片断扩增( 4h )一、实验目的1.掌握聚合酶链式反应的原理。
2.掌握移液枪和PCR 仪的基本操作技术。
二、实验原理:PCR 技术,即聚合酶链反应(Polymerase Chain Reaction ,PCR)。
经典的PCR 过程包括:变性(denaturing step )、退火(annealing step )和延伸(extension step )三个步骤。
变性过程,即在高温94℃ ~98 ℃下,模板DNA 双链或经PCR 扩增形成的双链DNA 解离,使之形成两条单链ssDNA 。
随后,模板DNA 与引物的退火(复性)过程中,温度降至55℃左右,特异序列的引物与模板DNA 单链的互补序列配对结合;之后,引物的延伸过程,DNA 模板-引物结合物在耐热的DNA 聚合酶(如:Taq 酶)的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。
重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4 分钟,2~3 小时就能将待扩目的基因扩增放大几百万倍。
PCR 反应的成分和作用:总体积:一般为25μ l ~100 μl(一)无Mg2+buffer :由纯水、kcl 、Tris 组成。
Tris 用于调节反应体系pH 值,使Taq 酶在偏碱性环境中反挥活性。
kcl 可降低退火温度,但不能超过50 mmol/L ,否则会抑制DNA 聚合酶活性。
(二)Mg2+: 终浓度为 1.5 ~ 2.0mmol/L ,其对应dNTP 为200 μ mol/L ,注意Mg2+ 与dNTPs 之间的浓度关系,由于dNTP 与Taq 酶竟争Mg2+ ,当dNTP 浓度达到 1 mmol/L 时会抑制Taq 酶的活性。
Mg2+能影响反应的特异性和产率。
(完整)分子生物学实验报告
甘薯adk基因的核心片段的克隆西南大学生命科学学院王丽 222014317011011摘要:甘薯为我国农业主要栽培作物,并且是分子生物学实验室常见材料,本次实验主要以甘薯叶片(部分为茎)为实验材料,第一次实验是用CTAB法提取甘薯DNA,PCR扩增再凝胶电泳检测纯度。
第二次实验从材料中提取检测RNA并反转录cDNA第一链,经PCR扩增得到ADK基因核心片段,将其与T载体相连并导入大肠杆菌DH5a感受态细胞中,扩增后在加有相应抗生素的LB平板上筛选阳性克隆,这对后续生物信息学分析等有重要意义。
关键词:甘薯;PCR技术;cDNA;adk基因 ;感受态大肠杆菌细胞Abstract: Sweet potato for my agricultural main cultivation crop,and is molecular biology laboratory common material,this times experiment main to sweet potato leaves (part for stems)for experiment material。
First times experiment was extracted by CTAB method DNA,PCR amplification and gel electrophoresis and purity of sweet potato。
The second experiment from material in the extraction RNA and reverse recorded cDNA first chain,by PCR spread increased get large ADK gene core fragments,electrophoresis detection rubber recycling ADK gene core fragments,will its and T carrier connected and import Escherichia coli DH5(feel state cell) in ,spread increased in plus has corresponding antibiotics of LB Tablet Shang filter positive clone this importance to subsequent bioinformatics analysis。
