初中数学知识点精讲精析 等腰三角形知识讲解

合集下载

等腰三角形的性质知识点

等腰三角形的性质知识点

等腰三角形的性质知识点等腰三角形是指两条边长度相等的三角形。

在等腰三角形中,存在一些特殊的性质。

通过研究等腰三角形的性质,我们可以更好地理解和解决与等腰三角形相关的问题。

本文将对等腰三角形的性质进行详细的介绍和解释。

一、等腰三角形的定义等腰三角形是指具有两边边长相等的三角形。

其中,两条边被称为等腰三角形的腰,另一条边被称为底边。

等腰三角形的顶角角度被称为顶角。

在等腰三角形中,两个底角角度也是相等的。

二、等腰三角形的性质1. 等腰三角形的底角相等由于等腰三角形的两个腰相等,所以两个底角角度也相等。

这是等腰三角形最基本的性质之一。

可以用数学表达式表示为:∠A = ∠B。

2. 等腰三角形的顶角是单个顶角的两倍等腰三角形中,顶角的角度是单个顶角的两倍。

这意味着顶角的度数要大于底角的度数。

可以用数学表达式表示为:∠C = 2∠A 或∠C = 2∠B。

3. 等腰三角形的高线是对称轴等腰三角形的高线是从顶角垂直于底边的线段。

等腰三角形中的高线可以将底边分成两段等长的线段,并且高线本身也是对称轴。

这意味着等腰三角形对称于高线。

也就是说,将等腰三角形沿高线对折,两边将完全重合。

4. 等腰三角形的中位线相等等腰三角形的中位线是从底边中点垂直于底边的线段。

等腰三角形中的两个中位线相等,也就是说,中位线将底边分成两个等长的线段。

可以用数学表达式表示为:AC' = BC'。

5. 等腰三角形的旁切线相等等腰三角形的两个旁切线相等。

旁切线是从等腰三角形的两个顶点开始,切线与等腰三角形的两个腰相切的直线。

这意味着从顶点到切点的距离相等。

6. 等腰三角形的内角和等腰三角形的内角和等于180度。

假设等腰三角形的底角为x度,则顶角为2x度。

根据三角形内角和定理,我们知道三角形的内角和等于180度。

因此,x + x + 2x = 180°,解得x = 60°。

所以,等腰三角形的底角和顶角都是60度。

等腰三角形知识点总结

等腰三角形知识点总结

等腰三角形知识点总结等腰三角形是指有两条边相等的三角形。

在几何学中,等腰三角形具有很多特性和性质,下面将对等腰三角形的定义、性质以及相关的定理进行总结。

一、定义和性质等腰三角形的定义:拥有两条边相等的三角形被称为等腰三角形。

等腰三角形的性质:1. 两个底角(底边所对的两个角)是相等的。

2. 两条腰(与底边相等的两条边)相等。

3. 顶角(顶点所对的角)等于180度减去底角的一半。

二、等腰三角形的角度性质1. 顶角等于底角的两倍:在等腰三角形中,顶角是底角的两倍。

也就是说,当一个底角为x度时,顶角就是2x度。

2. 底角相等:在等腰三角形中,两个底角是相等的。

如果一个底角为x度,另一个底角也是x度。

3. 顶角对应的边相等:在等腰三角形中,顶角对应的两条边是相等的。

如果一个顶角对应的边长为a,另一个顶角对应的边长也是a。

三、等腰三角形的边长性质1. 两条腰相等:在等腰三角形中,两条腰是相等的。

如果一条腰的长度为a,另一条腰的长度也是a。

2. 底边对应的高相等:在等腰三角形中,底边对应的高是相等的。

如果一条底边的高为h1,另一条底边的高也是h1。

3. 高的长度:在等腰三角形中,可以通过勾股定理来计算高的长度。

如果底边的长度为b,腰的长度为a,则高的长度等于根号下(a^2 -b^2/4)。

四、等腰三角形的判定条件等腰三角形的判定条件:如果三角形的两边边长相等或两个角度相等,则该三角形为等腰三角形。

五、等腰三角形的定理1. 等腰三角形的高与底边垂直:在等腰三角形中,高线与底边垂直。

2. 角平分线等于高线:在等腰三角形中,底边上的角平分线等于高线。

3. 底边上的角平分线相等:在等腰三角形中,底边上的两条角平分线是相等的。

总结:等腰三角形是几何学中重要的概念,在很多问题中都有应用。

通过对等腰三角形的定义、性质以及相关的定理进行了解和掌握,可以帮助我们解决等腰三角形相关的问题,并在数学和几何学中运用到其他各种应用中。

八年级等腰三角形知识点

八年级等腰三角形知识点

八年级等腰三角形知识点
等腰三角形是指两边长度相等的三角形,下面我们来详细了解
一下八年级等腰三角形知识点。

一、等腰三角形的性质
等腰三角形有以下性质:
1. 两底角相等:等腰三角形的两个底角(底边两侧的角)相等。

2. 顶角平分底边:等腰三角形顶角(顶点处的角)平分底边。

3. 高线对称:等腰三角形的高线(从顶点到底边垂线)对称,
即高线分成的两段相等。

二、等腰三角形的面积公式
等腰三角形的面积公式为 S = 1/2 × b × h,其中 b 为底边长度,
h 为高线长度。

三、等腰三角形的角度计算
当知道等腰三角形的两边长度和其中一个角的度数时,我们可以计算出其余角的度数。

比如,已知等腰三角形的两边长度均为 5cm,其中一个角度为60°,则另外两个角的度数都是 60°,因为两个底角相等。

四、等腰三角形的特殊情况
1. 等腰直角三角形:等腰三角形中,如果其中一个角是直角(90°),则另外两个角度一定是 45°,即两底角相等,且顶角为底角的平分线。

2. 等边三角形:等腰三角形中,如果两边长度相等的三角形也满足两边长度相等,那么这个等腰三角形就是等边三角形。

五、等腰三角形的应用
等腰三角形在生活中有许多应用,比如构建正方形、六边形等
多边形,也经常用于计算三角形的面积和角度。

六、小结
