立方根练习题及答案

合集下载

专题4.2立方根(解析版)【苏科版】

专题4.2立方根(解析版)【苏科版】

专题4.2立方根姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•东海县期末)下列说法正确的是()A.﹣27的立方根是3B.16=±4C.1的平方根是1D.4的算术平方根是2【分析】根据立方根,算术平方根,平方根的定义对各选项分析判断后利用排除法求解.【解析】A、﹣27的立方根是﹣3,故本选项错误;B、16=4,故本选项错误;C、1的平方根是±1,故本选项错误;D、4的算术平方根是2,故本选项正确.故选:D.【点评】本题考查了立方根,平方根,算术平方根的定义,是基础题,熟记概念是解题的关键.2.(2020秋•沭阳县期末)下列计算正确的是()A.−1=−1B.(−3)2=−3C.4=±2D=−12【分析】根据立方根和算术平方根的定义解答即可.【解析】A、−1没有意义,原计算错误,故此选项不符合题意;B、(−3)2=9=3,原计算错误,故此选项不符合题意;C、4=2,原计算错误,故此选项不符合题意;D=−12,原计算正确,故此选项符合题意.故选:D.【点评】本题考查了立方根,算术平方根的定义,解题的关键是熟练掌握相关的定义正确进行计算.3.(2021春•浉河区期末)下列说法正确的是()A.64的平方根是8B.﹣16的立方根是﹣4C.只有非负数才有立方根D.﹣3的立方根是−33【分析】分别根据平方根与立方根的定义判断即可.【解析】A、64的平方根是±8,故本选项不合题意;B、﹣16的立方根是3−16=−232,故本选项不合题意;C、任何实数都有立方根,故本选项不合题意;D、﹣3的立方根是−33,故本选项符合题意.故选:D.【点评】本题主要考查了平方根与立方根,熟记相关定义是解答本题的关键.4.(2020秋•无锡期末)给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是()A.①②B.①②③C.②③D.③【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.【解析】①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误;②∵42=16,∴4是16的算术平方根,故②错误,③平方根等于它本身的数只有0,故③正确,④8的立方根是2,故④错误.故选:D.【点评】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.5.(2020秋•苏州期末)3729的算术平方根等于()A.9B.±9C.3D.±3【分析】根据立方根、算术平方根的定义求解即可.【解析】因为93=729,所以3729=9,因此3729的算术平方根就是9的算术平方根,又因为9的算术平方根为3,即9=3,所以3729的算术平方根是3,故选:C.【点评】本题考查立方根、算术平方根的定义,理解立方根、算术平方根的意义是得出答案的关键.6.(2020秋•北碚区期末)给出下列4个说法:①只有正数才有平方根;②2是4的平方根;③平方根等于它本身的数只有0;④27的立方根是±3.其中,正确的有()A.①②B.①②③C.②③D.②③④【分析】分别根据平方根与立方根的定义判断即可.【解析】①只有正数才有平方根,错误,0的平方根是0;②2是4的平方根,正确;③平方根等于它本身的数只有0,正确;④27的立方根是3,故原说法错误.所以正确的有②③.故选:C.【点评】本题主要考查了平方根与立方根的定义,熟记定义是解答本题的关键.7.(2021•天宁区校级模拟)32−1+35+8=0,则x的值是()A.﹣3B.﹣1C.12D.无选项【分析】根据题意,对原方程变形为32−1=−35+8,即可得到有2x﹣1=﹣5x﹣8,解方程即可得出x的值.【解析】32−1+35+8=0,即32−1=−35+8,故有2x﹣1=﹣5x﹣8解之得x=﹣1,故选:B.【点评】本题主要考查的是对立方根在解方程中的应用,要求学生能够熟练运用.8.(2019秋•覃塘区期末)若3=a,则a的值不可能是()A.﹣1B.0C.1D.3【分析】根据立方根的概念进行解答,可以设这个数为x,根据立方根是它本身,求出这个数.【解析】因为3=a,所以a=0,﹣1,1,即a的值不可能是3.故选:D.【点评】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.9.(2020秋•叶县期中)下列说法:①±3都是27的立方根;②116的算术平方根是±14;③−3−8=2;④16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【解析】①3是27的立方根,原来的说法错误;②116的算术平方根是14,原来的说法错误;③−3−8=2是正确的;④16=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.【点评】考查立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.10.(2021春•建邺区校级期末)已知实数x、y满足x3•y3=﹣8,当x>1时,y的取值范围是()A.﹣2<y<0B.y=﹣2C.y=﹣2或y>0D.﹣2<y<0或y>0【分析】由x3•y3=﹣8可得出xy=﹣2,结合x的取值范围,即可求出y的取值范围.【解析】∵x3•y3=(xy)3=﹣8,∴xy=﹣2,∴y=−2.又∵x>1,∴﹣2<y<0.故选:A.【点评】本题考查了立方根、幂的乘方与积的乘方以及实数大小比较,牢记(ab)n=a n b n是解题的关键.二.填空题(共8小题)11.(2021•鼓楼区一模)4的平方根是±2,27的立方根是3.【分析】利用平方根、立方根定义计算即可求出值.【解析】4的平方根是±2,27的立方根是3.故答案为:±2,3.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.12.(2021•鼓楼区二模)若8的平方根和立方根分别是a和b,则ab【分析】根据平方根和立方根的定义即可求解.【解析】8的平方根:±8=±22.8的立方根:38=2.故ab=±42.故答案为:±42.【点评】本题考查立方根和平方根的知识,关键在于熟悉其概念.13.(2020秋•沿河县期末)﹣8的立方根是﹣2,16的平方根是±2.