分子生物学实验报告
分⼦⽣物学实验报告分⼦⽣物学实验报告----绿⾊荧光蛋⽩(GFP)基因的克隆、表达和纯化⼀、实验背景绿⾊荧光蛋⽩(green fluorescent protein,GFP)是⼀类存在于包括⽔母、⽔螅和珊瑚等腔肠动物体内的⽣物发光蛋⽩。
当受到紫外或蓝光激发时,GFP发射绿⾊荧光。
它产⽣荧光⽆需底物或辅因⼦发⾊团是其蛋⽩质⼀级序列固有的。
GFP由3个外显⼦组成,长2.6kb;GFP是由238个氨基酸所组成的单体蛋⽩,相对分⼦质量为27.0 kMr,其蛋⽩性质⼗分稳定,能耐受60℃处理。
1996年GFP的晶体结构被解出,蛋⽩质中央是⼀个圆柱形⽔桶样结构,长420 nm,宽240 nm,由11个围绕中⼼α螺旋的反平⾏β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直⽚段覆盖,底部由⼀个短的垂直⽚段覆盖,对荧光活性很重要的⽣⾊团则位于⼤空腔内。
发⾊团是由其蛋⽩质内部第65-67位的Ser-Tyr-Gly⾃⾝环化和氧化形成。
1996年GFP的晶体结构被解出,蛋⽩质中央是⼀个圆柱形⽔桶样结构,长420 nm,宽240 nm,由11个围绕中⼼α螺旋的反平⾏β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直⽚段覆盖,底部由⼀个短的垂直⽚段覆盖,对荧光活性很重要的⽣⾊团则位于⼤空腔内。
实验使⽤的EGFP蛋⽩取⾃原核-真核穿梭质粒pEGFP-NB3B的蛋⽩质编码序列。
此质粒原本被设计于在原核系统中进⾏扩增,并可在真核哺乳动物细胞中进⾏表达。
本质粒主要包括位于PCMV真核启动⼦与SV40 真核多聚腺苷酸尾部之间的EGFP 编码序列与位于EGFP上游的多克隆位点;⼀个由SV40 早期启动⼦启动的卡那霉素/新霉素抗性基因,以及上游的细菌启动⼦可启动在原核系统中的复制与卡那抗性。
在EGFP编码序列上下游,存在特异的BamH I及Not I限制性内切酶位点,可切下整段EGFP编码序列。
分子生物学实验报告
分子生物学实验报告学院班级:创新生技1802班姓名:闫茜茜学号:2018015239第一部分:Southern杂交一、概述:通过Southern杂交可以判断被检测的DNA样品中是否有与探针同源的片段以及该片段的长度。
该项技术广泛被应用在遗传病检测、DNA指纹分析和PCR产物判断等研究中。
其基本原理是将待检测的DNA样品固定在固相载体上,与标记的核酸探针进行杂交,在与探针有同源序列的固相DNA的位置上显示出杂交信号。
实验整个过程包括质粒DNA的提取、酶切和扩增,地高辛标记的Southern 杂交(探针的标记、Southern转移、Southern杂交、BCIP/NBT显色检测法)。
二、基本步骤与方法:2.1 待测DNA样品的制备2.1.1质粒DNA的提取利用质粒小提试剂盒(离心柱型)从大肠杆菌DH5α提取质粒,将质粒收集到离心管中,取6μL提取好的质粒与2μLloading buffer均匀混合,进行琼脂糖凝胶电泳检测。
2.1.2质粒DNA的酶切将 ddH2O(10μL),酶切 Buffer(10×,3μL),质粒(15μL),EcoRI酶液(2μL),加入一个离心管,离心 10000rpm×2min,置于37℃培养箱培养2h以上。
取出后在管中加入 3μL Loading Buffer,与加了3μL Loading Buffer的质粒一对一点样、跑电泳并分析鉴定。
