抛物线的几何性质教学反思

合集下载

2015高中数学2.4.2抛物线的简单几何性质课后反思新人教B版选修2_1

2015高中数学2.4.2抛物线的简单几何性质课后反思新人教B版选修2_1

2015高中数学 2.4.2抛物线的简单几何性质课后反思新人教B版选修
2-1
课后反思
在教学中,我通过设置教学情境,激发学生的学习兴趣,使学生能主动参与到学习活动中来;在几何性质的学习过程中,学生能够细心观察,积极思考,在掌握知识的同时,锻炼思维,培养能力;在整个教学过程设计上一方面我尽量由浅入深,循序渐进,贴近学生的认知规律,而且恰当地使用了多媒体、计算机课件,让学生直观形象地理解问题,并在整个教学过程中体现了“以学生为主体”,“师生互动”及“学生间合作学习”的现代教育理念。

通过本节课的学习能达到预期的教学目标.
课标分析
本章的主题是用代数方法研究几何.培养学生用代数方法解几何问题的能力,同时培养学生
的代数运算和等价变形能力,强化培养学生的数形转化能力.本章进一步让学生理解曲线方程的
含义,总结求曲线方程的方法和用曲线研究方程的一般步骤.教材编写上注意复习解方程和方程
组的方法和技能.通过学习圆锥曲线的历史和应用,启发学生学习圆锥曲线的兴趣.
教材分析
曲线可以看成是符合某种条件的点的轨迹,在解析几何里用坐标法研究曲线的一般程序是:
建立适当的坐标系,求出曲线的方程;利用方程讨论曲线的几何性质,说明这些性质在实际中的
应用.在数学2第二章里学生已经初步学习了这种方法,在“圆锥曲线与方程”这一章中,这种
研究曲线的方法和过程以及它的优势体现得最突出.因此,“圆锥曲线与方程”是解析几何的重
点内容,特别是在对学生掌握坐标法的训练方面有着不可替代的作用.
1。

抛物线的性质教学反思

抛物线的性质教学反思

《抛物线的性质》教学反思我讲授的课题是《抛物线的性质》,我的设计意图是想把课堂交给学生,充分发挥学生“动脑,动手,动口”的水平。

在学案的设计上,举一反三,让学生练习到位,练习充分,让学生真正意义上理解知识并且会应用知识。

在课件的设计上,我尽量选择一些动态的图像,充分调动学生的兴趣,并且现批现改,拉近学生与老师的距离。

听过前面不少老师的课,从中学到了许多,我将老师们的闪光点,加以改进,融入自己的教学中,使其更适合本班学生。

但是没有完美的课堂,通过本节课的讲解,我看到了自己的一些闪光点,也看到了自己的不足,现总结如下:闪光点:创新,暑期我们参加了中小学教师培训,看到了老师们未来成长的方向,本次培训只要是讲解评价量规,我就将评价量规表放在了我的课堂中,分为教师评价表和学生自我评价表,不但能够掌握学生在本节课中掌握到什么水准,也能够让学生清楚看到自己跟别人的差别,从而更好的进步。

我个人认为,在教学内容上,老师们都是经过“千锤百炼”的,所以不会有太大的差别,想要有所不同,就要有所创新!不足之处:课后作业的设计不够明确,作为一次比赛课,学案中出现的题目应该是属于课堂上必须完成的。

我将最后几道题设置成了《巩固练习》,有点模糊。

其实我的本意是要把《巩固练习》作为课后作业,不属于课堂要完成的内容,但是让听课的老师有点分辨不清楚究竟是课堂,还是课下完成。

所以应该在这方面加以明确和改进。

以后不要再出现《巩固练习》或者《反馈练习》这类模糊不清的字眼。

如果让我加以改进,我的想法是将学案分为两份,一份是课堂上要明确完成的任务,一份是用小一点的纸,明确是课后作业。

并且学案中出几道相对应的高考题,让学生感受高考,会更好点。

通过本节课的讲解,确实让自己有很深感悟,这种体会是在平常教学中根本感受不到的财富,因此,每一位老师,都在日积月累的教学中,在前面老师的经验中,在不断反思中进步,成长。

《第七讲 抛物线》教学反思

《第七讲  抛物线》教学反思

《第七讲抛物线》教学反思陕州一高数学组马娜11月30日下午第三节课我在1703班进行了公开课《抛物线》,作为高三一轮复习课,本节课分两节知识来讲授,第一节讲授抛物线的标准方程和几何性质,第一节讲授抛物线与直线的相交问题。