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解析】∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2;∵16=4,∵±2的平方等于4,∴4的平方根等于±2;故答案为﹣2,±2.【点评】本题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.14.(2020秋•苏州期末)若x3=﹣1,则x=﹣1.【分析】根据立方根的定义求解即可.【解析】∵x3=﹣1,∴x=3−1=−1,故答案为:﹣1.【点评】本题主要考查了立方根的定义,如果x3=a,则称x是a的立方根,记作3.15.(2020春•渝中区期末)已知a﹣2b的平方根是±3,a+3b的立方根是﹣1,则a+b=3.【分析】利用算术平方根,以及立方根定义求出a与b的值,即可求出所求.【解析】由题意得:−2=9+3=−1,解得=5=−2,∴a+b=5﹣2=3.故答案为:3.【点评】此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键.16.(2019秋•法库县期末)若3−2有意义,则x的取值范围是任意实数.【分析】根据立方根中被开方数是任意实数即可求解.【解析】3−2有意义,则x取任意实数,故答案为任意实数.【点评】本题考查立方根;熟练掌握立方根中被开方数成立的条件是解题的关键.17.(2019秋•高邮市期末)若3的整数部分为2,则满足条件的奇数a有9个.【分析】根据立方根的定义和无理数大小的估算解答即可.【解析】因为38=2,327=3,而3的整数部分为2,所以8<a<27,则满足条件的奇数a有:9,11,13,15,17,19,21,23,25,共有9个.故答案为:9.【点评】本题考查了立方根和估算无理数的大小,解题的关键是利用立方根对无理数的大小进行估算.18.(2019秋•青岛期中)若−9+(b+3)2=0,则的立方根是【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【解析】∵−9+(b+3)2=0,∴a﹣9=0,b+3=0,解得a=9,b=﹣3.∴=−3,﹣3的立方根是3−3.故答案为:3.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.三.解答题(共6小题)19.直接写出答案①144②±23③3−0.064④−3(−5)3【分析】①原式利用算术平方根定义计算即可得到结果;②原式利用二次根式性质化简即可得到结果;③原式利用立方根定义计算即可得到结果;④原式利用立方根定义计算即可得到结果;⑤原式利用算术平方根定义计算即可得到结果.【解析】①原式=12;②原式=±23;③原式=﹣0.4;④原式=5;⑤原式=32.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.20.(2019秋•徐州期中)求下列各式的x的值(1)4x2=121;(2)(x﹣2)3=﹣8【分析】(1)根据平方根的定义即可求出答案;(2)根据立方根的定义即可求出答案.【解析】(1)∵4x2=121,∴x2=1214,∴x=±112;(2)∵(x﹣2)3=﹣8,∴x﹣2=﹣2,∴x=0;【点评】本题考查立方根与平方根,解题的关键是正确理解立方根与平方根的定义,本题属于基础题型.21.(2021春•崇川区校级月考)解方程:(1)169x2=100;(2)x2﹣3=0;(3)(2x﹣1)2﹣169=0;(4)(3x﹣1)3﹣125=0.【分析】(1)先系数化为1,再根据平方根的定义即可求解;(2)先移项,再根据平方根的定义即可求解;(3)先移项,再根据平方根的定义即可求解;(4)先移项,再根据立方根的定义即可求解.【解析】(1)由169x2=100得x2=100169,所以x=±1013;(2)由x2﹣3=0得x2=3,所以x=±3;(3)由(2x﹣1)2﹣169=0得(2x﹣1)2=169,所以2x﹣1=13或2x﹣1=﹣13,所以x=7或x=﹣6;(4)由(3x﹣1)3﹣125=0得(3x﹣1)3=125,所以3x﹣1=5,所以x=2.【点评】本题主要考查了平方根、立方根,关键是熟练掌握平方根、立方根的定义.22.(2020秋•滨海县月考)已知正数x的两个不同的平方根分别是a+3和2a﹣15,y的立方根是﹣1.求(1)a的值;(2)x﹣2y+1的值.【分析】(1)依据一个正数有两个平方根,这两个平方根互为相反数,即可求出x的值;(2)再根据立方根的定义,即可得到y的值,进而确定出x﹣2y+1的值.【解析】(1)∵正数x的两个不同的平方根分别是a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4;(2)由题可得,x=(a+3)2=49,y=(﹣1)3=﹣1,∴x﹣2y+1=49+2+1=52.【点评】此题考查了平方根以及立方根,熟练掌握平方根以及立方根的定义是解本题的关键.23.老师布置每名同学做一个正方体盒子,做好后,小明对小强说:“我做的盒子表面积是96cm2,你的呢?”小强低头想了一下说:“先不告诉你,我做的盒子比你的盒子体积大665cm3,你能算出它的表面积吗?”小明思考了一会儿,顺利地得出了答案,你知道是多少吗?【分析】根据正方体的表面积,列出算式可求正方体的棱长,进一步得到小强的盒子体积,根据正方体的体积公式得到棱长,再根据长方体的表面积公式即求解.【解析】96÷6=16(cm2),16=4(cm),4×4×4=64(cm3),64+665=729(cm3),3729=9(cm),9×9×6=486(cm2).答:它的表面积是486cm2.【点评】此题考查了算术平方根,立方根,用到的知识点是算术平方根的求法,关键是根据正方体的面积和体积公式解答.24.(2019秋•莱山区期末)已知一个正数m的平方根为2n+1和5﹣3n.(1)求m的值;(2)|a﹣3|++(c﹣n)2=0,a+b+c的立方根是多少?【分析】(1)由正数的平方根互为相反数,可得2n+1+5﹣3n=0,可求n=6,即可求m;(2)由已知可得a=3,b=0,c=n=6,则可求解.【解析】(1)正数m的平方根互为相反数,∴2n+1+5﹣3n=0,∴n=6,∴2n+1=13,∴m=169;(2)∵|a﹣3|++(c﹣n)2=0,∴a=3,b=0,c=n=6,∴a+b+c=3+0+6=9,∴a+b+c的立方根是39.【点评】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.。

