对电场及磁场中高斯定理的认识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对电场及磁场中高斯定理的认识
电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理[1]。
与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。
电场中德高斯定理公式是静电场的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质
时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。
高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。
高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的二次方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。
对于某些对称分布的电场,如均匀带电球的电场,无限大均匀带电面的电场以及无限长均匀带电圆柱的电场,可直接用高斯定理计算它们的电场强度。