本节课我讲授的是第一节,根据教学情况和课下学生接受情况现将本节反思如下:一、教学内容设计:本节课教学重难点是 1.抛物线的定义及其方程,并用定义解决焦点弦问题.2.数形结合解决直线与抛物线相交所组成的几何图形问题.所以我选择了两个突破点:考点一抛物线的定义及应用;考点二抛物线的标准方程和几何性质。

在题目选择上有课前诊断自测、例题、训练题、和课后检测。

教学方式上采用类比的方法让学生主动学习、合作交流,体验数学的发现和创造过程,培养学生数学表达和交流的能力。

同时抓住解析几何的核心─—数形结合,利用平面几何知识结合抛物线定义解决本节重难点。

二、自主课堂方面当前教学我们最应注意的问题就是自主课堂中提倡的理念“将课堂还给学生”,课堂上学生是主体,教师是引导者。

本节课教学我把学习的主动权交给学生,用多媒体创设情境,围绕例题进行变式训练,师生围绕问题展开讨论,学生在质疑、讨论、总结的过程中,理解了抛物线的定义与标准方程,形成了自己的数学思想方法,更触发了学生积极思考、勤奋探索的动力,开发了学生的智慧源泉,实现了举一反三、触类旁通的效果。

虽然在教学中培养学生积极参与的习惯同时也不能忽视学生的发散思维,要恰当引导学生,课堂上突发性的问题,教师要能自如地应对。

二、失误之处1、抛物线的定义“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫抛物线。

”这里我虽然强调了定点F不在定直线l,但却没有进一步设问“若定点F在定直线l上,则轨迹是什么呢?如果进一步研究可强化学生对抛物线的定义的理解;2、为了课堂的紧凑图形都是由我画在黑板上,在归纳总结时应深化一下,如“知道抛物线的标准方程,如何画抛物线的简图?”,强调画抛物线简图的“三点法”。

抛物线实践应用教学反思(3篇)

抛物线实践应用教学反思(3篇)