初中数学立方根专项练习含答案

初中数学立方根专项练习含答案

立方根专项练习一.选择题(共20小题)1.下列计算正确的是()A.=B.=±5C.﹣=﹣8D.﹣=22.下列各式正确的是()A.B.=3C.=﹣4D.=±5 3.有理数﹣8的立方根为()A.﹣2B.2C.±2D.±44.下列计算正确的是()A.=±3B.(﹣1)0=0C.+=D.=2 5.面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根6.下列说法中正确的是()A.9的平方根是3B.4平方根是±2C.的算术平方根是4D.﹣8的立方根是±27.右边运算中错误的有()①=4;②;③=﹣4;④=4;⑤±=4.A.1个B.2个C.3个D.4个8.若x3=8,则x的值为()A.﹣2B.2C.4D.9.如图为洪涛同学的小测卷,他的得分应是()A.25分B.50分C.75分D.100分10.下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是011.平方根和立方根都是本身的数是()A.0B.0和1C.±1D.0和±1 12.8的立方根等于()A.﹣2B.2C.﹣4D.4 13.已知x,y为实数,且+(y+2)2=0,则y x的立方根是()A.B.﹣8C.﹣2D.±2 14.下列说法不正确的是()A.的平方根是±B.﹣9是81的一个平方根C.3.6的算式平方根是0.6D.﹣27的立方根是﹣315.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若,则a=b D.若,则a=b 16.下列说法正确的是()A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.﹣2是4的一个平方根17.﹣8的立方根是()A.±2B.2C.﹣2D.24 18.下列说法中,错误的是()A.4的算术平方根是2B.的平方根是±3C.8的立方根是±2D.﹣1的立方根等于﹣1 19.已知+|b﹣1|=0,那么(a+b)2018的立方根为()A.0B.﹣1C.1D.±120.下列计算:①=0;②=﹣3;③=2;④(﹣)2=2,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共15小题)21.求值:=_______.22.16的平方根是_______;8的立方根是_______.23.有一个数值转换器,原理如图:当输入的x为﹣83时,输出的y是_______.24.已知a,b满足a3b3=27,当﹣3<a<1时,b的取值范围是_______.25.一个容积是125dm3的正方体棱长是_______dm.26.﹣64的立方根是_______,的平方根是_______.27.的平方根是_______,125的立方根是_______,的立方根是_______.28.=_______.29.若a+7的算术平方根是3,2b+2的立方根是﹣2,则b a=_______.30.64的平方根是_______,立方根是_______,算术平方根是_______.31.16的算术平方根是_______.﹣27的立方根是_______.的平方根_______.32.若=2.938,=6.329,则=_______.33.计算:﹣()﹣1=_______.34.已知某正数的两个平方根分别是m+4和2m﹣16,则这个正数的立方根为_______.35.若一个数的算术平方根与它的立方根相等,那么这个数是_______.三.解答题(共5小题)36.已知一个正数的平方根是a﹣3和a﹣11,a+2b﹣3的立方根是2,求2a+b的算术平方根.37.解决以下问题:(1)若的平方根是±2,2x+y+1的算术平方根是5,求2x﹣3y+18的立方根;(2)若与的值互为相反数,与互为相反数,求a,b,c的值.38.求下列各式中的x.(1)x2﹣121=0(2)(x﹣5)3+8=039.已知2的平方等于a,2b﹣1是27的立方根,±表示3的平方根.(1)求a,b,c的值;(2)化简关于x的多项式:|x﹣a|﹣2(x+b)﹣c,其中x<4.40.求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.立方根专项练习参考答案与试题解析一.选择题(共20小题)1.解:A.,故本选项符合题意;B.,故本选项不合题意;C.,故本选项不合题意;D.,故本选项不合题意;故选:A.2.解:A、原式=﹣2,符合题意;B、原式不能化简,不符合题意;C、原式=|﹣4|=4,不符合题意;D、原式=5,不符合题意,故选:A.3.解:有理数﹣8的立方根为.故选:A.4.解:A、=3,故此选项错误;B、(﹣1)0=1,故此选项错误;C、+无法计算,故此选项错误;D、=2,正确.故选:D.5.解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.6.解:A、9的平方根是±3,不符合题意;B、4的平方根是±2,符合题意;C、=4,4的算术平方根是2,不符合题意;D、﹣8的立方根是﹣2,不符合题意,故选:B.7.解:①,①正确,②,②正确,③没有意义,③错误,④,④正确,⑤,⑤错误,运算错误的有两个,故选:B.8.解:∵x3=8,∴x==2,故选:B.9.解:①2的相反数是﹣2,正确;②倒数等于它本身的数是1和﹣1,正确;③﹣1的绝对值是1,正确;④8的立方根是2,正确;故选:D.10.解:A.5是25的算术平方根,此选项说法正确;B.1的立方根是1,此选项说法错误;C.﹣1没有平方根,此选项说法正确;D.0的平方根与算术平方根都是0,此选项说法正确;故选:B.11.解:平方根和立方根都是本身的数是0.故选:A.12.解:∵23=8,∴8的立方根是2.故选:B.13.解:∵+(y+2)2=0,∴x﹣3=0,y+2=0,解得:x=3,y=﹣2,则y x=(﹣2)3=﹣8的立方根是:﹣2.14.解:A、的平方根是,选顶A正确;B、﹣9是81的一个平方根,选顶B正确;C、0.36的算式平方根是0.6,选顶C不正确;D、﹣27的立方根是﹣3,选顶D正确;本题选择不正确的,故选:C.15.解:A、若|m|=|n|,则m=±n,故本选项判断错误,不符合题意;B、若a2>b2,则|a|>|b|,当a<0时,a<b,故本选项判断错误,不符合题意;C、若,则a=b,故本选项判断正确,符合题意;D、若,则|a|=b,故本选项判断错误,不符合题意;故选:C.16.解:A、立方根是它本身的数有﹣1、0和1,故错误,不符合题意;B、负数有立方根但没有平方根,故错误,不符合题意;C、16的平方根是±4,故错误,不符合题意;D、﹣2是4的一个平方根,正确,符合题意,故选:D.17.解:﹣8的立方根是﹣2.故选:C.18.解:A、4的算术平方根是2,说法正确,故本选项错误;B、的平方根是±3,说法正确,故本选项错误;C、8的立方根是2,原说法错误,故本选项正确;D、﹣1的立方根等于﹣1,说法正确,故本选项错误;故选:C.19.解:∵+|b﹣1|=0,∴a+2=0,b﹣1=0,∴a=﹣2,b=1,∴(a+b)2018=(﹣2+1)2018=1,∴(a+b)2018的立方根为1,20.解:①,故①计算正确;②,故②计算正确;③=2,故③计算正确;④=2,故④计算正确;共四个,故选:D.二.填空题(共15小题)21.解:=﹣2019,故答案为:﹣2019.22.解:16的平方根是,8的立方根是.故答案为:±4;223.解:将x=﹣83代入得:=﹣8将x=﹣8代入得:=﹣2,将x=﹣2代入得:,则输出y的值为:.故答案为:.24.解:由a3b3=(ab)3=27,得ab=3,∵﹣3<a<1∴b=∴b<﹣1或b>3故答案为:b<﹣1或b>325.解:设棱长为a,则a3=125,∴a==5,故答案为5.26.解:﹣64的立方根是﹣4=4,4的平方根是±2,即的平方根是±2,故答案为:﹣4,±2.27.解:的平方根是,125的立方根是5,,则的立方根是2,故答案为:,5,2.28.解:∵0.33=0.027,∴.故答案为0.3.29.解:由题意知a+7=9,2b+2=﹣8,解得:a=2,b=﹣5,∴b a=(﹣5)2=25,故答案为:25.30.解:64的平方根是±8,立方根是4,算术平方根是8;故答案为:±8;4;8.31.解:16的算术平方根是4,﹣27的立方根是﹣3,∵=9,∴9的平方根为:±3,故答案为:4,﹣3,±3;32.解:==×100=2.938×100=293.8.故答案为:293.8.33.解:﹣()﹣1=﹣3﹣2=﹣5.故答案为:﹣5.34.解:∵正数的两个平方根分别是m+4和2m﹣16,∴m+4+2m﹣16=0.∴m=4.∴m+4=8.∴这个正数为64.∴这个正数的立方根为4.故答案为:4.35.解:0的算术平方根和立方根都是0,1的算术平方根和立方根都是1,故答案为:0和1.三.解答题(共5小题)36.解:由题意,得(a﹣3)+(a﹣11)=0,∴2a=14,∴a=7,又∵a+2b﹣3的立方根是2∴a+2b﹣3=8,∴a+2b=11,∵a=7,∴b=2,∴2a+b=16,∴2a+b的算术平方根是4.37.解:(1)根据题意得2x﹣1=16,2x+y+1=25,则2x=17,y=7,所以2x﹣3y+18=17﹣3×7+18=14,所以2x﹣3y+18的立方根为;(2)∵与的值互为相反数,与互为相反数,∴2a+b=0,c﹣b=0,1﹣3b+b+1=0,解得:a=,b=1,c=1.38.解:(1)方程整理得:x2=121,开方得:x=±11;(2)方程整理得:(x﹣5)3=﹣8,开立方得:x=3.39.解:(1)由题意知a=22=4,2b﹣1=3,b=2;c﹣2=3,c=5;(2)∵x<4,∴|x﹣a|﹣2(x+b)﹣c=|x﹣4|﹣2(x+2)﹣5=4﹣x﹣2x﹣4﹣5=﹣3x﹣5.40.解:(1)∵4x2﹣81=0,∴4x2=81,则x2=,∴x =±;(2)∵8(x+1)3=27,∴(x+1)3=,则x+1=,解得x =.第1页(共1页)。

立方根(含答案)

立方根(含答案)

立方根(一)1、a 的立方根是 ,-a 的立方根是 ;若x 3=a , 则x=33a= ;33)(a -= ;-33a= ;)(33a =2、每一个数a 都只有 个立方根;即正数只有 个立方根;负数只有 个立方根;零只有 个立方根,就是 本身3、2的立方等于 ,8的立方根是 ;(-3)3= ,-27的立方根是4、0.064的立方根是 ; 的立方根是-4; 的立方根是32 5、计算:3125.0= ;335= ;)13(33= ;)13(33-=33)3(-= ;-3641= ;-38-= ;31-=327= ;3278= ;-3001.0= ;33)2(-=二、判断下列说法是否正确1、5是125的立方根 。