以上就是八年级等腰三角形的知识点,包括等腰三角形的性质、面积公式、角度计算、特殊情况和应用。

了解等腰三角形的知识,有助于我们更好地理解几何学的基础知识,并应用于实际生活中。

《等腰三角形》知识点

《等腰三角形》知识点

《等腰三角形》知识点在初中数学的几何学习中,等腰三角形是一个非常重要的图形。

它具有独特的性质和特点,这些性质在解决数学问题时经常会被用到。

接下来,让我们一起深入了解一下等腰三角形的相关知识。

一、等腰三角形的定义有两边相等的三角形叫做等腰三角形。

相等的两条边称为这个三角形的腰,另一边称为底边。

两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

二、等腰三角形的性质1、等腰三角形的两个底角相等(简写成“等边对等角”)。

这是等腰三角形最基本的性质之一。

例如,在等腰三角形ABC 中,如果 AB = AC,那么∠B =∠C。

2、等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。

这是一个非常重要的性质,它为我们解决等腰三角形中的相关问题提供了很大的便利。

比如,已知等腰三角形 ABC 中,AB = AC,AD是顶角∠BAC 的平分线,那么 AD 也是底边 BC 上的中线和高。

3、等腰三角形是轴对称图形,其对称轴是顶角平分线所在的直线。

通过对称轴,我们可以将等腰三角形对折,使其两部分完全重合。

三、等腰三角形的判定1、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

这是判定一个三角形是否为等腰三角形的重要方法。

比如,在三角形 ABC 中,如果∠B =∠C,那么 AB = AC,三角形 ABC 就是等腰三角形。

2、有两条边相等的三角形是等腰三角形。

这是根据等腰三角形的定义直接进行判定的方法。

四、等腰三角形中的相关计算1、已知等腰三角形的顶角和底角,可以通过三角形内角和为 180°来计算其他角的度数。

例如,等腰三角形的顶角为80°,因为等腰三角形的两个底角相等,所以底角的度数为(180° 80°)÷ 2 = 50°。

2、已知等腰三角形的腰长和底边长,可以利用勾股定理计算底边的高,进而计算三角形的面积。

假设等腰三角形的腰长为 a,底边长为 b,底边的高为 h。

中考数学专题复习课件(第20讲_等腰三角形)

中考数学专题复习课件(第20讲_等腰三角形)

目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
7.如图,在边长为 4 的正三角形 ABC 中,AD⊥BC 于点 D,以 AD 为一边向右作正三 角形 ADE.
举 一 反 三
(1)求△ABC 的面积 S; (2)判断 AC、DE 的位置关系,并给出证明.
考 点 训 练
答案:(1)S=4 3 (2)AC⊥DE
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
6. 如图, △ABC 内有一点 D, 且 DA=DB=DC, 若∠DAB=20° , ∠DAC=30° , 则∠BDC 的大小是( A ) A.100° B.80° C.70° D.50°
举 一 反 三
考 点 训 练
)
(3)(2010· 烟台 )如图,在等腰三角形 ABC 中, AB= AC,∠ A= 20° .线段 AB 的垂直平分 线交 AB 于 D,交 AC 于 E,连结 BE,则∠ CBE 等于( ) A. 80° B. 70° C.60° D.50°
举 一 反 三
考 点 训 练
例 1(3)题
目录
首页
上一页
举 一 反 三
【解答】 (1)根据“三角形任意两边之和大于第三边”知腰应为 7, 该三角形三边为 7、 7、 3.故选 B. (2)当 40° 为底角时,顶角为 100° ; 40° 也可以为顶角.故选 C. (3)∵DE 垂直平分 AB ,∴EA = EB ,∴∠EBD =∠A = 20° .∵∠ A = 20° , AB = AC , ∴∠ABC=∠C=80° ,∴∠CBE=80° -20° =60° ,故选 C. 考 (4)等腰三角形分别是△ ABC、△ABD、△BCD、△BCE、△CDE.故选 A. 点

初中数学课件等腰三角形的性质(几何)ppt课件

初中数学课件等腰三角形的性质(几何)ppt课件
接求出等腰三角形的面积。
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。

等腰三角形ppt课件

等腰三角形ppt课件
何图形的基本性质把复杂作图拆
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.


∵ DE=EB,∴∠ EBD= ∠ BDE= x°.

∴∠ BDC= ∠ A+ ∠ EBD= x°.


∵ BC=BD,∴∠ C= ∠ BDC= x°.


∵ AB=AC,∴∠ ABC= ∠ C= x°.



∴ x+ x+ x =18 0,解得x =4 5 .∴∠


A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成

等腰三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(解析版)

等腰三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(解析版)