第1篇一、教学背景抛物线是高中数学中重要的几何图形之一,它不仅具有丰富的几何性质,而且在实际生活中也有着广泛的应用。

为了提高学生对抛物线的认识和应用能力,我在教学过程中,结合教材内容,设计了一系列的实践应用活动。

以下是对这节课的教学反思。

二、教学目标1. 让学生了解抛物线的定义、性质和图形特点。

2. 培养学生运用抛物线知识解决实际问题的能力。

3. 培养学生的创新思维和团队合作精神。

三、教学过程1. 导入新课通过展示生活中常见的抛物线图形,如滑梯、抛物线桥等,激发学生的学习兴趣,引出抛物线的概念。

2. 探究抛物线的性质通过引导学生观察、分析,总结出抛物线的性质,如对称性、开口方向、顶点坐标等。

3. 实践应用(1)设计抛物线桥让学生分组讨论,设计一座抛物线桥,要求桥面平滑,连接两端的直线段。

在设计中,要考虑抛物线的开口方向、顶点坐标等因素。

(2)分析抛物线运动轨迹让学生观察篮球在空中的运动轨迹,分析其是否为抛物线,并解释原因。

4. 总结与反思引导学生总结本节课所学内容,回顾抛物线的性质和应用,并对自己的学习进行反思。

四、教学反思1. 教学方法本节课采用了启发式教学和合作学习的方式,让学生在探究、讨论中主动学习。

通过实践应用,使学生将理论知识与实际生活相结合,提高了学生的学习兴趣和积极性。

2. 教学内容教学内容贴近生活,具有实际意义。

通过设计抛物线桥、分析抛物线运动轨迹等活动,使学生更好地理解抛物线的性质和应用。

3. 学生参与度学生在课堂上的参与度较高,能够积极参与讨论和实践活动。

但在设计抛物线桥时,部分学生存在思维定势,未能充分发挥创新思维。

4. 教学效果通过本节课的学习,学生对抛物线的性质和应用有了更深入的认识,能够运用所学知识解决实际问题。

但在课堂实践活动中,部分学生的合作能力有待提高。

五、改进措施1. 加强学生创新思维的培养在实践活动设计中,鼓励学生从不同角度思考问题,提出更多有创意的设计方案。

抛物线的性质教学反思

抛物线的性质教学反思

抛物线的性质教学反思赵三清在上抛物线的复习课时,我安排了这样一节课.上课后先请同学们整理归纳有关抛物线焦点弦的性质.并给出证明.经过同学们思考、讨论后.得到:已知: 抛物线)0(22>=p px y .焦点为,F 过AB F 交抛物线于.,B A (1)以焦点弦为直径的圆与准线相切.(2)若CD 是任意弦.且d CD =(>)2p ,求CD 的中点到y 轴的最短距离.(3)设()().,,,2211y x y x B A 求证:221p y y -= .(4) 若AB 的倾斜角为4π.点A 在x 轴上方.求BF AF.(5)CD 过F ,且AB CD ⊥.求证:CDAB 11+ 是定值. (6)若R 在准线上,且AR 平行x 轴.求证BR 过原点.(7)证明(6)的逆命题.(8)求证:pBF AF 211=+. (9) 若AB 的倾斜角为α.求证:()αsin 22pAB = .这节课我个人认为是节上的比较好的课.主要表现在.(1) 重点突出,难点破之有效. 整堂的教学都紧紧围绕抛物线的定义和性质的教学重点来逐步展开。

(2) 在堂课中,教师做到精讲,少讲,让学生多动脑,多动手。

培养了学生独立思考的能力和创新方法解决问题的能力。

学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法解决问题的能力。

充分体现了学生是主体,老师是主导的新课堂理念.(3) 注重基础知识、基本技能和基本方法的落实,教学效果好。

教师不把主要精力放在难度较大的综合题上,而是引导学生怎样构建知识体系,如何应用知识形成技能。

((4)课堂的知识覆盖面广,有一定的方法技巧。

难度适当。

课堂容量大,有深度。

(5)课堂教学能围绕高考,体现高考目标,让学生感受高考,真真把高考教学要求落实到了平时教学。

总之,。

数学教学中需要反思的地方很多,我们在教学过程中只有勤分析,善反思,不断总结,我们的教育教学理念和教学能力才能与时俱进。

抛物线的简单几何性质教学反思

抛物线的简单几何性质教学反思

抛物线的简单几何性质教学反思《抛物线的简单几何性质》教学反思本节课的设计思路:通过类比与联想椭圆双、曲线的学习内容,来学习抛物线,既要突出二次曲线的共性特征,又要突出抛物线的个性特征,又要培养学生认识二次曲线的学习能力。

请同学们回忆一下我们学过的椭圆双曲线的哪些内容,同学们回答:定义,图形及几何性质,具体的几何性质有哪些?生:对称性,顶点,离心率准线方程,焦半径公式,椭圆有参数方程,双曲线有渐近线方程。

类比到抛物线会有,定义:图形范围对称性、顶点、离心率、准线方程,然后,请同学们阅读课本并以填空题的形式完成上述内容,最后回顾一下抛物线的几何性质,可以归纳为六个“一”即:一条对称轴,一个顶点,一个焦点,一条准线,e=1,一个焦半径公式,补充:焦准距:p(p>0),通径:2p(椭圆、双曲线的焦准距:b2/c,通径:2b2/a形式一样)。

通过这样的比较与对比,同学们既能掌握抛物线的个性又能明了三种曲线的共性,进一步指出画出抛物线的简图需要的三个点,抛物线的大致形状就确定了,最后结合课本上的例题、练习题,紧扣抛物线的几何性质的六个“一”进行试题设计,学生反映积极,回答热烈,下课前请同学们谈了谈这节课的感受。

课后,通过批改作业和与同学们交谈,同学们反映课上内容掌握熟练作业轻松完成,知识掌握牢固。

总之,通过这节课的教学设计,符合学生的认知规律,也能让学生充分的动脑思、动手做、动口说,充分的调动了学生的积极性,让学生主动参与课堂,教学设计在学生发展得最近区域设计,同学们只要”跳一跳,就会摘到桃子”,体会到成功的喜悦,加上老师的适时点拨,师生、生生的默契配合,给师生双方播下了知识的种子,让我们感到数学不再那么神秘,而是如此生机勃勃,有着无穷的魅力,可攀而不可及。