( )2、±4是64的立方根 。

( )3、-2.5是-15.625的立方根。

( )4、(-4)3 的立方根是-4。

( )三、选择题1、数0.000125的立方根是( ).A.0.5B.±0.5C.0.05D.0.005 2、下列判断中错误的是( )A.一个数的立方根与这个数的乘积为非负数B.一个数的两个平方根之积负数C.一个数的立方根未必小于这个数D.零的平方根等于零的立方根 3、下列说法中,不正确的是( ) A 、非负数的非负平方根是它的算术平方根B 、非负数的立方根就是它的三次方根C 、一个负数的立方根只有一个,且仍为负数D 、一个数的立方根总比平方根小4、若()()33225b ,5a -=-=,则a+b 的所有可能的值为( )A 、0B 、-10C 、0或-10D 、0或10或-105、下列说法正确的是------------------------------------------------------------------( ) A 064.0-的立方根是0.4 B 9-的平方根是3±C 16的立方根是316D 0.01的立方根是0.0000016、下列运算正确的是 ----------------------------------------------------------------------( ) A3311--=- B3333=- C3311-=- D3311-=-7、若=,则a 的值是( ) A .78 B .78- C .78± D .343512-四、解答题1.求下列各数的立方根:(1) 27; (2)-38; (3)1; (4) 0.2.求下列各式的值:(1) 31000 (2); 37291000; (3) 364125-;(4)31;3、计算:(1)38321+ (2)327102---4、求下列各式中x 的值:(每题5分,共15分)(1)1258x 3= (2)()07295x 3=+- (3)27)3(83=--x立方根(一) 参考答案:填空:1、 3a ;3a -;3a 。

八年级7.6【立方根】练习题及答案

八年级7.6【立方根】练习题及答案

7.6立方根练习题1.如果一个有理数的平方根和立方根相同,那么这个数是()A.±1B.0C.1D.0和12.若a是(﹣3)2的平方根,则等于()A.﹣3B.C.或﹣D.3或﹣3 3.64的立方根是()A.4B.±4C.8D.±8 4.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.4 5.下列说法正确的是()A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.﹣2是4的一个平方根6.﹣64的立方根与的平方根之和是.7.如果的平方根是±3,则=.8.某个正数的平方根是x与y,3x﹣y的立方根是2,则这个正数是.9.若实数x满足等式(x+4)3=﹣27,则x=.10.计算:.11.已知和互为相反数,求的值.7.6立方根练习题答案1.如果一个有理数的平方根和立方根相同,那么这个数是()A.±1B.0C.1D.0和1【答案】B【解析】解:0的平方根和立方根相同.2.若a是(﹣3)2的平方根,则等于()A.﹣3B.C.或﹣D.3或﹣3【答案】C【解析】解:∵(﹣3)2=(±3)2=9,∴a=±3,∴=,或=,3.64的立方根是()A.4B.±4C.8D.±8【答案】A【解析】解:∵4的立方等于64,∴64的立方根等于4.4.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.4【答案】D【解析】解:∵一个数的平方根是±8,∴这个数为(±8)2=64,故64的立方根是4.5.下列说法正确的是()A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.﹣2是4的一个平方根【答案】D【解析】解:A、立方根是它本身的数有﹣1、0和1,故错误,不符合题意;B、负数有立方根但没有平方根,故错误,不符合题意;C、16的平方根是±4,故错误,不符合题意;D、﹣2是4的一个平方根,正确,符合题意,6.﹣64的立方根与的平方根之和是﹣6或﹣2.【答案】﹣2或﹣6【解析】解:∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.7.如果的平方根是±3,则=4.【答案】4【解析】解:∵的平方根是±3,∴=9,∴a=81,∴==4,8.某个正数的平方根是x与y,3x﹣y的立方根是2,则这个正数是4.【答案】4【解析】解:根据题意可得:,解得:,所以这个正数是4,9.若实数x满足等式(x+4)3=﹣27,则x=﹣7.【答案】-7【解析】解:∵(﹣3)3=﹣27,∴x+4=﹣3,解得x=7.10.计算:.【解析】解:=9﹣3+=.11.已知和互为相反数,求的值.【解析】解:∵和互为相反数,∴y﹣1+1﹣2x=0,则y=2x,∴==.。

《6.2 立方根》同步测试及答案(共两套)

《6.2 立方根》同步测试及答案(共两套)