专题17等腰三角形的核心知识点精讲1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.考点1:等腰三角形的性质与判定考点2:等边三角形的性质与判定性质 1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形,有2条对称轴判定 1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式,其中a 是底边常,hs 是底边上的高性质 1.三条边相等2.三个内角相等,且每个内角都等于60°3.等边三角形是轴对称图形,有3条对称轴判定 1.三条边都相等的三角形是等边三角形2.三个角相等的三角形是等边三角形3.有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长,h 是任意边上的高考点3:线段垂直平分线(1)线段垂直平分线的作图1.分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C 、D 两点;2.作直线CD ,CD 为所求直线(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上【题型1:等腰三角形的性质和判定】【典例1】(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为()A .25B .22C .19D .18【答案】C 【解答】解:由题意可得,MN 垂直平分BC ,∴DB =DC ,∵△ABD 的周长是AB +BD +AD ,∴AB +BD +AD =AB +DC +AD =AB +AC ,∵AB =7,AC =12,∴AB +AC =19,∴△ABD 的周长是19,故选:C .1.(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°【答案】C【解答】解:当等腰三角形的顶角为110°时,则它的底角==35°,故选:C.2.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D【解答】解:由题意得,解得,∵a2+b2=c2,且a=b,∴△ABC为等腰直角三角形,故选:D.3.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.【答案】(1)见解析;(2)CD=ED,理由见解析.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠CBD=∠EBD,∵DE∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB.(2)解:CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC,∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC,∴∠ADE=∠AED,∴AD=AE,∴CD=BE,由(1)得,∠EBD=∠EDB,∴BE=DE,∴CD=ED.【题型2:等边三角形的性质和判定】【典例2】(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交B C的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°【答案】C【解答】解:在等边△ABC中,∠ABC=60°,∵BD是AC边上的高,∴BD平分∠ABC,∴∠CBD=∠ABC=30°,∵BD=ED,∴∠DEC=∠CBD=30°,故选:C1.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°【答案】A【解答】解:∵△ABC为等边三角形,∴∠A=60°,∵∠A+∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△B OC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×12+=,∴△AOB与△BOC的面积之和为S△BOC故选:C.3.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是1+.【答案】1+.【解答】解:取AB中点D,连OD,DC,∴OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为AB中点,∴BD=1,BC=2,∴CD==,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=1,∴OD+CD=1+,即OC的最大值为1+.故答案为:1+.【题型3:线段的垂直平分线】【典例3】(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是13.【答案】13.【解答】解:∵DE是BC的垂直平分线.∴BD=CD,∴AC=AD+CD=AD+BD,∴△ABD的周长=AB+AD+BD=AB+AC=5+8=13,故答案为:13.1.(2023•吉林)如图,在△ABC中,AB=AC.分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.若∠BAC=110°,则∠BAE的大小为55度.【答案】55.【解答】解:∵AB=AC.∴△ABC是等腰三角形,∵分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.∴AE垂直平分BC,∴AE是∠BAC的平分线,∴∠BAE=∠BAC=55°.故答案为:55.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若A B=4,则DC的长是4.【答案】4.【解答】解:∵∠B=∠ADB,AB=4,∴AD=AB=4,∵DE是AC的垂直平分线,∴DC=AD=4,故答案为:4.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=10°,则∠C的度数是40°.【答案】40°.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.一.选择题(共9小题)1.若等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或12【答案】C【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.2.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°【答案】D【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,∵AD是等边△ABC的一条中线,∴AD⊥BC,∠CAD=∠BAC=30°,∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠AED+∠CAD=180°,∴∠ADE=75°,∴∠EDC=90°﹣75°=15°,故选:D.3.如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A.AB,AC两边中线的交点处B.AB,AC两边高线的交点处C.∠B与∠C这两个角的角平分线的交点处D.AB,AC两边的垂直平分线的交点处【答案】D【解答】解:∵生活超市到这三个居民小区的距离相等,∴生活超市应建在△ABC的三边的垂直平分线的交点处.故选:D.4.在△ABC中,若AB=AC=3,∠B=60°,则BC的值为()A.2B.3C.4D.5【答案】B【解答】解:∵AB=AC,∠B=60°,∴△ABC为等边三角形,∴BC=AB=3.故选:B.5.如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.若AB=12,AC=8,BC=13,则△AEF的周长是()A.15B.18C.20D.22【答案】C【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠EBD=∠EDB,∴ED=EB,同理可证得DF=FC,∴AE+AF+EF=AE+EB+AF+FC=AB+AC=20,即△AEF的周长为20,故选:C.6.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.10【答案】C【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴BD+CD=AC=10.∴BC=△BDC的周长﹣(BD+CD)=18﹣10=8,故选:C.7.如图,在△ABC中,∠A=90°,边AB的垂直平分线交AB于点D,交BC于点E,已知BE=3,则B C长为()A.5B.6C.7D.8【答案】B【解答】解:如图所示,连接AE,∵DE是AB的垂直平分线,∴EA=EB,∴∠B=∠EAB,∵∠A=90°,∴∠B+∠C=90°,∠BAE+∠CAE=90°,∴∠CAE=∠C,∴EA=EC,∴EC=EB,∴BC=BE+CE=2BE=6,故选:B.8.如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点F,若∠BAC=140°,则∠EAF的度数为()A.95°B.100°C.105°D.110°【答案】B【解答】解:∵∠BAC=140°,∴∠B+∠C=180°﹣∠BAC=40°,∵AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,∴EA=EB,FA=FC,∴∠B=∠BAE,∠C=∠FAC,∴∠BAE+∠FAC=40°,∴∠EAF=∠BAC﹣(∠BAE+∠FAC)=100°,故选:B.9.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE的度数为()A.20°B.25°C.30°D.35°【答案】C【解答】解:∵P是等边△ABC的边AC的中点,∴BP平分∠ABC,∠ABC=60°=∠ACB,∴∠PBC=30°,∵PE=PB,∴∠PBC=∠E=30°,∴∠CPE=∠ACB﹣∠E=30°,故选:C.二.填空题(共6小题)10.如图所示,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交A C于点E,则∠EBC的度数是18度.【答案】见试题解答内容【解答】解:∵DE是线段AB的垂直平分线∴AE=BE∵∠C=90°,∠A=36°∴∠EBA=∠A=36°∴∠EBC=90°﹣36°﹣36°=18°.11.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC与点E,∠A=∠ABE.若AC=7,BC=4,则BD的长为.【答案】.【解答】解:∵CD平分∠ACB,∴∠BCD=∠ECD,∵BE⊥CD,∴∠BDC=∠EDC=90°,∵CD=CD,∴△BDC≌△EDC(ASA),∴BC=CE=4,BD=DE,又∵∠A=∠ABE,∴AE=BE,∵AC=7,BC=4,∴AE=AC﹣CE=3,∴BE=AE=3,∴BD=BE=,故答案为:.12.如图,在等边三角形ABC中,AD⊥BC,垂足为D,则∠BAD=30°.【答案】30.