这节课,不仅使学生们获得了知识,同时也丰富了我们的精神世界,让我们深刻体会到了“教有法但无定法”的境界。

2020/7/1。

高中数学_2.4.2 抛物线的几何性质教学设计学情分析教材分析课后反思

高中数学_2.4.2 抛物线的几何性质教学设计学情分析教材分析课后反思

抛物线的几何性质教学设计1. 教学目标:(1)掌握抛物线的范围、对称性、顶点、离心率等几何性质;(2)能根据抛物线的几何性质对抛物线方程进行讨论;(3)在对抛物线几何性质的讨论中,注意数与形的结合与转化。

2. 过程与方法学会用类比的思想分析解决问题。

3. 情态与价值观学生通过和椭圆,双曲线和抛物线之间的简单几何性质类比,了解到事物之间的普遍联系性。

教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课教学方法:学导式,启发式教学过程设计:由抛物线y 2 =2px (p >0)有pyx 22=,又0>p 所以0≥x所以抛物线在y 轴的右侧。

当x 增大时, 也增大,这说明抛物线向右上方和右下方无限延伸。

所以y 的取值范围是R y ∈2.对称性以y -代y ,方程不变,所以抛物线关于x 轴对称.我们把抛物线的对称轴叫做抛物线的轴.3.顶点抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当时,因此抛物线的顶点就是坐标原点.4.离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知标准方程 范围 对称性顶点离心率y 2 = 2px (p >0) x ≥0 y ∈R x 轴(0,0)1y 2 = -2px (p >0) x ≤0 y ∈R x 2 = 2py (p >0) y ≥0 x ∈R y 轴x 2 = -2py (p >0)y ≤ 0 x ∈R由此及彼,本表格由学生独立完成,锻炼学生类比,独立自主的能力y3.三种圆锥曲 线的简单几 何性质比较学习新知识不忘老知识,比较着学习,总结归纳更容易让学生掌握本课内容。

4.经典例题例1:已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点 ()22,2-M ,求它的标准方程。

解:因为抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点()22,2-M 。

所以设方程为:y 2 = 2px (p >0),又因为点M 在抛物线上:()22222⨯=-p ,2=p 。

高中数学_抛物线的简单几何性质教学设计学情分析教材分析课后反思

高中数学_抛物线的简单几何性质教学设计学情分析教材分析课后反思

使用时间2014 年 12月 9日第 1 课时授课类型新授课教学目标知识与技能:①掌握抛物线的几何性质:范围,对称性,顶点,离心率②会运用抛物线的性质求标准方程③会求抛物线的焦点弦过程与方法:通过“观察”、“思考”、“探究”与“合作交流”等一系列教学活动,获得知识与技能,进一步感受数形结合与转化的思想方法。

情感态度与价值观:通过观察、表达与交流等探究活动,进一步培养学生善于观察、勇于探索的精神,激发学生积极主动地参与数学学习活动,使学生愿学、乐学。

教学重点抛物线的几何性质及其简单应用教学难点抛物线的几何性质及其简单应用教学设计教师活动(教学内容的呈现及教学方法)学生活动设计意图问题导入类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质?(提问方式:可以先回顾椭圆、双曲线的性质回答)学生回答采用类比方式学习本节内容,消除学生对新知识的恐惧感,增加学习的兴趣自主学习我们不妨以抛物线的标准方程)0(22>=ppxy为例探究其几何性质类比椭圆双曲线的性质,借助教材完成下列表格自主学习学生自主完成对知识的初始认识,避免一言堂,增加学生的参与度,使得学习更加有趣,效果更好由于授课班级学生学习水平、掌握知识水平参差不齐,能力方面差异也很大,程度稍好的同学完全可以独立完成本节内容的学习,但缺乏联系之前知识使其网络化的能力;程度稍差的同学则需要引导和点拨才能更好的学习本节内容。

因此我采用了先学后教的教学模式,在课堂上采用学生回答、类比学习、动画演示、表格归纳、方法归纳、实物投影仪的使用、小组合作等等的教学方式,从而实现让程度好的学生知识掌握的更加牢固、知识更加的系统化网络化,程度稍差的学生掌握知识的目的,而且丰富多样的教学方式也可以让学生更加的乐于学习和发现问题,更好的实现教学目标。