《6.2 立方根》同步测试一(第1课时)一、选择题1.-8的立方根为( ).A.2 B.-2 C.±2 D.±4考查目的:考查立方根的概念.答案:B.解析:由于,根据立方根的概念可得-8的立方根为-2.2.下列说法正确的是( ).A.负数没有立方根 B.8的立方根是±2C.立方根等于本身的数只有±1 D.考查目的:考查立方根的概念和性质.答案:D.解析:根据立方根的概念和性质可判断:所有的数都有立方根,且立方根只有一个,所以选项A、B错误;立方根等于本身的数有三个,分别为0,±1,所以选项C错误;由可知,选项D正确.3.的平方根是( ).A.±4 B.4 C.±2 D.不存在考查目的:考查立方根和平方根的概念以及立方根的符号表示.答案:C.解析:表示64的立方根,根据立方根的概念,得=4,再根据平方根的概念,得4的平方根为±2.二、填空题4.如果,则的值是.考查目的:考查立方根的性质.答案:.解析:由已知可知,,根据立方根的性质,.5.的立方根是 (结果用符号表示).考查目的:考查算术平方根与立方根的概念以及算术平方根、立方根符号表示.答案:.解析:=9,9的立方根为.6.-27的立方根与64的平方根的和是.考查目的:考查平方根与立方根的概念和计算.答案:-11或5.解析:根据平方根与立方根的概念,可得:-27的立方根是-3,64的平方根是±8,所以-27的立方根与4的平方根的和是5或-11.三、解答题7.求下列各式的值:(1);(2);(3);(4).答案:(1);(2);(3);(4).解析:本题考查求立方根的方法,需要注意的是:在求带分数的立方根时,必须先把它化成假分数.(1);(2);(3);(4).8.有一棱长为6的正方体容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127才能盛满,求另一正方体容器的棱长.考查目的:考查立方根的实际应用.答案:7.解析:原正方体容器的容积=(),另一正方体容器的容=216+127=343(),其棱长为.(第2课时)一、选择题1.估算10 000的立方根的范围大概是( ).A.10~15 B.15~20 C.20~25 D.25~30考查目的:考查无理数的估算能力.答案:C.解析:因为,,,,,又8000<10000<15625,所以10000的立方根应在20和25之间,故答案选C.2.已知:,,则等于( ).A.-17.38 B.-0.01738 C.-806.7 D.-0.08067考查目的:考查被开方数与立方根之间的小数点变化规律.答案:D.解析:根据可知,须先求出的值.0.000525是把525的小数点向左移动6位得到的,根据规律:被开方数的小数点每向右或向左移动3位,立方根的小数点向右或向左移动1位,可知,0.000525的立方根应把的立方根8.067向左移动2位,即0.08067.所以=-0.08067.4.在,1,-4,0这四个数中,最大的数是( ).A. B.1 C.-4 D.0考查目的:考查立方根的定义和大小比较.答案:.解析:因为正数大于负数和零,所以最大数应在和1中选,因为>,即>1,故答案选A.二、填空题4.估计在哪两个相邻整数之间:<<.考查目的:考查估算能力.答案:8 9.解析:因为<700<,所以8<<9.5.比较大小:______.考查目的:考查对平方根和立方根估算能力以及大小比较.答案:<.解析:因为,,所以5<<6,;因为,,所以10<<11.故<.6.一个正方形的面积变为原来的倍,则边长变为原来的倍;一个正方体的体积变为原来的倍,则棱长变为原来的倍.考查目的:考查算术平方根和立方根的概念和变化规律.答案:,.解析:由于正方形的面积为边长的平方,故边长变化的倍数是面积变化倍数的算术平方根;同理,棱长变化的倍数为体积变化倍数的立方根.三、解答题7.求下列各式中x的值:(1);(2).考查目的:考查立方根的应用.答案:(1);(2).解析:(1)由立方根的概念,可得,;(2),由立方根的概念,可得,.8.不用计算器,研究解决下列问题:(1)已知,且为整数,则的个位数字一定是;∵8000=<10648<=27000,∴的十位数字一定是;∴;(2)若,且为整数,按照(1)的思考方法,直接写出的值为.考查目的:考查对于一个能开方开得尽的较大的整数,其立方根的大小估计.答案:(1)2 2 22 (2)95.解析:(1)个位为1的两位数的立方,其个位数为1;个位为2的两位数的立方,其个位数为8;依此类推,可以判断的个位数字一定是2,十位数字一定是2,故10648的立方根为22.(2)按照(1)中的方法可以推测(2)中857375的立方根为95.《6.2 立方根》同步测试二课前预习:要点感知1一般地,如果一个数的立方等于a,那么这个数叫做a的_______,即如果x3=a,那么__________叫做__________的立方根.预习练习1-1 -8的立方根是( )A.-2B.±2C.2D.-1 21-2 -64的立方根是__________,-13是__________的立方根.要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.预习练习2-1下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0要点感知3一个数a表示,读作“__________”,其中__________是被开方数,__________是根指数.预习练习3-1=__________.当堂练习:知识点1 立方根1.( )A.-1B.0C.1D.±12.若一个数的立方根是-3,则该数为( )B.-27C.D.±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.的平方根是__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216; (2)0; (3)-21027; (4)-5.8.求下列各式的值:;. 知识点2 用计算器求立方根9.( )A.3.049B.3.050C.3.051D.3.05210.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间11.≈__________(精确到百分位).12.13.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:_______________.(3)根据你发现的规律填空:=1.442,;课后作业:14.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根15.( )A.7B.-7C.±7D.无意义16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B 的棱长的( )A.2倍B.3倍C.4倍D.5倍17.-27__________.18.计算:=__________=__________.19.已知2x+1的平方根是±5,则5x+4的立方根是__________.20.求下列各式的值:21.比较下列各数的大小:;与-3.4.22.求下列各式中的x:(1)8x3+125=0; (2)(x+3)3+27=0.23.(b-27)2的立方根.24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?挑战自我25.请先观察下列等式:,,,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.参考答案课前预习要点感知1立方根(或三次方根) x a预习练习1-1 A1-2 -4 -1 27要点感知2 正数负数 0预习练习2-1 D要点感知3 三次根号a a 3预习练习3-1 3当堂训练1.C2.B3.B4.0,1或-15.±26.-17.(1)∵0.63=0.216,∴0.216的立方根是0.6=0.6;(2)∵03=0,∴0的立方根是0;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-4343;(4)-58.(1)0.1;(2)-75;(3)-23.9.B 10.C 11.2.92 12.10.38 -0.482 0 13.(1)0.01 0.1 1 10 100(2)被开方数扩大1 000倍,则立方根扩大10倍(3)14.42 0.144 2 7.696课后作业14.D 15.B 16.B 17.0或-6 18.-4 -3419.420.(1)-10;(2)4;(3)-1;(4)0.21.;<-3.4.22.(1)8x3=-125,x3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.23.由题意知a=-8,b=27,24.(1)8倍;.25.(n≠1,且n为整数).。

(完整版)立方根习题精选及答案(二)

(完整版)立方根习题精选及答案(二)

立方根习题精选(二)1.-35是的立方根。

2.当x3.立方根等于本身的数有。

4.若m是a的立方根,则-m是的立方根。

56.若x3=a,则下列说法正确的是()7.-7的立方根用符号表示应为()ABCD.84a=-成立,那么a的取值范围是()A.a≤4B.-a≤4C.a≥4D.任意实数9.下列四种说法中,正确的是()①1的立方根是1;②127的立方根是±13;③-81无立方根;④互为相反数的两个数的立方根互为相反数。

A.①②B .①③C .①④D .②④10.a <0,那么a 的立方根是()AB .CD11.下列各数有立方根的有()①27,②5,③0,④12,⑤-16,⑥-10-6 A .3个B .4个C .5个D .6个12.求下列各数的立方根:(1)21027; (2)-0.008(3)(-4)314)x 3<的立方根是。

15。

16.下列式子中不正确的是()A 235=B 6=±C0.4=D1 5 =17A.正数B.负数C.非正数D.非负数184=的值是()A.-3B.3C.10D.-1019.当a<0得()A.-1B.1C.0D.±120.求下列各式的值:(1(2(3)21.若x 是64。

22.求下列各式中x 的值。

(1)(x-3)3-64=0(2325x 116=-23x y的值。

(一)新型题24是一个整数,那么最大的负整数a 是多少?252a 1=-,求a 的值.(二)课本习题变式题26.(课本P103第4题变式题)一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,求这个正方体的表面积.(三)易错题27.(2)当x(四)难题巧解题28.若a 、b 互为相反数,c 、d 1的值.(五)一题多变题29的平方根是。

的平方根是±3,则a =。

的立方根是2,则a =。

[数学在学校、家庭、社会生活中的应用]30.要用体积是125cm 3的木块做成八个一样的小正方体,那么这八个小正方体的棱长是多少?[数学在生产、经济、科技中的应用]31.要用铁皮焊制正方体水箱,使其容积为1.728m3,问至少需要多大面积的铁皮?[自主探究]32.(1)观察下表,你能得到什么规律?≈(2) 2.22[潜能开发]33.请分别计算下列各式的值:,.从中你能发现什么规律?能用数学符号表示出来吗??[信息处理]34.在一次设计比赛中,两位参赛者每人得到1m3的可塑性原料,甲把它塑造成一个正方体,乙把它塑造成一个球体(损耗不计).比赛规定作品高度不超过1.1m,请你利用所学知识,分析说明哪一个人的作品符合要求?[开放实践]35.如果A a+3b的算术平方根,B=2a-1-a2的立方根,并且a、b满足关系式a-2b+3=2,求A+B的立方根.[中考链接]36.(2004·山东济宁()A.2B.-2D37.(2004·福州)如果x 3=8,那么x =。

高一数学立方根练习题及答案

高一数学立方根练习题及答案

高一数学立方根练习题及答案1. 求下列各数的立方根:(1) 8解:8的立方根为2,因为2 × 2 × 2 = 8。

(2) 27解:27的立方根为3,因为3 × 3 × 3 = 27。

(3) 64解:64的立方根为4,因为4 × 4 × 4 = 64。

(4) 125解:125的立方根为5,因为5 × 5 × 5 = 125。

2. 求下列各数的近似立方根(保留两位小数):(1) 29解:√29 ≈ 5.39(2) 54解:√54 ≈ 7.35(3) 79解:√79 ≈ 8.89(4) 92解:√92 ≈ 9.593. 求下列各组数的平均值的立方根:(1) 2, 4, 6, 8, 10解:平均值为 (2 + 4 + 6 + 8 + 10) ÷ 5 = 6,所以平均值的立方根为√6 ≈ 2.45。