2.1.3 PCR 扩增所采用引物是PBGD片段两边序列的非特异性引物 M13F/R,加入试剂并小心混匀。
PCR反应94℃ 180s,32cycles(94℃ 45s,55℃ 45s,72℃ 45s),72℃ 600s,反应结束后取 20μL PCR 产物进行1%琼脂糖凝胶电泳分析。
2.2 地高辛标记的Southern杂交2.2.1探针标记取PCR 扩增产物于离心管,将DNA置于沸水浴中 5min 热变性,然后迅速插入碎冰3min ,加入4μL DIG Random Labeling Mix(高效),置37℃培养24h。
分子生物实验报告
碱性磷酸酶AKP的克隆与筛选摘要:利用PCR技术扩增碱性磷酸酶基因;在含有Carb和Tet的LB液体培养基上接种含pETBlue-2质粒的Novablue宿主菌,过夜培养;采用质粒试剂盒提取两管pETblue-2质粒;按照质粒2ul每样品孔、PCR产物50ul每样品孔打样于琼脂糖凝胶,利用琼脂糖凝胶电泳,检测质粒质量,将PCR产物切胶回收。
配制酶切体系,进行目的基因与载体的双酶切。
电泳检测酶切产物,并切胶回收。
制备感受态细胞(所选择的细胞为DH5α),配制连接反应体系,连接目的基因和载体的酶切产物。
转化感受态细胞,过夜培养,筛选出重组菌,提取转化重组菌质粒,酶切质粒,对酶切情况进行电泳鉴定。
引言:聚合酶链反应,即PCR技术是美国PE-Cetus公司人类遗传研究室的科学家K.B.Mullis于1983年发明的一种快速扩增特定DNA序列的方法。
通过使双链DNA 分子热变性,两条引物分别与两条DNA的两侧序列特异复性,在适宜条件下,以单链DNA为模板引物延伸。
进行碱性磷酸酶的克隆与筛选,首先要扩增AKP基因;选取合适的载体,本实验选取质粒pETblue-2作为载体。
选取DH5α作为受体菌,DH5α是带Lacz ΔM15基因型的受体细菌,lacZ的M15是表达β-半乳糖苷酶α片端的一段基因,当M15缺失(△M15)时lacZ基因只能表达ω片端,β-半乳糖苷酶没有活性。
当载体上的LacZ基因完整时,由α-互补而产生的半乳糖苷酶在诱导剂IPTG的作用下,在生色底物X-Gal存在时产生蓝色菌落,反之若因目的基因插入使得载体上的LacZ基因不完整时,产生没有活性的半乳糖苷酶,菌落呈白色。
1.材料与方法1.1大肠杆菌K12碱性磷酸酶的克隆1.1.1实验原理PCR技术是通过分离目的片段,再进行DNA扩增与定量,可用于医学用途和传染病诊治。
PCR技术需要的原料有模板dNTP、Taq酶、10xbuffer、Mg2+:0.5-5mM 和引物,经历高温变性、中温退火、低温延伸三个过程。
分子生物学实验报告
分子生物学实验报告姓名:学院:专业班级:学号:一、前期工作及引物设计(一)实验目的:寻找一个合适的基因,并设计出与之相对应的引物,用于后续实验。
(二)实验原理:引物设计的一般原则:①引物长度:15-30bp②GC含量:一般引物序列中G+C含量一般为40%~60%③退火温度:退火温度需要比解链温度低5℃,如果引物碱基数较少,可以适当提高退火温度,这样可以使PCR的特异性增加④避免扩增模板的二级结构区域⑤与靶DNA的错配:当被扩增的靶DNA序列较大的时候,一个引物就有可能与靶DNA的多个地方结合,造成结果中有多个条带出现。
这个时候有必要先使用BLAST 软件进行检测⑥引物末端:引物3’端是延伸开始的地方,因此要防止错配就从这里开始。
3’端不应超过3个连续的G或C,因这样会使引物在G+C富集序列区错误引发。
⑦引物的二级结构:引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构,这种二级结构会因空间位阻而影响引物与模板的复性结合。
(三)操作方法:1、阅读一些与小麦抗旱基因相关的文章,并最终选出基因TAPK7。