1. 从知识与技能方面:采用类比、动画展示、错误展示等方法学习抛物线的简单几何性质,达到了很好的学习效果;采用实物投影、学生方法展示等方法解决几何性质的应用,完成了本节的教学目标2. 过程与方法:通过“观察”、“思考”、“探究”与“合作交流”等一系列教学活动,进一步感受数形结合与转化的思想方法,整个教学过程中都不是教师说结论,而是引导学生归纳总结,教师只是引导的作用3. 情感态度与价值观:丰富多样的教学方式实现了这个目标,所有的问题与方法都来源于学生,激发学生积极主动地参与数学学习活动,使学生愿学、乐学,实现课堂效率的最大化。

《3.3.2 抛物线的几何性质》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一

《3.3.2 抛物线的几何性质》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一

《抛物线的几何性质》教学设计方案(第一课时)一、教学目标1. 知识与技能:理解抛物线的概念,掌握抛物线的标准方程及其形式,能够正确画出抛物线图形。

2. 过程与方法:通过观察、分析、探究抛物线的几何性质,培养观察、分析、解决问题的能力。

3. 情感态度价值观:理解抛物线的实际应用价值,激发学习数学的兴趣和求知欲。

二、教学重难点1. 教学重点:掌握抛物线的标准方程及其形式,正确画出抛物线图形。

2. 教学难点:理解抛物线的焦点弦等性质,解决相关应用问题。

三、教学准备1. 准备教学用具:黑板、粉笔、几何画板等多媒体教学设备。

2. 搜集相关教学资源,包括实物模型、图片、视频等,以备在教学中使用。

3. 提前设计好课堂互动问题,引导学生积极参与讨论,加深对知识点的理解。

4. 制定合理的考核方式,以检验学生对本节课知识的掌握情况。

四、教学过程:本节课是《抛物线的几何性质》第一课时,由于本节课内容较多,所以分两课时完成。

第一课时的重点是掌握抛物线的基本性质和运用。

教学过程的设计如下:(一)导入通过回顾椭圆的相关性质,让学生思考如何研究抛物线的性质,并给出抛物线的概念和标准方程。

(二)新知探究1. 探究开口方向引导学生观察标准方程,明确开口方向,得出结论:开口方向由|a|决定。

2. 探究对称轴通过观察标准方程中x的符号,得出结论:对称轴为y轴。

3. 探究焦点和准线根据标准方程,引导学生得出焦点和准线的位置,并总结出抛物线的定义。

(三)例题讲解通过例题讲解,让学生更好地理解和掌握抛物线的性质,并学会如何运用这些性质解决实际问题。

(四)课堂练习让学生完成一些与抛物线有关的练习题,以检验学生对新知识的掌握情况,并发现存在的问题。

(五)小结与作业1. 小结本节课的主要内容,包括抛物线的定义、开口方向、对称轴、焦点和准线等。

2. 布置作业,包括一些与抛物线有关的练习题和思考题,以进一步巩固和拓展学生对新知识的掌握。

(六)课后反思对本节课的教学效果进行反思,总结优点和不足之处,为今后的教学提供参考。

人教B版选修2《抛物线的几何性质》教案及教学反思

人教B版选修2《抛物线的几何性质》教案及教学反思

人教B版选修2《抛物线的几何性质》教案及教学反思一、教学目标1.理解抛物线的定义并能够描述抛物线的几何性质;2.掌握抛物线的标准方程和顶点式方程,并能够应用到相关的题目中;3.通过对抛物线相关例题的练习,掌握抛物线的相关解题技巧;4.能够将所学知识运用到实际中,如:汽车站点设计、潮汐的变化、计算机游戏、数学建模等。

二、教学重难点重点1.抛物线的定义和几何性质;2.抛物线的标准方程和顶点式方程。

难点1.抛物线相关的问题解决方法;2.抛物线应用到实际中的能力。

三、教学内容及教法设计教学内容1.抛物线的定义;2.抛物线的几何性质;3.抛物线的标准方程和顶点式方程;4.抛物线的相关例题。

教学方法1.课堂讲解与板书;2.学生自学与讨论;3.组内合作讨论和互动交流;4.课外练习和分享总结。

教学步骤第一步:引入本节课主要是讲述抛物线的几何性质,为了让大家更好地掌握这个内容,我们首先来看一下一个实例,如:在学校建设一个带顶篷的园林广场,该广场长40米,宽30米,墙壁高3.5米,墙壁坡度为60度。

请大家思考一下,如何设计这个篷布的最高点和最低点的位置才能使篷布成为一个抛物线形状呢?第二步:讲解1.抛物线的定义抛物线是指在平面上,在一个定点到直线上,在相同距离上的所有点连成的线条,它是一条曲线,它的形状独特,非常有规律。