(2) 3, 6, 9, 12, 15解:平均值为 (3 + 6 + 9 + 12 + 15) ÷ 5 = 9,所以平均值的立方根为√9 = 3。

(3) 4, 8, 12, 16, 20解:平均值为 (4 + 8 + 12 + 16 + 20) ÷ 5 = 12,所以平均值的立方根为√12 ≈ 3.46。

(4) 5, 10, 15, 20, 25解:平均值为 (5 + 10 + 15 + 20 + 25) ÷ 5 = 15,所以平均值的立方根为√15 ≈ 3.87。

4. 求下列各数的立方根并将结果化为最简根式:(1) 16解:16的立方根为2,所以结果化为最简根式为√16 = 2。

(2) 27解:27的立方根为3,所以结果化为最简根式为√27 = 3√3。

(3) 64解:64的立方根为4,所以结果化为最简根式为√64 = 4。

(4) 125解:125的立方根为5,所以结果化为最简根式为√125 = 5√5。

2023中考数学立方根练习题及答案

2023中考数学立方根练习题及答案

2023中考数学立方根练习题及答案立方根是数学中的一个重要概念,它在数学运算和解题中具有广泛的应用。

为了帮助同学们更好地掌握立方根的计算方法和应用技巧,以下是一些针对2023中考数学立方根的练习题及答案。

练习题一:计算立方根1. 计算∛272. 计算∛5123. 计算∛0.0084. 计算∛1,0005. 计算∛1答案:1. ∛27 = 32. ∛512 = 83. ∛0.008 = 0.24. ∛1,000 = 105. ∛1 = 1练习题二:立方根的运算法则1. 简化表达式:∛(2^3 × 3^2 × 5)2. 简化表达式:∛(64 ÷ 4^2)3. 简化表达式:∛(8^2 × 4)4. 求 2∛(8^2) 的值答案:1. ∛(2^3 × 3^2 × 5) = ∛(8 × 9 × 5) = 6∛52. ∛(64 ÷ 4^2) = ∛(64 ÷ 16) = ∛4 = 23. ∛(8^2 × 4) = ∛(64 × 4) = ∛256 = 84. 2∛(8^2) = 2 ×∛64 = 2 × 4 = 8练习题三:立方根的应用1. 若正方体的边长为 a cm,则它的体积 V (cm³) 可表示为 V = a^3。

已知正方体的体积为 125 cm³,求它的边长。

2. 某球形鱼缸的水容积为4,096 π cm³,求其半径 r (cm)。

3. 已知 x > 0,且 x^3 = 0.001,求 x 的值。

答案:1. V = a^3,已知 V = 125,代入得 125 = a^3,两边开立方根得∛125 = a,即 a = 5。

因此,正方体的边长为 5 cm。

2. 已知V = 4,096 π,根据球体积公式 V = (4/3)πr^3,将公式与已知的 V 对比可得(4/3)πr^3 = 4,096 π。

立方根练习题(含答案)

立方根练习题(含答案)

立方根练习题(含答案)1.正确的说法是:-2是8的立方根,-4是6根,-3是-27的立方根,11没有实数的立方根。

2.正确的说法是:A。

3.正确的答案是:C。

4.立方体的体积为64,所以边长为4,算术平方根为±4,所以选项A和C都正确。

5.正确的说法是:B。

6.3125=5^5.7.这个数是0或1.8.a=-7/3.9.b=3-2a。

10.(1) 2a/3b;(2) -2.11.(1) a=2,b=-7;(2) 3.12.(1) x=-3/2;(2) x=1/4.13.两个正方体纸箱的棱长为25厘米。

14.m=5,所以m-9的立方根为-2.15.2.16.x=0.01,y=51.93.17.A。

18.B。

19.A。

20.B。

3.根据立方根的定义,可以得到23的立方根为2,43的立方根为4,-1的立方根为-1,(-4)3的立方根为-4,因此选B。

4.根据立方体的体积公式,可以得到它的棱长为立方根64,即4,因此它的棱长的算术平方根为2,选D。

7.根据平方根与立方根的定义,可以得到(-)的平方根等于-的立方根,因此答案为-。

8.由于(-7)3=-343,因此a=-343,答案为-343.9.根据方程2a-1+(b+3)2=23,可以解得a=-1,b=-3,因此答案为-1.10.(1)根据立方根的定义,可以得到(27/8)的立方根为3/2,因此答案为3/2;(2)根据立方根的定义,可以得到(-10-2)3=-10-6,因此(-10-6)的立方根为-10-2.11.(1)由4是3a-2的算术平方根得到3a-2=16,解得a=6,再由2-15a-b的立方根为-5得到2-15a-b=-125,解得b=37;(2)代入b=37和a=6,得到2b-a-4=64,因此2b-a-4的平方根为±8.12.(1)由8x3+27=0得到8x3=-27,解得x=-3/2;(2)由64(x+1)3=27得到(x+1)3=27/64,解得x=-3/4.13.设正方体纸箱的棱长为x厘米,则2x3=50×40×30,解得x≈31,因此这两个正方体纸箱的棱长为31厘米。

数学课程立方根运算练习题及答案

数学课程立方根运算练习题及答案

数学课程立方根运算练习题及答案一、选择题1. 下列哪个数字的立方根是整数?A. 8B. 27C. 64D. 125答案:B. 272. 若∛x = 4,那么x的值是多少?A. 8B. 16C. 64D. 256答案:D. 2563. ∛(a^3 * b^5)等于下列哪个式子?A. a * bB. a^3 * b^5C. a^2 * b^3D. a^4 * b^8答案:B. a^3 * b^54. 若x=2,则下列哪个等式成立?A. x³ = 8B. x³ = 6C. x³ = 4D. x³ = 2答案:A. x³ = 85. 若a=∛b,哪个式子代表了a的立方根?A. ∛aB. ∛(∛a)C. ∛(a^3)D. ∛(a^2)答案:B. ∛(∛a)二、填空题1. 27的立方根是 3 。