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=∠ADB﹣∠B=30°;故答案为30.13.如图,在边长为4的等边△ABC中,点P为BC边上任意一点,PE⊥AB于点,PF⊥AC于点F,则PE+PF的长度和为2.【答案】2.【解答】解:如图所示,连接AP,作CD⊥AB交AB于点D,=S△ABP+S△ACP,则S△ABC即AB•CD=AB•PE+AC•PF,∵△ABC为等边三角形,∴AB=AC,∴CD=PE+PF,∵AB=AC=BC=4,CD⊥AB,∴,∴,∴,故答案为:.14.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于点D.若BC=9,AD=5,则△ABD的面积为.【答案】.【解答】解:∵AB的垂直平分线交BC于点D,∴DB=DA=5,∴CD=BC﹣BD=9﹣5=4,在Rt△ACD中,∵∠C=90°,∴AC===3,=×5×3=.∴S△ABD故答案为:.15.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为2.【答案】见试题解答内容【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=4,∴DE=.故答案为:2.三.解答题(共3小题)16.已知,如图,△ABC是等边三角形,D是边AC的中点,E是BC延长线上的一点,DB=DE.求∠CD E的度数.【答案】30°.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵D是边AC的中点,∴,∵DB=DE,∴∠E=∠DBC,∴∠E=30°,∵∠BCD=60°,∴∠CDE=∠BCD﹣∠E=30°.17.图①中所示的遮阳伞,伞柄垂直于地面,其示意图如图②.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN,CM=CN.(1)求证:PC垂直平分MN;(2)若CN=PN=60cm,当∠CPN=60°时,求AP的值.【答案】(1)见解析;(2)60cm.【解答】(1)证明:在△CMP和△CNP中,,∴△CMP≌△CNP(SSS),∴∠MPB=∠NPB,∵PM=PN,∴△PMN是等腰三角形,∴PB⊥MN,BM=BN,∴PC垂直平分MN;(2)解:∵CN=PN=60cm,∴当伞收紧时,点P与点A重合,∴AC=CN+PN=120cm,当∠CPN=60°时,∵CN=PN,∴△CPN是等边三角形,∴PC=PN=60cm,∴AP=AC﹣PC=60cm.18.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为20cm,AC=7cm,则DC的长为多少?【答案】(1)见解析;(2).【解答】(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为20cm,∴AB+BC+AC=20cm,∵AC=7cm,∴AB+BC=13cm,∵AB=EC,BD=DE,∴AB+BD=DE+EC=DC,∵AB+BC=AB+BD+DC=2DC=13cm∴.一.选择题(共5小题)1.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E的度数为()A.25°B.20°C.15°D.7.5°【答案】C【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∵DF=DE,∴∠E=∠DFE=15°.故选:C.2.如图,用一张矩形纸片DEFG覆盖等边△ABC,且DG∥BC,若边AB被DG、EF三等分,则△ABC被覆盖(阴影部分)的面积是未被覆盖的面积的()A.B.C.D.【答案】A【解答】解:如图:DG交AB于M,交AC于L,EF交AB于N,AC于K,∵DG∥BC,边AB被DG、EF三等分,∴△AML∽△ANK,△ABC∽△ANK,∴BP=,,∴,,=9a,设S△ABC=a,S△ANK=4a,则S△AML=4a﹣a=3a,∴S四边形MNKL∴未被覆盖的面积为:9a﹣3a=6a,△A B C被覆盖(阴影部分)的面积是未被覆盖的面积,故选:A.3.如图,在等边三角形ABC中,AB=AC=BC=10cm,DC=4cm.如果点M,N都以2cm/s的速度运动,点M在线段CB上由点C向点B运动,点N在线段BA上由点B向点A运动.它们同时出发,当两点运动时间为t秒时,△BMN是一个直角三角形,则t的值为()A.B.C.D.【答案】D【解答】解:∵点M、N都以2cm/s的速度运动则CM=2t,BM=10﹣2t,BN=2t,当∠BMN=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BNM=30°,∴BN=2BM,即2t=2×(10﹣2t),解得:,当∠BNM=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BMN=30°,∴BM=2BN,即2×2t=(10﹣2t),解得:,综上所述,t的值为或时,△BMN是一个直角三角形.故选:D.4.如图,在等边△ABC中,AB=5,点D在AB上,且BD=1,点E、F分别是BC、AC上的点,连接DE,EF,如果∠DEF=60°,DE=EF,那么BE的长是()A.3B.3.5C.4D.4.5【答案】C【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC=5,∵∠BEF=∠C+∠EFC=∠DEF+∠BED,∠DEF=∠C=60°,∴∠BED=∠EFC,在△DBE和△ECF中,,∴△DBE≌△ECF(AAS),∴DB=EC=1,∴BE=BC﹣EC=5﹣1=4.故选:C.5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为2cm2,则△PBC的面积为()A.0.8cm2B.1cm2C.1.2cm2D.不能确定【答案】B【解答】解:如图,延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP≌△EBP(ASA),∴AP=PE,=S△EBP,S△ACP=S△ECP,∴S△ABP=S△ABC=×2=1(cm2),∴S△PBC故选:B.二.填空题(共4小题)6.如图,边长为5cm的正三角形ABC向右平移1cm,得到正三角形A'B'C',此时阴影部分的周长为12 cm.【答案】见试题解答内容【解答】解:由题意得,△ABC为等边三角形,BC=5cm,BB'=1cm,∴B'C=BC﹣BB'=5﹣1=4cm,且阴影部分为等边三角形,∴阴影部分的周长为3×4=12cm,故答案为12.7.如图,在等边△ABC中,点D、E分别在边AB、AC上,DE∥BC,点F在BC延长线上,且EB=EF,若BD=4,BF=8,则线段DE的长为2.【答案】2.【解答】解:过E点作EH⊥BF,设DE=x,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等边三角形,∵BD=4,∴EC=BD=4,AB=BC=AC=4+x,∠ACB=60°,在Rt△CHE中,∵∠ACB=60°,EC=BD=4,∴∠HEC=180°﹣∠ACB﹣∠EHC=180°﹣60°﹣90°=30°,∴,∴BH=BC﹣CH=4+x﹣2=2+x,∵EB=EF,∴△EBF是等腰三角形,∵EH⊥BF,BF=8,∴BH=FH=4,∴2+x=4,∴x=2,∴DE=2.故答案为:2.8.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AB于O,则:①DB=AE;②∠AMC=∠DNC;③△MCE是等腰三角形;④△MCN是等边三角形;⑤∠AOD=60°.其中,正确的有①②④⑤.【答案】①②④⑤.【解答】解:△ACD和△BCE都是等边三角形,∴AC=AD=CD,CE=CB=BE,∠ACD=∠DAC=∠ADC=60°=∠BCE=∠CBE=∠CEB,∴∠DCE=60°,∴∠ACE=∠DCB=120°,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=BD,∠EAC=∠BDC,故①符合题意;∴∠AOD=∠ACD=60°,故⑤符合题意;在△ACM和△DCN中,,△ACM≌△DCN(ASA),∴AM=DN,CM=CN,∠AMC=∠DNC,∴△MCN是等腰三角形;△MCN是等边三角形;故②④符合题意,综上:①②④⑤都符合题意.故答案为:①②④⑤.9.如图,四边形ABCD,AD=1,,BC=3,点E为AB的中点,连接DE、CE,使得∠DEA+∠CEB=60°,则DC的最大值为.【答案】##.【解答】【详解】解:将△ADE沿DE翻折得到△MDE,将△BCE沿CE翻折得到△NCE,连接MN,由翻折可知:∠AED=∠MED,∠BEC=∠NEC,AD=MD=1,BC=NC=3,∵E是AB中点,,∴,∵∠DEA+∠CEB=60°,∴∠AEM+∠BEN=120°,∴∠MEN=60°,∴△EMN是等边三角形,∴,∴CD≤DM+MN+CN,当D,M,N,C共线时,CD取得最大值为,故答案为:.三.解答题(共2小题)10.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE=DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).【答案】见试题解答内容【解答】解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=11.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?【答案】(1)△BPQ是等边三角形;(2)当t=2s或t=4s时,△PBQ是直角三角形.【解答】解:(1)如图,根据题意得:AP=tcm,BQ=2tcm,当t=2时,AP=2cm,BQ=4cm,∵△ABC是边长为6cm的等边三角形,∴AB=6cm,∠B=60°,∴BP=4cm,∴BP=BQ,∴△BPQ是等边三角形;(2)△PBQ中,BP=6﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,①当∠BQP=90°时,∠B=60°,∴∠BPQ=30°,∴BQ=BP,即t=,解得:t=2;②当∠BPQ=90°时,同理得:BP=BQ,即6﹣t=t,解得:t=4,答:当t=2s或t=4s时,△PBQ是直角三角形.1.(2022•大连)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6B.3C.1.5D.1【答案】C【解答】解:由已知可得,MN是线段AC的垂直平分线,设AC与MN的交点为E,∵∠ACB=90°,MN垂直平分AC,∴∠AED=∠ACB=90°,AE=CE,∴ED∥CB,∴△AED∽△ACB,∴,∴,∴AD=AB,∴点D为AB的中点,∵AB=3,∠ACB=90°,∴CD=AB=1.5,故选:C.2.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【答案】见试题解答内容【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.3.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交A C于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.。