2.抛物线的几何性质(1)抛物线的一个重要特点是可以通过平移、旋转和缩放变换到标准的抛物线形式;(2)抛物线的一个性质是轴对称,即抛物线的顶点位于对称轴上;(3)抛物线的标准方程为:y = ax^2 + bx + c,其中a、b、c都是常数;(4)抛物线的顶点式方程为:y = a(x - h)^2 + k,其中(a,h,k)为顶点的坐标。

3.抛物线的标准方程和顶点式方程(1)标准方程的含义和如何转化成顶点式方程;(2)顶点式方程的含义和如何转化成标准方程;(3)运用标准方程和顶点式方程解决抛物线相关问题。

抛物线的几何性质教案

抛物线的几何性质教案

抛物线的几何性质教案抛物线的几何性质教案一、教学目标:1. 知识与技能:掌握抛物线的定义,了解抛物线的几何性质。

2. 过程与方法:通过观察实例、辨析图形等方式,培养学生的观察能力和分析能力。

3. 情感态度价值观:培养学生对几何形状的兴趣,通过发现规律和解决问题的过程,提高学生的动手实践能力和逻辑思维能力。

二、教学重难点:1. 教学重点:抛物线的定义,抛物线的几何性质。

2. 教学难点:通过具体实例推导抛物线的一般式方程。

三、教学过程:Step 1:导入新课1. 通过投射物体的实例,引出抛物线的定义并写在黑板上。

2. 引导学生观察抛物线的形状,并讨论抛物线的特点。

Step 2:抛物线的定义1. 提问:根据之前的观察,你能用自己的话解释一下什么是抛物线吗?2. 学生回答后,教师给出正确答案并进行解释。

3. 学生跟随教师的解释,将定义写在笔记本上。

Step 3:抛物线的性质1. 引导学生观察抛物线的对称性,并讨论抛物线的对称轴是什么。

2. 引导学生发现抛物线的定点,并解释为什么这些点在同一条直线上。

3. 教师引导学生用引例方法,用一个实际问题(如抛射运动)解释为什么会产生抛物线,引导学生探索抛物线的另外两个性质。

(如,抛物线在对称轴上的点到定点的距离相等,抛物线上任意一点到定点和对称轴的距离相等)Step 4:抛物线的一般式方程1. 教师提出具体实例,引导学生观察,并用抛物线的定义和已知条件推导出一般式方程。

2. 学生与教师一起完成推导过程,并将结果写在黑板上。

3. 学生跟随教师的推导过程,将结果写在笔记本上。

Step 5:练习与巩固1. 教师出示几个实例,并要求学生根据观察结果,写出相应的抛物线方程。

2. 学生进行练习,并相互检查和讨论结果。

四、教学反思:通过本节课的教学,学生们对抛物线的定义和几何性质有了初步的了解。

通过观察、探索的方式,激发了学生的兴趣,让他们在实践中感受到了数学的魅力。

在教学过程中,教师注重培养学生的观察能力和分析能力,通过引导学生发现规律和解决问题的过程,培养学生的动手实践能力和逻辑思维能力。

高中数学_抛物线的几何性质教学设计学情分析教材分析课后反思

高中数学_抛物线的几何性质教学设计学情分析教材分析课后反思

抛物线的简单几何性质教学设计1. 教学目标:(1)掌握抛物线的范围、对称性、顶点、离心率等几何性质;(2)了解焦点弦的有关性质;焦半径公式;(3)能根据抛物线的几何性质对抛物线方程进行讨论;(4)在对抛物线几何性质的讨论中,注意数与形的结合与转化。

2. 过程与方法学会用类比的思想分析解决问题。

3. 情态与价值观学生通过和椭圆,双曲线和抛物线之间的简单几何性质类比,了解到事物之间的普遍联系性。

教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课教学方法:学导式,启发式教学过程设计:由抛物线y 2 =2px (p >0)有pyx 22=,又0>p 所以0≥x所以抛物线在y 轴的右侧。