2. ∛(27^4) = 27^1.3 。

3. 若x=8,则∛x = 2 。

4. 若a=3,b=4,则∛(a^3 * b^2)的值为 24 。

5. 若x=∛8,则x的值为 2 。

三、解答题1. 计算∛(64^2)的值。

解:∛(64^2) = ∛4096 = 4。

2. 若x = 2∛3,求x的立方根的值。

解:x的立方根为∛(2∛3) = (∛2)^(1/3) * (∛3)^(1/3) = 2^(1/3) *3^(1/9)。

四、证明题证明:若a、b为正实数,且a > b,则∛a > ∛b。

证明过程:由a > b可推出a³ > b³,再取两边的立方根得到∛a³ > ∛b³,即a > b,所以得证√a > √b。

综上所述,数学课程立方根运算的练习题及答案如上所示。

在解答题和证明题中,我们需要运用立方根的基本定义和运算规则进行计算和推理。

通过练习这些题目,可以提升对立方根的理解和应用能力,进而提高数学水平。

立方根和平方根试题与答案

立方根和平方根试题与答案

1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。

立方根精讲精练(含答案)-

立方根精讲精练(含答案)-

立方根精讲精练(含答案)-立方根【基础知识精讲】1.立方根的意义 (1)立方根的意义:如果一个数的立方等于a ,这个数就叫做a 的立方根(或三次方根). 就是说,如果x 3=a ,那么x 就叫做a 的立方根. (2)立方根的定义:数a 的立方根用符号“3a ”表示,读作“三次根号a ”,其中a 是被开方数,3是根指数.2.立方根的性质(1)任何数都有立方根,且只有一个立方根.(这与平方根的性质不同,正数有两个平方根,负数没有平方根).(2)正数有一个正的立方根,负数有一个负的立方根,0的立方根还是0. 3.开立方运算开立方运算与立方运算互为逆运算. 【重点难点解析】重点难点分析重点本节的重点是立方根的概念. 难点本节的难点是立方根的求法. 【典型例题解析】例1 求下列各数的立方根.(1)343; (2)0.729; (3)-22710. 分析:本题考查立方根的求法,解题方法是运用立方根的定义求解. 解(1)∵ 73=343,∴ 343的立方根是7,即3343=7. (2)∵ 0.93=0.729,∴0.729的立方根是0.9,即3729.0=0.9.(3)∵ (-34)3=-2764=-22710,∴ -22710的立方根是-34,即327102 =-34.总结本题的易错点是和求平方根混淆或弄错符号,解题关键是运用立方根的定义求解.例21.下列说法正确的是( )A. 81的平方根是±3;B.1的立方根是±1;C. 1=±1;D. x >0.解选A.2. 38的平方根是 .解 38=2,2的平方根是±2. 例3 求下列各式的值:(1)-36427-; (2)3973.01-; (3)-327105-; (4)32004524?? 解 (1)- 36427- =36427=43; (2)3973.01-=3027.0=0.3; (3)-327105-=-327174=-327125=-35; (4)32004524??=32231023532=33331032??=2×3×10=60.2.求下列各式的值: (1)3216; (2)- 3827; (3)3512343-. 解 (1)3216=6;(2)- 3827=-23;(3)3512343=-3512343=-87.例4 求下列各式的x ;(1)(x+3)3+27=0; (2)(x-0.5)3+10-3=0.分析:本题考查立方根的求法,解题思路是把x+3和x-0.5先看成一个数,分别求出其立方根,再求x.解 (1)(x+3)3+27=0.∴ (x+3)3=-27.∴ x+3=327-.x+3=-3.∴ x =-6; (2)(x-0.5)3+10-3=0. ∴ (x-0.5)3=-10-3.∴ x-0.5=3310--.即x-0.5=-0.1.∴ x =0.4.总结本题的解题关键是先求出x+3和x-0.5的立方根. 【难题点拨】例1 若x x y x --++3922=0,求:3x+6y 的立方根.解由xx y x --++3922=0,知≠-=-=+0309022x x y x ③②①由 ?≠-=-03,092x x ③②得x =-3.把x =-3代入①,得y =6.∴ 3x+6y =3×(-3)+6×6=-9+36=27. ∴ 3x+6y 的立方根,即为327=3. 【难题解答】例2 求下列式子中的x :(x-1)3=8解:x-1=38 ∴x-1=2 即x =3【命题趋势分析】(1)本节的中考热点是考查立方根的定义及性质.(2)本节内容在中考中常以填空题、选择题的形式出现.解答时要透彻理解立方根的定义及性质.【典型热点考题】例1 求下列各式中的x 的值:(1)(0.1+x)3=-27000; (2)41(2x+3)3=54.解(1)0.1+x =327000-=-327000=-30,∴ x =-30.1;(2)(2x+3)3=4×2×27=23×33=63,∴ 2x+3=336=6,故x =23. *例2 设1996x 3=1997y 3=1998z 3,xyz>0,且3222199819971996z y x ++=31996+31997+31998,求x 1+y 1+z1. 解设1996x 3=1997y 3=1998z 3=a ,则1996x 2=x a ,1997y 2=ya,1998z 2=z a , 31996=x a 3,31997=ya 3,31998=z a 3,所以条件等式变为3)111(zy x a ++=)111(3z y x a ++,∴3111zy x ++=x 1+y 1+z 1,∴x 1+y 1+z 1=1.例3 当x 为何值时,下列各根式有意义? (1)2x -; (2)3232+x x. 解当-2x ≥0时,2x-才有意义,∴ x ≤0. (2)∵ 当3x+2≠0时,3232+x x有意义,∴ x ≠-32.【同步练习】1.选择题(1)下列说法错误的是( )A.3a 中的a 可以是正数、负数、零;B.a 中的a 不可能是负数C.数a 的平方根有两个,它们互为相反数;D.数a 的立方根有一个 (2)下列语句正确的是( )A. 64的立方根是2B.-3是27负的立方根C.216125的立方根是±65D.(-1)2的立方根是-1(3)要使33)4(a -=4-a 成立,那么a 的取值范围是( )A.a ≤4B.-a ≤4 4C.a ≥4D.一切实数(4)下列计算或命题中,正确的个数有( )①±3都是27的立方根;②33a =a ;③364的立方根是2;④32)8(±=±4.A.1个B.2个C.3个(5)16的平方根和立方根分别是( )A.±4,316B.±2,±34C.2,34D.±2,34(6)下列说法正确的是( )A.零不存在算术平方根B.一个数的算术平方根一定是正数C.一个数的立方根一定比这个数小D.一个非零数的立方根,仍然是一个非零数(7)如果一个数的平方根是这个数本身,则这个数是( )A.1B.-1C.0D.1,-1,0 (8)如果一个数的立方根是这个数本身,则这个数是( )A.1B.-1C.0D.1,-1,0 (9)下列式子中,不正确的是( )A. 3125827=352B.±3216=±6C. 3064.0=0.4D.33)5451 (10)若一个数的立方根等于这个数的立方,则不满足这个条件的数必为( )A.1B.0C.-1D.不为1,0,-1的其他数 (11)计算下列各式所得结果中( )①25.0;②1691;③3227;④10000;⑤0001.01;⑥416.A.大于1的有两个B.小于1的有两个C.结果相同的有两个D.上述结论都不对2.填空题(1)3a 读作,其中被开方数是,根指数是,被开方数的范围是 .(2)若x 3=-27,则x = ;y 3+64=0,则y = ;3z 3-81=0,则z = . (3)-64的立方根是,3729的平方根是, (-13)3的立方根是 . (4)-103是的立方根. (5)32)8(-=,3310-=,316437-= . (6)数a 的平方根最多有个,最少有个,立方根最多有个,最少有个.(7)一个正数的算术平方根是8,则这个数的立方根是 . (8)若x 2=(-5)2,则(x-1)3= .(9)若3x -有意义,则xx --1)1(2= .(10)若a<0,则2a +33a = .(11)若a,b 互为相反数,c,d 互为负倒数,则2 222ba b a +--5cd = . 3.求下列各式中的x.(1)(x+3)3+27=0(2)(x-0.5)3+10-3=0(3)(10-0.1x )3=-0.027(4)343x 3-38-=-625(5)21(2x-3)3+32=0(6)64x 2-3=46(7)8(x-1)3=-64125(8)81 +25x 3=-1164.计算(1)3125.0-3161+3281??-(2)14-+25.0-3375.3(3)31-3008.0-3000343.0 (4)3827+641-3641891--256311-【素质训练】5.x 取什么值时,下列各式有意义:(1)32x -;(2)325-x6.已知3x =4,且(y-2z+1)2+43-z =0,求3333z y x ++的值.参考答案【同步练习】1.(1)C (2)A (3)D (4)B (5)D (6)D (7)C (8)D (9)A (10)D (11)C2.(1)三次根号a,a,3,全体实数(2)-3,-4,3 (3)-2,±3,-13 (4)100027(5)4,101,-43(6)两,零,一,一 (7)4 (8)64或-216 (9)1 (10)0 (11)1 3.(1)x =-6 (2)x =0.4 (3)x =103 (4)x =-73 (5)x =-21 (6)x =±8 7(7)x =83(8)x =-354.(1)-1 (2)-0.5 (3)1.13 (4)21615.(1)x 为全体实数(2)x ≠±2 【素质训练】6.6。