等腰三角形知识点总结

等腰三角形知识点总结

等腰三角形知识点总结等腰三角形是初中数学中较为基础的几何图形之一,也是我们在生活中常见的一个形状,例如一些路标、旗帜等等。

对于学习等腰三角形,我们需要掌握一些基本概念和性质。

下面就来一一介绍。

一、基本概念1、等腰三角形等腰三角形是指两边长度相等、两个底角相等的三角形。

通常用“△ABC”表示,其中AB=AC。

2、底边等腰三角形的两条等边称为底边,通常用“BC”表示。

3、顶点角、底角等腰三角形的一个顶点所对的角称为顶点角,另外两个角称为底角。

4、高等腰三角形的高指从顶点到底边的垂线段,通常用“AD”表示。

二、等腰三角形的性质1、定理1等腰三角形的两个顶点角相等。

证明:由等腰三角形的定义可知,AB=AC,则角B=角C。

(结合等腰三角形仿形的原理可知,两个三角形只有当对应边与对应角彼此相等时才叫做相似)2、定理2等腰三角形的底角的平分线也是它的高线。

证明:因为角A等于角B,所以它们的平分线重合,即AD 也是角B的平分线。

3、定理3等腰三角形的高线与底边平分线重合。

证明:将等腰三角形△ABC的两条等边分别延长,分别交于点D和点E,连接DE,则△EBD与△ECD是全等三角形,所以BD=DC。

(利用等腰三角形仿形的原理)又因为AD⊥BC,DE=BC,所以AD也是BC的平分线,即AD平分BC。

4、定理4等腰三角形所在的平面是一个轴对称图形,且对称轴为底边的中垂线。

证明:连接AB,AC,则AD是三角形的高和底角的平分线。

过D作法线DE交BC于点M,则DM=MB,故M为BC的中点,易知M是△ABC的中心,即AD为中心线。

根据轴对称和中心对称的知识,可知△ABC的所在平面是对称的。

三、等腰三角形的面积公式等腰三角形的面积公式为:S=1/2×底边长×高。

证明:从顶点A向BC作高线AD,分别连接AB和AC,则△ABC可看成两个直角三角形,S=1/2×AB×AD=1/2×AC×AD,化简可得S=1/2×BC×AD。

初二数学等腰三角形知识点解析

初二数学等腰三角形知识点解析

初二数学等腰三角形知识点解析等腰三角形性质:1具有一般三角形的边角关系2等边对等角;3底边上的高、底边上的中线、顶角平分线互相重合;4是轴对称图形,对称轴是顶角的平分线;5.底边小于腰长的两倍且大于零,且腰长大于底边的一半;6顶角等于180°减去底角的两倍;顶角可以是锐角、直角或钝角,而底角只能是锐角等腰三角形分类:可分为腰和底边不等的等腰三角形及等边三角形.等边三角形的性质:①具备等腰三角形的一切性质。

② 等边三角形的三条边相等,三个内角相等,每个内角为60°。

5.等腰三角形的判定:① 利用定义;② 等角到等边;等边三角形的判定:① 定义:三条等边的三角形是等边三角形②有一个角是60°的等腰三角形是等边三角形.锐角为30°的直角三角形的边角关系:在直角三角形中,与锐角30°相对的直角等于斜边的一半。