当x 增大时, 也增大,这说明抛物线向右上方和右下方无限延伸。

所以y 的取值范围是R y ∈2.对称性以y -代y ,方程不变,所以抛物线关于x 轴对称.我们把抛物线的对称轴叫做抛物线的轴.3.顶点抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当时,因此抛物线的顶点就是坐标原点.4.离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知标准方程 范围 对称性顶点离心率y 2 = 2px (p >0) x ≥0 y ∈R x 轴(0,0)1y 2 = -2px (p >0) x ≤0 y ∈R x 2 = 2py (p >0) y ≥0 x ∈R y 轴x 2 = -2py (p >0)y ≤ 0 x ∈R由此及彼,本表格由学生独立完成,锻炼学生类比,独立自主的能力y3.三种圆锥曲 线的简单几 何性质比较学习新知识不忘老知识,比较着学习,总结归纳更容易让学生掌握本课内容。

4.经典例题例1:已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点 ()22,2-M ,求它的标准方程。

解:因为抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点()22,2-M 。

高中数学_抛物线的几何性质教学设计学情分析教材分析课后反思

高中数学_抛物线的几何性质教学设计学情分析教材分析课后反思

教学设计板书:§8.6 抛物线的简单几何性质抛物线的几何性质 例题 练习 课时小结 教 学 过 程教学内容 教师导拨与学生活动 设计意图 一、知识回顾1、 抛物线的定义:平面内与一个点F 和一条定直线L 的距离相等的点的轨迹叫做抛物线。

点F →焦点,直线L →准线。

2、 抛物线的标准方程。

图形 标准方程焦点坐标准线方程抛物线的定义及标准方程由学生口述,老师展示结论提出这一问题的研究方法——对比、数形结合二、引入课题若大桥的桥拱为抛物线型,其水面宽度为8米,拱顶离水面4米,方形货船宽4米,高2.6米. 问:能安全通过大桥吗?提出问题由学生完成,引导学生由“数学模型”到“数学问题”通过“过桥”事件模型引发学生探究问题本质的)0(22>=p px y )0,2(p2p x -=)0(22>-=p px y )0,2(p-2p x =)0(22>=p py x )2,0(p2p y -=)0(22>-=p py x )2,0(p -2p y =的解决问题的方法。

并思考抛物线的几何性质。

热情,同时巩固抛物线方程的知识并提出本节课的标题,起着承上启下的自然过度。

三、讲授新课我们根据抛物线的标准方程)0(22 p px y =来研究它的几何性质。

1、 范围:0≥x2、 对称性:关于x 轴对称抛物线的对称轴叫做抛物线的轴3、 顶点:(0,0)抛物线和它的轴的交点叫做抛物线的的顶点。

4、 离心率:e=1抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示。

标准 方程图形范围 0≥x 0≤x0≥y0≤y对称 轴 关于x 轴对称 关于x 轴对称关于y 轴对称关于y 轴对称顶点 (0,0) 离心率e=1补充说明:1、抛物线只位于半个平面坐标内,虽然他可以无通过类比椭圆与双曲线的几何性质,从范围、对称性、顶点、离心率方面研究抛物线的几何性质,并由学生归纳总结出其他三种标准方程的几何性质。