LOCUS AB125308 1583 bp mRNA linear PLN 15-FEB-20082、根据引物设计原则,用相关软件Primer6设计两对引物。
3、在网站NCBI上用BLAST检验所设计的引物,并从中选出较好的一对引物。
(四)实验结果:前引物:5’-CCAACATCATCCGCTTCA-3’(position:396 引物长度:18)后引物:5’-CCTGCTCATCCTCCTCTT -3’(position:1190 引物长度:18)(产物长度795)(五)讨论:虽然我们自己设计出来引物,但是后来做PCR的效果也不好,后来还换了引物。
所以希望老师能在这些我们还未学习到的地方给一些经验指导,或者提供一些资料参考,来保证我们的实验效果。
二、目的基因提取及验证(一)实验目的:根据所设计的引物,用克隆基因组和反转录两种方法,得到目的基因cDNA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质SDS-PAGE分离和Western Blot一、实验目的1.掌握SDS-PAGE分析的原理和技术,应用于蛋白质的分析和鉴定。
2.实验采用HL60细胞总蛋白作为材料,进行SDS-PAGE后,用半干式转移法将蛋白质转移到PVDF膜上,应用Western Blot分析技术,分析PVDF膜上的c-Myc蛋白。
通过本实验,掌握半干式转移的操作和Western Blot的基本原理和操作技术。
二、实验原理1.蛋白质SDS-PAGE原理聚丙烯酰胺凝胶是用丙烯酰胺和交联剂亚甲基双丙烯酰胺在催化剂的作用下聚合而成。
化学聚合的催化剂通常多采用硫酸铵或过硫酸钾,此外还需要一种脂肪族叔胺作为加速剂,最有效的加速剂为N,N,N’,N’,-四甲基乙二胺(TEMED),在叔胺的催化下,由过硫酸铵形成的氧自由基,后者又使单体形成自由基,从而引发聚合作用。
聚丙烯酰胺凝胶的机械强度好,有弹性且透明,相对的化学稳定,对PH和温度变化较稳定,在很多溶剂中不溶,是非离子型的,没有吸附和电渗作用。
通过改变浓度和交联度,可以控制孔径变动在极广范的范围,并且之制备凝胶的重复性好。
聚丙烯酰胺凝胶电泳PAGE分离蛋白质的方法有很多种。
本实验采用SDS-PAGE法。
SDS能使蛋白质的氢键、疏水键打开,并结合到蛋白质分子上,形成蛋白质-SDS复合物。
在一定条件下,SDS与大多数蛋白质的结合比为1.4g SDS/1g 蛋白质。
由于十二烷基硫酸根带负电,是各种蛋白质的SDS-复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原有的电荷量,因而掩盖了不同种类蛋白质间原有的电荷差别。
SDS与蛋白质结合后,还引起了蛋白质构象的改变。
蛋白质-SDS复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪茄的长椭圆棒,不同蛋白质的SDS复合物的短轴长度都一样,约为1.8nm,而长轴则随蛋白质的分子量成正比的变化。
这样的蛋白质-SDS复合物,在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只是椭圆棒的长度也就是蛋白质分力量的函数。
不同的凝胶浓度合适用于不同的分子量范围,可根据所测分子量范围选择最适合的凝胶浓度,并尽量选择分子量范围和性质与待测样本相近的蛋白质作为标准蛋白质。
并非所有的蛋白质都能用SDS-PAGE测定其分子量,已发现有些蛋白质用这种方法测出的分子量是不可靠的。
这些蛋白质有:电荷异常或构象异常的蛋白质、带有较大辅基的蛋白质(如某些糖蛋白)以及一些结构蛋白,如胶原蛋白。
2.Western Blot原理Western Blotting是将蛋白质转移并固定在化学合成膜的支撑物上,然后以特定的亲和反应、免疫反应或结合反应以及显色系统分析此印记。
经过SDS-PAGE分离的蛋白质样品,转移至固相载体(如PVDF膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。