三角形边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。

等腰三角形的分类:等腰直角三角形1.定义有一个角是直角的等腰三角形,叫做等腰直角三角形。

它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有直角三角形的性质。

2.关系等腰直角三角形的边角之间的关系:(1)三角形的三个内角之和等于180°。

⑵三角形的一个外角等于和它不相邻的两个内角之和。

(三)三角形的外角大于与其不相邻的任何内角。

⑷三角形两边之和大于第三边,两边之差小于第三边。

(5)在同一个三角形中,等边等于角,等角等于等边。

3.四条特殊的线段:角平分线,中线,高,中位线。

(1)三角形的角平分线的交点称为三角形的中心。

它是三角形内接圆的中心,它到每边的距离相等。

⑵三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等。

(三)三角形三条中线的交点称为三角形的重心。

从它到每个顶点的距离等于从它到另一侧中点的距离的两倍。

⑷三角形的三条高或它们的延长线的交点叫做三角形的垂心。

等腰三角形的知识点

等腰三角形的知识点

等腰三角形的知识点等腰三角形是初中几何学中的一个重要概念,指的是具有两边长度相等的三角形。

在本文中,将介绍等腰三角形的定义、性质以及一些相关的定理和应用。

通过学习等腰三角形,我们可以更好地理解和解决与之相关的几何问题。

定义:等腰三角形是指具有两条边长度相等的三角形。

根据定义,一个三角形有两个边长相等,那么这两个边所对应的角也必然相等。

性质:1. 两个底角(底边对应的两个角)相等,记为∠A = ∠C。

2. 顶角(顶点对应的角)为等腰三角形的独角,记为∠B。

3. 等腰三角形的底边中垂线(从顶点到底边中点的直线)也被称为高线,记为h。

定理及证明:1. 等腰三角形的高线与底边垂直。

证明:连接高线h和底边两个端点,得到两个直角三角形。

根据直角三角形的性质,可知高线与底边垂直。

2. 等腰三角形的高线是边中点连线的中线。

证明:连接高线h和底边两边的中点,得到两个边长相等的三角形。

根据边中点连线的性质,可知高线是边中点连线的中线。

3. 等腰三角形的高线长度为底边长度的一半。

证明:根据对称性,可知高线将底边分成两个相等的部分。

而高线是边中点连线的中线,所以高线长度等于底边长度的一半。

应用:等腰三角形在几何学中有着广泛的应用,下面介绍几个常见的应用场景:1. 判断等腰三角形:当给定一个三角形的边长时,可以通过判断边长是否相等来判断是否为等腰三角形。

2. 求等腰三角形的高线长度:已知等腰三角形的底边长度时,可以通过高线长度等于底边长度的一半的公式来求解高线的长度。

3. 利用等腰三角形性质解决几何问题:等腰三角形的性质可以应用于解决与之相关的几何问题,如求解角度、边长、面积等问题。

总结:等腰三角形是具有两边长度相等的三角形,其性质包括底角相等、顶角是等腰三角形的独角,以及高线与底边垂直、高线是边中点连线的中线等。

通过学习等腰三角形的定义、性质及相关定理,我们可以更好地理解和运用等腰三角形的知识来解决几何问题。

同时,等腰三角形的应用也使得我们对几何学有了更深入的了解。

等腰三角形知识点归纳

等腰三角形知识点归纳

等腰三角形知识点归纳等腰三角形是初中数学中的基础知识点,它具有许多特殊性质和公式,是解题和证明的重要基础。

本文将对等腰三角形的定义、性质和相关公式进行系统的归纳总结。

一、等腰三角形定义等腰三角形是指具有两条边相等的三角形。

在等腰三角形中,两个底边的边长相等,而顶角的两边也相等。

二、等腰三角形的性质1. 等腰三角形的底角和顶角对应的两条边相等。

由等腰三角形的定义可知,底角对应的两条边长度相等,顶角对应的两条边也相等。

2. 等腰三角形的底角相等。

根据等腰三角形的定义和性质1可知,底角对应的两条边相等,因此底角也相等。

3. 等腰三角形的顶角相等。

同样根据等腰三角形的定义和性质1可知,顶角对应的两条边相等,因此顶角也相等。

4. 等腰三角形的高线也是中线、角平分线和垂直平分线。

高线是从顶角所在顶点到底边的垂直线段,它与底边垂直相交于底边中点,同时也是底边的中线;高线还是顶角的平分线,即将顶角平分为两个相等的角;另外,高线还是底边的垂直平分线,将底边分为两个相等的线段。

5. 等腰三角形的面积公式。

等腰三角形的面积等于底边长度乘以与底边垂直的高线长度再除以2,即S = 1/2 * b * h。

6. 等腰三角形的周长公式。

等腰三角形的周长等于底边长度乘以2再加上斜边的长度,即C = 2b + a。

7. 等腰三角形的角平分线。

等腰三角形的底边上的角平分线既是底边的垂直平分线,也是三角形顶角的平分线。

三、等腰三角形的应用场景等腰三角形在生活和几何中有着广泛的应用。

以下列举几个常见的应用场景:1. 画等腰三角形。

当我们需要画一个等腰三角形时,可以利用等腰三角形的性质来确定两条边的长度。

2. 计算等腰三角形的面积和周长。

等腰三角形的面积和周长公式可以帮助我们快速计算等腰三角形的相关参数。

3. 解题中的等腰三角形。

在解题过程中,等腰三角形常常被用来建立等式或者找到特殊性质,提供解题线索。

四、例题分析1. 已知等腰三角形的底边长度为12cm,顶角的两边长度分别为6cm,求等腰三角形的周长和面积。

初中数学知识点精讲精析 等腰三角形的性质定理

初中数学知识点精讲精析 等腰三角形的性质定理

2.3 等腰三角形的性质定理学习目标1.经历利用等腰三角形的性质加深对轴对称的认识。

2.经历利用轴对称变换推导等腰三角形的性质。

知识详解1.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”)。

(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便。

(3)适用条件:必须在同一个三角形中。

(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.(5)推论:等边三角形的各个内角都等于60°。

2.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质。

(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛。

(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴。

(4)应用模式:如图,在△ABC中,①∵AB=AC,AD⊥BC,∴AD平分∠BAC(或BD=CD);②∵AB=AC,BD=DC,∴AD⊥BC(或AD平分∠BAC);③∵AB=AC,AD平分∠BAC,∴BD=DC(或AD⊥BC).“三线合一”的应用:因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活。

