等比数列的概念和通项公式(教学设计)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等比数列》(第1课时)教学设计
授课地点:武威八中
授课时间:2015年4月22日
授课人:武威六中杨志隆
一、教学目标
知识与技能
1.理解等比数列的概念;
2.掌握等比数列的通项公式;
3.会应用定义及通项公式解决一些实际问题。
过程与方法
培养运用归纳类比的方法去发现并解决问题的能力。通过实例,归纳并理解等比数列的概念,探索并掌握等比数列的通项公式,培养学生严密的思维习惯。
情感态度与价值观
充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
二、教学重点、难点
教学重点:
等比数列的概念及通项公式;
教学难点:
通项公式的推导及初步应用。
三、教学方法
发现式教学法,类比分析法
四、教学过程
(一)旧知回顾,情境导入
1. 回顾等差数列的相关性质
设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。
2.情境展示
情境1:“一尺之棰,日取其半,万世不竭。”
情境2:一张纸的折叠问题
把以上实例表示为数学问题,并引导学生通过观察、联想,得到两个数列:
①
②1,2,4,8,16,32,64
设计意图:让学生通过观察,得到两个数列的共同特点:从第二项起,每一项与它前面一项的比都等于同一个常数.由此引入等比数列。
(二)概念探究
1.引导学生通过联想并类比等差数列给出该数列的名称:等比数列
2.归纳总结,形成等比数列的概念.
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比(引导学生经过类比等差数列的定义得出)。同时给出等比中项的定义,并和等差中项做比较,加深学生对概念的理解。
3.对等比数列概念的深化理解
给出几个数列让学生判断是否是等比数列,以加深对概念的理解。
问题1:等比数列的项可以为零吗?
问题2:等比数列的公比可以为零吗?
问题3:若,等比数列的项有什么特点?呢?特别地,若,数列的项有什么特点?
问题4:形如,,,…()的数列既是等差数列,又是等比数列吗?
设计意图:通过让学生分析讨论,加深学生对概念的深层次理解,培养学生严谨的思维习惯和良好的自主探究能力。
通项公式推导
1.定义的代数式表达
引导学生由等比数列的定义写出其递推式,并得到:
(1)判定:对于数列,若(,为常数),则称这个数列为等比数列,常数叫做等比数列的公比.
(2)性质:是等比数列(,为常数)
设计意图:通过探索,发现一个概念可以作为判定,又可以得到它的性质,提高学生的自主探究能力。
2. 回顾由等差数列的递推式求其通项公式的方法:叠加法和迭代法。让学生类比等差数列的通项公式的推导思路和方法,自主探究等比数列的通项公式的求法,然后教师再做补充,引导学生归纳两种方法:叠乘法和迭代法。
设计意图:培养学生的自学能力和探索精神,体会类比思想在数学中的应用,提高学生的知识迁移能力。
(四)例题解析
例1 课本第51页例3.
解:略
设计意图:通过这道例题,加深学生对等比数列的通项公式的理解,同时养成学生良好的动手习惯和规范解题习惯,提高学生的计算能力。
例题后的练习1和2可让学生自己动手完成,以便学生熟练应用通项公式。
例2 课本第51页例4
解:略
设计意图:通过让学生举例、不完全归纳和证明,得到两个等比数列的积仍是等比数列,增强学生的归纳总结能力。
(五)、回顾小结
1.等比数列的概念和通项公式;
2.用类比的思想研究数学问题;
3.注重等差数列和等比数列的区别与联系。
(小结可先由学生叙述,教师进行补充和整理)
设计意图:让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力,为学生以后解决问题提供经验和教训.
(六)课后作业
1.课本53页:A组1、2
2.课后思考:类比等差数列,试猜想等比数列的性质。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,在数学上得到不同的发展,同时为下一节等比数列的性质的学习打基础。
(七)教后反思