以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检查电泳分离的特异性目的基因表达的蛋白成分。
Western Blotting一般分五个步骤:(1)固定:蛋白质进行聚丙烯酰胺凝胶电泳PAGE并从凝胶上转移到PVDF膜上。
(2)封闭:封闭膜上没有特殊抗体结合的场所,使其处于饱和状态,以减少非特异性结合。
(3)第一抗体与抗原的特异性结合。
(4)第二抗体或配体试剂与第一抗体的特异性结合并作为指示物。
(5)被适当保温后的酶标记蛋白质区带,产生可见的、不溶解状态的颜色反应。
本实验采用HL60细胞总蛋白作SDS-PAGE,经半干式转移将电泳所分离出的蛋白条带转移到PVDF膜上,用兔抗人c-Myc多克隆抗体作为第一抗体与c-Myc蛋白发生反应,然后用碱性磷酸酶标记的羊抗兔IgG作为第二抗体与第一抗体结合,经过显色底物的显色检测c-Myc蛋白。
三、实验器材和试剂详见实习指导。
四、实验步骤1.安装并组装夹板,依次灌制分离胶和浓缩胶。
2.上样电泳。
3.裁剪胶体2cm*7cm两份,一份用考马斯蓝染色,最后脱色观察结果。
4.上述另一份样本经半干式转移至PVDF膜上,转膜后封闭5.依次与第一抗体和第二抗体结合,显色。
五、实验结果1.蛋白质SDS-PAGE结果相比于marker带,样本带为HL60细胞中总蛋白所电泳出的条带,由于总蛋白中各蛋白质分子量各异,故所形成的SDS-蛋白质复合物的椭圆棒长度各异,进而电泳后出现多个距离相近的条带,下一步Western Blot所检测的c-Myc蛋白亦在其中。
而marker和样本总蛋白条带均比较宽而模糊,原因为染色后存放时间太久,凝胶存在一定的孔径,SDS-蛋白质复合物于凝胶中向周围扩散,染料亦扩散,最终使条带不集中和清晰。
2.Western Blot结果样本带中红色的条带为显色的c-Myc蛋白条带。
其处于marker第二和第三条带之间,分子量符合预测结果(一般于SDS-PAGE上表观分子量为62KD)。
而显色结果不理想,其原因在后文中有详细讨论。
六、注意事项1.聚丙烯酰胺具有很强的神经毒性并可通过皮肤吸收,其作用具有积累性。
称量聚丙烯酰胺和甲叉双丙烯酰胺时应带手套和面具。
聚丙烯酰胺无毒,但也应谨慎操作,因可能会含有少量未聚合材料。
2.SDS的微细晶粒易于扩散,称量时要戴面罩。
称量完毕后要清除残留在称量工作区和天平上的SDS。
SDS溶液无需灭菌。
3.用封口机密封塑料袋时要尽量排除藏匿的气泡。
4.拿取凝胶、Blotting Paper和PVDF膜时必须戴手套,因为皮肤上的油脂和分泌物会阻止蛋白质从凝胶向滤膜转移。
5.封闭液的作用是封闭未吸附蛋白的部位,以减少非特异性结合背景的影响。
6.PBST是一种磷酸钾、钠盐溶液,既可稳定蛋白质固定于PVDF膜上,同时又可以洗去多余的封闭液及其杂质。
Tween-20是一种非离子型的蛋白去污剂,它可以出去免疫探针的非特异性结合,使免疫反应背景更加清晰。
7.转移过程中电压不应大于50V,若电泳初始电压大于20V,则应检查离子强度对不对,若转移过程中电压增加幅度大于10V或温度增加,则表示buffer感和,此时应停止电泳,多加几层湿的blotting paper。
8.PVDF膜最好一次放到位。
9.Westing Blot可检测出1-5ng中等大小的蛋白质。
七、实验讨论1.配胶缓冲液系统对电泳产生的影响?在SDS-PAGE中,加入缓冲液后,浓缩胶中pH环境呈弱酸性,甘氨酸解离很少,在电场的作用下泳动效率低。
而氯离子浓度却很高,两者之间形成导电性较低的区带,蛋白分子就介于二者之间泳动。
由于导电性与电场强度成反比,这一区带便形成了较高的电压梯度,使蛋白质分子聚集到一起,浓缩为一狭窄的区带。
当样品进入分离胶后,由于胶中pH的增加而呈碱性,甘氨酸大量解离,泳动速率增加,紧随氯离子之后。