【典型例题】例1:等腰直角三角形的一个底角的度数是()A.30°B.45°C.60°D.90°【答案】B【解析】因为等腰三角形的两个底角相等,而等腰直角三角形的两个底角互余,所以每个底角等于45°例2:如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62º,那么∠DBF=()A.62º B.38º C.28º D.26º【答案】C【解析】在Rt△ABC中,AB=AC,AD⊥BC得∠BAF=∠C=∠CAD=45 º,又∠AED=62º,∴∠EAC=62º- 45 º=17 º,又CE=AF,∴△ABF≌△CAE, ∴∠ABF=17 º, ∴∠DBF=45 º-17 º=28º.例3:如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A、30ºB、40ºC、45ºD、36º【答案】D【解析】∵AB=AC,BD=BC=AD,∴∠A=∠ABD,∠C=∠ABC=∠BDC,设∠A=xº,则∠ABD= xº, ∠C=∠ABC=∠BDC=2 xº, 在△ABC中,x+2x+2x=180,∴x=36,故∠A=36º【误区警示】易错点1:线段垂直平分线的性质与等腰三角形的性质1.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是【答案】50°【解析】∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°易错点2:等腰三角形的性质2.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).【答案】45【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°【综合提升】针对训练1.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.2.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=3.如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,则∠EAF 的度数是1.【答案】30°【解析】∵AB=AC ,∠A=40°,∴∠ABC=∠C=12(180°﹣40°)=70°, ∵BD=BC , ∴∠CBD=180°﹣70°×2=40°, ∴∠ABD=∠ABC ﹣∠CBD =70°﹣40° =30°2.【答案】18°【解析】∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD ⊥AC 于点D , ∴∠CBD=90°﹣72°=18°3.【答案】60°【解析】∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC的中点E 的对应点为F , ∴旋转角为60°,E ,F 是对应点, 则∠EAF 的度数为:60°【中考链接】(2014年盐城)若等腰三角形的顶角为40°,则它的底角度数为( )A . 40°B . 50°C . 60°D . 70°【答案】D【解析】因为等腰三角形的两个底角相等, 又因为顶角是40°, 所以其底角为180402︒-︒ =70°课外拓展黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°,它的腰与它的底成黄金比。

