八年级上册数学第一章勾股定理知识点与练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理
知识点一:勾股定理
勾股定理: . 勾股数: . 常见勾股数:3、4、5; 6、8、10; 5、12、13; 8、15、17; 7、24、25。 要点诠释:
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边
(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题
例1、若Rt ABC 中,90C ︒
∠=且a=5,b=12,则c= ,
例2、Rt △ABC 中,若c=10,a ∶b=3∶4,则a= ,b= . 例3、如图,由Rt△ABC 的三边向外作正方形,若最大正方形的边长为8cm ,
则正方形M 与正方形N 的面积之和为2
_____cm
4、下列各组数:①,,;②9,12,16;③4,5,6;④a 8,a 15,a 17(0≠a ); ⑤9,40,41。其中是勾股数的有( )组 A 、1 B 、2 C 、3 D 、4
练习
1、在△ABC 中,∠C=90°,c=37,a=12,则b=( )
A 、50
B 、35
C 、34
D 、26
2、在Rt △ABC 中,∠C=90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( ) 、4、3 、12、5 、8、6 、24、10
3、若一个直角三角形的三边分别为a 、b 、c, 2
2
144,25a b ==,则2
c =( )
A 、169
B 、119
C 、169或119
D 、13或25
知识点二:勾股定理的逆定理
勾股定理的逆定理: 例1、三角形的三边长a,b,c满足2ab=(a+b)2
-c2
,则此三角形是 ( ).
A 、钝角三角形
B 、锐角三角形
C 、直角三角形
D 、等边三角形
例2、在△ABC 中,若AB=2,AC=2,BC=2,则∠B= 。
练习
1、 已知a 、b 、c 是三角形的三边长,如果满足2
(6)810
0a b c -+-+-=,则三角形的形状是( )
A :底与边不相等的等腰三角形
B :等边三角形
C :钝角三角形
D :直角三角形
2、△ABC 中,若a ∶b ∶c=1∶3∶2,则∠A ∶∠B ∶∠C= .
知识点三:运用勾股定理和勾股定理的逆定理解生活中的实际问题
S 3S 2
S 1
C B
A
①勾股定理揭示了直角三角形三边的关系,其作用:已知两边求第三边;证明三角形中某些线段的平方关系;作长为m 的线段。
②勾股定理的逆定理常用来判断一个三角形是否为直角三角形。
例1、有一个小孩站在距他1米且比他高50厘米的向日葵旁边,当风吹倒向日葵时, 向日葵的顶处正好可以碰到他的头顶,那么你能计算出向日葵和小孩的高度吗 练习
1、一艘轮船以16km/h 速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h 的速度向东南方向航行,它们离开一个半小时后相距 。
综合练习
1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )
A .26
B .18
C .20
D .21
2、在下列数组中,能构成一个直角三角形的有( ) ①10,20,25;②10,24,25;③9,80,81;④8;15;17
A 、4组
B 、3组
C 、2组
D 、1组
3、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为( ) A 、 直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定
4、如图所示,以Rt ABC 的三边向 外作正方形,其面积分别 为123,,S S S ,且1234,8,S S S ===则 ;
5、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°, AB =5公里,BC =4公里,若每天凿隧道公里, 问几天才能把隧道AB 凿通
6、有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.
C
A
B D
勾股定理作业
1、在Rt △ABC 中,斜边AB=2,则=++222CA BC AB .
2、.如图一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距 ( )
A 、25海里
B 、30海里
C 、35海里
D 、40海里
3、一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为( ) .8 C
4、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或360
5、要登上12米高的建筑物,为了安全起见,要使梯子的底端离建筑物5米,则至少需要 米长的梯子。
6、在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12. ①AD ⊥BD 吗为什么②求四边形ABCD 的面积。
7、如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9。
(1)求DC 的长。 (2)求AB 的长。
C
A D
B