《抛物线及其标准方程》教学反思

《抛物线及其标准方程》教学反思

《抛物线及其标准方程》教学反思教学反思:抛物线及其标准方程抛物线是数学中的一个重要概念,也是高中数学课程中的重点内容。

掌握抛物线的性质和标准方程对于学生的数学素养和解题能力的提升至关重要。

在教学过程中,我采用了多种方法来引导学生理解和掌握抛物线的相关知识,但也发现了一些问题和不足之处。

在本文中,我将就这些问题进行反思和总结,并提出相关改进意见。

首先,我发现学生对于抛物线的几何意义理解不够深入。

在教学过程中,我注重引导学生通过解析几何的方法来研究抛物线,如通过平移、旋转等几何变换来观察抛物线的性质。

然而,仅仅停留在形象化的认识层面,学生对于抛物线的基本特点和性质并没有深入理解。

在下一步的教学中,我打算通过更多的实例让学生进行动手实践,引导他们观察和推理,进一步加深他们对抛物线的认识。

其次,学生在推导和理解抛物线的标准方程时存在一定的困难。

标准方程y=ax^2+bx+c是研究抛物线的重要工具,可以帮助我们确定抛物线的形状和位置。

然而,我发现学生在将题目中给定的条件转化为标准方程时存在一定的困难。

在教学中,我强调了如何根据题目中的信息确定标准方程的系数,并提供了一些解题技巧。

但是,由于学生对于方程的理解和运算的熟练程度不够,他们在转化过程中容易出现错误。

为了帮助学生更好地理解和掌握标准方程的推导过程,我打算在课堂上增加更多的练习与案例分析,让学生通过实际操作来强化对标准方程的理解。

此外,我还发现学生在解题过程中对于边界条件的考虑不够全面。

在抛物线的运算中,边界条件的考虑非常关键,不同的边界条件会对解题过程和结果产生显著影响。

在之前的教学中,我没有充分强调边界条件的重要性,导致学生在解题过程中对于边界条件的考虑不够全面。

为了解决这个问题,我计划在教学中增加更多的例题,注重引导学生抓住关键信息,全面考虑边界条件,从而正确解题。

最后,我还要就教学资源和教学方式进行思考和改进。

在现代教育中,我们可以更多地运用技术手段,例如利用多媒体教室和教学软件来进行抛物线教学。

抛物线简单几何性质教学反思07

抛物线简单几何性质教学反思07

抛物线的简单几何性质实践反思
通过本次培训学习,信息技术的应用在教学中受益匪浅,课堂气氛更加浓厚,师生互动更加默契配合。

在教案设计方面我根据学生的特点确立教案设计、选题、练习、引入、过渡等题型的难易程度以及解决问题的突入点,突破教学中的重难点。

灵活处理教材,突出本节课的重点教学——抛物线的性质的掌握和焦点弦的计算。

①首先,利用课后练习加以修改成表格形式作为课前练习,巩固上节课的定义和标准方程,从而引出四种形式的对比表格。

②通过表格引导学生从数、形两方面来探讨抛物线的性质。

③应用举例中结合教材例题进行变式练习(1)培养学生数形结合和分类讨论的思想,开拓学生思维。

增加变式练习(2)巩固抛物线的定义为例题2——焦点弦的计算准备。

④师生一起分析例题2,进一步巩固利用定义,数形结合计算焦点弦。

⑤课后小结及巩固练习进一步强化数形结合思想。

在教学中注重发挥学生的积极思考的能力,鼓励引导学生积极发言,共同分析,从而调动学生学习的气氛,提高学习的注意力。

不足之处:平时多应用信息技术,课堂效果更高。

在时间把握上要加强,例题2可以删减,直接将变式练习作为例题讲解,同时由于学生不熟,在要求学生回答问题时耽误了时间,组织不够紧凑,导致练习时间不够,因此今后要加以改善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线的几何性质教学反思
反思1在上一章我们学习了直线和圆的方程,对曲线和方程的概念及求法己经有一定理解,前面又详细学习了圆锥曲线中椭圆、双曲线的定义、方程、几何性质,以及简单应用,同时,在初中也从函数角度学习了抛物线的初步知识。

本节是在这个基础上从更一般意义上研究抛物线。

通过抛物线的学习加深了学生对圆锥曲线统一的认识,提高对坐标法这一解析几何基本方法的应用能力,提高学生综合能力。

反思2由于前面己经学习了较为复杂的两种圆锥曲线-——椭圆和双曲线,对于它们的定义、方程、几何性质都有较深刻理解,己积累一定经验,对抛物线这一部分己有一定的自学能力,故本节在抓好基础知识的同时,注重激发学生学习的兴趣,提高动手能力,重视在教学中实践性环节,丰富学生的感性认识,扩大视野,重视学生直接经验的作用,同时注重学生在自我探索过程中发现知识,培养探究意识。

让学生成为一名自主的学习者和探索者,让学生处在一种对知识的追求状态中。

特别注重学生在课外研究性学习的开展(这是课内传统教学模式的有益补充)。

反思3为了追求抛物线标准方程简单形式必须建立适当的直角坐标系,要十分重视对坐标系的选取。

焦点到准线的距离p(p>0),这是抛物线方程中参数p的几何意义,p值永远大于0在抛物线标准方程的一次项系数为负时,表示抛物线的对称轴在一次项变量所对应坐标轴的负坐标轴。

如果选取坐标系的不同,或者说抛物线在坐标平面内的位置不同,同一条抛物线的标准方程还有其它几种形式(p>0)。

存在的问题
总体来说,这堂课的效果不错,但是由于课堂上对方程和图像的关系强调得不够,学生画图时仍然存在一定的问题,下堂课需要强化这一点。

其次,学生的学习能力有待加强,只要涉及到曲线和直线的位置关系,总有部分同学不会把以前的知识迁移到这里,这也是以后教学的重点。

相关文档
最新文档