初中数学知识归纳等腰三角形的性质与判定

初中数学知识归纳等腰三角形的性质与判定

初中数学知识归纳等腰三角形的性质与判定等腰三角形是指具有两条边相等的三角形。

在初中数学中,等腰三角形是一个重要的概念。

本文将归纳等腰三角形的性质与判定方法。

通过学习本文,你将更好地理解等腰三角形的特点和运用方法。

一、等腰三角形的性质等腰三角形具有以下几个性质:1. 两底角相等:等腰三角形的两个底角(即底边两侧的角)相等。

记等腰三角形底角为α,则底角α=底角α'。

2. 两腰相等:等腰三角形的两条腰(即与底边相对的两边)相等。

记等腰三角形的腰长为a,则两腰a=腰a'。

3. 顶角平分底角:等腰三角形的顶角(即顶点处的角)平分底角。

记等腰三角形的顶角为β,则顶角β是底角α和α'的平分线。

二、等腰三角形的判定在判定一个三角形是否为等腰三角形时,可以利用以下几种方法:1. 对边判定法:当一个三角形的两边相等时,可以判断它为等腰三角形。

即若AB=AC,则△ABC为等腰三角形。

2. 对角判定法:当一个三角形的两个角相等时,可以判断它为等腰三角形。

即若∠B=∠C,则△ABC为等腰三角形。

3. 垂直平分线判定法:当一个三角形的顶角的角平分线同时也是底边中点的垂直平分线时,可以判断它为等腰三角形。

即若BD为垂直平分线,且BD是AC的中线,则△ABC为等腰三角形。

三、等腰三角形的例题示例下面通过两个例题来进一步加深对等腰三角形的理解。

例题1:在△ABC中,AB=AC,∠B=70°,求∠C和∠A的度数。

解:根据等腰三角形的性质,可知∠B=∠C,而∠A+∠B+∠C=180°。

由于∠B=70°,所以∠C=70°。

又因为∠A+70°+70°=180°,所以∠A=40°。

例题2:已知△ABC为等腰三角形,AB=AC,垂直平分线BD同时也是AC的中线,求∠B、∠C和∠A的度数。

解:根据等腰三角形的性质,可知∠B=∠C。

由于BD是垂直平分线,且BD同时也是AC的中线,所以∠BDC=∠CDB=90°,BD=DC。

等腰三角形知识点总结

等腰三角形知识点总结

等腰三角形知识点总结数学中的等腰三角形是指两边长度相等而第三边长度不同的三角形。

这种三角形具有许多独特的性质和特点,是初中数学的重要知识点之一。

本文将从多个角度全面总结等腰三角形的知识点,以期让读者更加深入地理解和应用这一重要概念。

1. 等腰三角形的定义等腰三角形是一种特殊的三角形,它的两条边长度相等,另一边长度不同。

等腰三角形的两个顶角也一定相等,称为顶角,而那条不等的边叫做底边。

在等腰三角形中,如左边两个角相等,则右边两个角也一定相等。

2. 等腰三角形的性质等腰三角形具有许多独特的性质和特点,下面将详细介绍几个关键点。

2.1. 底角的平分线等腰三角形的底角的平分线过其顶角的公共顶点和底边的中点。

也就是说,等腰三角形底角平分线所在的直线将底边平分,并垂直于底边,将顶角平分成两个等角。

2.2. 等腰三角形的高等腰三角形的高垂直于底边,从底边中点平分底角,直线长度等于底边的一半。

2.3. 等腰三角形的面积等腰三角形的面积可以用公式S=1/2bh来计算,其中b为底边长,h为高。

3. 等腰三角形的应用等腰三角形是数学中的重要概念,经常应用于实际生活中。

以下是一些例子:3.1. 几何中心等腰三角形的三条中线相交于一点,称为几何中心。

这个中心点被称为三角形的重心、垂心和外心。

3.2. 建筑与工程等腰三角形常常应用于建筑和工程中,如设计平面图形、绘制平面图、测量角度等。

例如,在家具制作中,设计一个等腰三角形的桌子或椅子可以保证其结构牢固稳定。

3.3. 图像与几何关系当我们观察自然界中的一些物体时,会发现它们的形状很像等腰三角形,例如落叶、树叶和翅膀等。

通过对等腰三角形的形状和特点的了解,可以帮助我们更好地理解和分析这些图像与几何关系。

4. 总结等腰三角形是初中数学中的重要概念,具有许多独特的性质和特点。

通过对等腰三角形的形状、性质和应用的深入了解,我们可以在实际生活中更好地应用数学知识,提高数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵∠ABF+∠CBF= ,
∴∠AGH=∠BAE+∠ABF=
同理:∠GHK=∠HKG=
∴∠AGH=∠GHK=∠HKG
∴ GHK是等边三角形.
例5.已知如图在Rt ABC,∠C= , ,求证: AB.
证明:延长BC到D使得CD=BC,连结AD
在 ACD和 ACB中

∴∠BAC=∠DAC= ,AB=AD,即∠DAB=
解答:(1)当 时,点D恰为AB中点.
(2)∵ ,
∴ 又由对称性知 CBE和 DBE重合.
∴ ,
∴ED⊥AB
又∵ ,∴ ,∴EA=EB
又∵ED⊥AB,∴ED平分AB,即D是AB中点.
(三)拓广探索
1.通常作顶角平分线、底边中线、底边高线
例1.已知:如图AB=AC,BD⊥AC于D,求证: .
证明:作∠BAC的平分线AE,交BC于E
证明:延长AB至E,使BE=BD,连结DE.
则∠BED=∠BDE
∵∠ABD=∠E+∠BDE
∴∠ABC=2∠E
∵∠ABC=2∠C,∴∠E=∠C.
在 AED和 ACD中
∴ ∴AC=AE
∵AE=AB+BE∴AC=AB+BD
即AB+BD=AC
∴ ABD是等边三角形
∴BD=AB∵CB= BD
∴CB= AB
(二)综合运用
例1.如图 ABC中,AB=AC,BD、CE分别是 ABC两底角的平分线,求证:BD=CE.
证明: ABC中∵AB=AC
∴∠ABC=∠ACB.
又∵BD、C
在 BDC与 CEB中
∴ BDC CEB(ASA)
(3)等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
2.等边三角形
(1)等边三角形的有关概念
在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形.
(2)等边三角形的性质
等边三角形的三个内角都相等,并且每一个角都等于 .
∴BD=CE
例2.已知 ABC中,AB=AC, ,AB的垂直平分线EF交AB于E交BC于F.求证:CF=2BF.
证明:连结AF
∵EF为AB的垂直平分线
∴BF=AF∴∠BAF=
又∵AB=AC, ∴

∴Rt AFC中, ,AF= CF
又∵AF=BF,∴BF= CF
∴CF=2BF
例3.已知如图 ABC中, ,沿过B点的一条直线BE折叠这个三角形,使点C与AB边上的一点D重合,当∠A满足什么条件时,点D恰为AB中点?写出一个你认为适当的条件,并利用此条件说明D为AB中点.
12·3等腰三角形
要点精讲
1.等腰三角形
(1)等腰三角形的有关概念
有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
(2)等腰三角形的性质
等腰三角形的性质1:等腰三角形的两个底角相等.(简写成“等边对等角”)
等腰三角形的性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(3)等边三角形的判定
等边三角形的判定1:三个角都相等的三角形是等边三角形;
等边三角形的判定2:有一个角是 的等腰三角形是等边三角形;
3.直角三角形的性质
在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.
典型例题
(一)基础识别题
例1.(1)如果等腰三角形的两边分别为3和6,则周长为.
∵DE//BC
∴∠EDB=∠DBC
∴∠EBD=∠EDB
∴EB=ED,即 BED是等腰三角形
例3.如图 ABC为等边三角形,D为CB的延长线上任一点,以AD为边作等边三角形ADE,求证:∠ABE=∠ADE.
证明:∵ ABC与 ADE均为等边三角形.
∴AE=AD,AB=AC,∠EAD=∠BAC= ,
∴∠EAD+∠DAB=∠BAC+∠DAB

又∵AB=AC,∴AE⊥BC
∴∠2+∠ACB=
∵BD⊥AC
∴∠DBC+∠ACB=
∴∠2=∠DBC,∴
2.常延长一腰至等长,构造直角三角形解题
例2.已知如图在 ABC中,AB=AC,在BA延长线上取AE=AF.求证:EF⊥BC.
证明:延长BE至N,使AN=AB,连结CN,则AB=AN=AC
∴∠B=∠ACB∠ACN=∠ANC


∴ 即
∴NC⊥BC∵AE=AF,∴∠AEF=∠AFE.
又∵∠BAC=∠AEF+∠AFE,∠BAC=∠ACN+∠ANC
∴∠BAC=2∠AEF=2∠ANC,∴∠AEF=∠ANC
∴EF//NC∴EF⊥BC.
3.构造等腰三角形
例3.已知如图在 ABC中,∠1=∠2,∠ABC=2∠C.求证:AB+BD=AC
(2)如果等腰三角形的两边分别为3和4,则周长为.
解答:
(1)如果等腰三角形的两边分别为3和6,则周长为15.
(2)如果等腰三角形的两边分别为3和4,则周长为10或11.
例2.如图BD是 ABC的角平分线,DE//BC交AB于E.求证: BED是等腰三角形.
证明:∵BD是 ABC的角平分线
∴∠EBD=∠DBC
即∠EAB=∠DAC
∴ ∴∠ABE=∠C= ,
∴∠ABE=∠ADE.
例4.已知如图在等边三角形ABC各边上分别取D、E、F,使AD=BE=CF,AE、BF、CD两两交于G、H、K三点,求证: GHK为等边三角形.
证明:∵ ABC为等边三角形
∴∠ABC=∠BCF=
∵AB=BC,BE=CF

∴∠BAE=∠CBF
相关文档
最新文档