同时由于分离胶孔径的缩小,在电场的作用下,蛋白分子根据其固有的带电性和分子大小进行分离。
综上可见,环境pH对整个反应体系的影响至关重要,实验中在排除其他因素之后仍不能很好解决问题的情况,应首要考虑该因素。
2.配制凝胶的注意点?使聚丙烯酰胺的充分聚合,可提高凝胶的分辨率。
勿即配即用或4度冰箱放置,前者易导致凝固不充分,后者可导致SDS结晶。
可待凝胶在室温凝固后,可在室温下放置一段时间使用。
3.凝胶时间不对,或慢或快的原因?通常胶在30min—1h内凝固。
如果凝的太慢,可能是TEMED或APS剂量不够或者失效。
APS应该现配现用,TEMED不稳定,易被氧化成黄色。
如果凝的太快,可能是APS和TEMED用量过多,此时胶太硬易裂,电泳时易烧胶。
4.电泳条带出现“微笑”、“皱眉”或拖尾现象的原因及处理方法?“微笑”状条带即为两边翘起中间凹下的形状。
主要是由于凝胶的中间部分凝固不均匀所致,多出现于较厚的凝胶中,可待其充分凝固再作后续实验。
“皱眉”条带即为两边向下中间鼓起的形状。
主要出现在蛋白质垂直电泳槽中,一般是两板之间的底部间隙气泡未排除干净,可在两板间加入适量缓冲液,以排除气泡。
拖尾现象主要是样品融解效果不佳或分离胶浓度过大引起的。
处理方法如下:加样前离心;选择适当的样品缓冲液,加适量样品促溶剂;电泳缓冲液时间过长,重新配制;降低凝胶浓度。
5.什么是“鬼带”,如何处理?“鬼带”就是在跑大分子构象复杂的蛋白质分子时,常会出现在泳道顶端(有时在浓缩胶中)的一些大分子未知条带或加样孔底部有沉淀,主要由于还原剂在加热的过程中被氧化而失去活性,致使原来被解离的蛋白质分子重新折叠结合和亚基重新缔合,聚合成大分子,其分子量要比目标条带大,有时不能进入分离胶。
但它却于目标条带有相同的免疫学活性,在WB 反应中可见其能与目标条带对应的抗体作用。
处理办法:在加热煮沸后,再添加适量的DTT或Beta巯基乙醇,以补充不足的还原剂;或可加适量EDTA来阻止还原剂的氧化。
6.电泳的条带很粗的原因?电泳中条带很粗较常见,主要是未浓缩好。
其处理办法为适当增加浓缩胶的长度;保证浓缩胶贮液的pH正确(6.7);适当降低电压等。
7.浓缩胶与分离胶断裂、板间有气泡对电泳有影响吗?前者主要原因是拔梳子用力不均匀或过猛所致;后者是由于在解除制胶的夹子后,板未压紧而致空气进入引起的。
一般对电泳不会有太大的影响。
8.电泳时间比正常要长的原因?可能由于凝胶缓冲系统和电级缓冲系统地PH选择错误,即缓冲系统地PH和被分离物质的等电点差别太小,或缓冲系统的离子强度太高。
9.背景过高的原因及解决办法?背景过高可能原因如下:1)抗体浓度过高;2)封闭液选择不当;3)封闭不完全;4)抗体与封闭液中其他蛋白发生交叉反应;5)清洗不充分;6)曝光时间过长;7)膜出问题;8)缓冲液污染或长菌9)仪器污染。
其相应的解决办法为:1)降低抗体(一抗/二抗)浓度;2)比较不同封闭液供进一步选择;3)根据不同的体系优化封闭液,提高封闭物浓度,优化封闭时间和(或)温度,室温下至少1小时或4℃过夜,在封闭液中添加终浓度0.05%的Tween-20,用含终浓度0.05%的Tween-20的封闭液稀释抗体;4)更换封闭液,封闭一张干净的不含蛋白的膜,抗体孵育后检测;5)增加清洗次数及清洗液体积,如果之前未添加Tween-20,可添加Tween-20至终浓度0.05%;6)缩短曝光时间;7)确保转膜前,根据指导将膜彻底浸润;更换新膜,确保膜始终有足够的液体覆盖避免干掉,避免徒手操作,应配戴手套,使用镊子,每一步孵育都应确保充分;8)重新配制缓冲液;9)确保转膜仪、杂交仪等仪器清洁无污染,确保转膜后膜上没有残留的胶。
10.转膜不充分的原因和解决办法?转膜不充分的可能原因如下:1)膜没有完全均匀湿透;2)靶蛋白分子量小于10,000;3)靶蛋白等电点等于或接近转移缓冲液pH 值;4)甲醇浓度过高;5)转移时间不够。