6.2 立方根100题(含解析)

6.2 立方根100题(含解析)

绝密★启用前一、单选题1)A.2 B.﹣2 C.D.±2【答案】C【解析】【分析】利用立方根定义计算即可求出值.【详解】=2,2的平方根是.故选C.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解答本题的关键.2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是()A.①②③B.①②④C.②③④D.①③④【答案】B【解析】【分析】根据立方根的定义和性质解答即可.【详解】解:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.【点睛】本题考查立方根,熟练掌握立方根的定义和性质是解题的关键.3.立方根等于它本身的有( )A.0,1 B.-1,0,1 C.0, D.1【答案】B【分析】根据立方根性质可知,立方根等于它本身的实数0、1或-1. 【详解】解:∵立方根等于它本身的实数0、1或-1. 故选B . 【点睛】本题考查立方根:如果一个数x 的立方等于a ,那么这个数x 就称为a 的立方根,例如:x 3=a ,x 就是a 的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. 4.有理数-8的立方根为( ) A .-2 B .2C .±2D .±4【答案】A 【分析】利用立方根定义计算即可得到结果. 【详解】解:有理数-8 故选A . 【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.5.比较2 )A .2<<B .2<<C .2<D 2<【答案】C 【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小. 【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<< 故选C . 【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键. 6.下列计算正确的是( )A .3=-B =C 6±D .【答案】D 【分析】直接利用二次根式的性质以及立方根的性质分析得出答案. 【详解】解:3=,故此选项错误;=6=,故此选项错误;D.0.6=-,正确. 故选D . 【点睛】此题主要考查了平方根和算术平方根的性质以及立方根的性质,正确掌握相关性质是解题关键.7的结果是 ( )A .±B .C .±3D .3【答案】D 【解析】∵33=27,3=.故选D . 8.64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A考点:立方根.9.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C .有意义时,0x ≤D .0.1的平方根是0.01±【答案】C 【详解】>0,故A 不正确; 根据一个数的平方为非负数,可知a≥0,故不正确; 根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确; 根据一个数的平方等于a ,那么这个数就是a 的平方根,故不正确. 故选C10.利用计算器计算时,依次按键下:,则计算器显示的结果与下列各数中最接近的一个是( ) A .2.5 B .2.6 C .2.8 D .2.9【答案】B 【分析】的近似值即可作出判断. 【详解】2.646≈,∴最接近的是2.6, 故选B . 【点睛】本题主要考查了计算器,属于基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.11.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A .4 cm ~5 cm 之间 B .5 cm ~6 cm 之间 C .6 cm ~7 cm 之间D .7 cm ~8 cm 之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.12.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分【答案】B【详解】解:-1的绝对值是1,2 的倒数是12,-2的相反数是2,1的立方根是1,-1和7的平均数是3,错一个,减去20分,得分是80,故选:B【点睛】本题考查绝对值,倒数,相反数,立方根,平均数.13.下列结论正确的是( )A.64的立方根是4±B.18-没有立方根C.立方根等于本身的的数是0 D=【答案】D【解析】选项A,64的立方根是±4;选项B,18-的立方根是12-;选项C,立方根等于本身的的数是0和±1;选项D,正确,故选D.14.下列说法正确的是()A.-64的立方根是4 B.9的平方根是±3C.4的算术平方根是16 D.0.1的立方根是0.001【答案】B【解析】【分析】依据立方根、平方根和算术平方根的性质求解即可.【详解】A.−64的立方根是−4,故A错误;B.9的平方根是±3,故B正确;C.4的算术平方根是2,故C错误;D.0.1是0.001的立方根,故D错误.故选B.【点睛】考查平方根,算术平方根以及立方根,掌握它们的概念是解题的关键.15.的值是()A.1 B.﹣1 C.3 D.﹣3【答案】B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B . 【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,16=0.1738 1.738,则a 的值为( ) A .0.528 B .0.0528 C .0.00528 D .0.000528【答案】C 【分析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案 【详解】0.528= 1.738= , ∴a=0.00528, 故选C. 【点睛】此题考查了立方根,熟练掌握立方根的变化规律是本题的关键.17.下列语句:① 4 ② 2± ③ 平方根等于本身的数是0和1 ④ )个A .1B .2C .3D .4【答案】A 【解析】试题分析:①4=,的算术平方根为2,故错误;B 2==,故错误;③、平方根等于本身的数只有0,故错误;④22==,=故正确,则本题选A .18.下列计算正确的是( )A ±3B 2C 3D =【答案】B 【分析】根据算术平方根与立方根的定义即可求出答案. 【详解】解:(A )原式=3,故A 错误; (B )原式=﹣2,故B 正确;(C3,故C错误;(D D错误;故选B.【点睛】本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键. 19.下列各组数中互为相反数的是()A.-2B.-2C.2与()2D.|【答案】A【解析】选项A. -2=2,选项B. -2=-2,选项C. 2与(2=2,选项,故选A.20.(2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或7【答案】D【分析】利用平方根及立方根的定义求出x与y的值,即可确定出x+y的值.【详解】∵(2=9,9的平方根x=±3,y=4,∴x+y=7或1.故答案为7或1.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.21.下列说法正确的是( )A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D .负数没有立方根 【答案】B 【解析】A. 如果一个数的立方根等于这个数本身,那么这个数一定是零或±1 ; C. 一个数的立方根不是正数就是负数,还有0;D. 负数有一个负的立方根故选B.22.下列说法中,不正确的是( )A .10B .2-是4的一个平方根C .49的平方根是23D .0.01的算术平方根是0.1 【答案】C 【分析】根据立方根,平方根和算术平方根的定义,即可解答. 【详解】解:A. 10,正确; B. -2是4的一个平方根,正确; C.49的平方根是±23,故错误; D. 0.01的算术平方根是0.1,正确. 故选C . 【点睛】本题考查了平方根和算术平方根,立方根,解决本题的关键是熟记立方根,平方根和算术平方根的定义.23.下列各式正确的是( )A .0.6=±B 3=±C 3=D 2=-【答案】A 【解析】3=,则B 3=-,则C 2=,则D 错,故选A . 24.下列计算中,错误的是( )A .B 34=-C 112=D .25=- 【答案】D 【解析】试题解析:A.正确. B.正确. C.正确.D.22.55⎛⎫=--= ⎪⎝⎭ 故错误. 故选D.25.若一个数的平方根是±8,那么这个数的立方根是( ) A .2 B .±4 C .4 D .±2【答案】C 【解析】 【分析】根据平方根定义,先求这个数,再求这个数的立方根. 【详解】若一个数的平方根是±8,那么这个数是82=64,4=. 故选:C 【点睛】本题考核知识点:平方根和立方根.解题关键点:理解平方根和立方根的意义. 26.下列各组数中互为相反数的一组是( )A .2--B .-4与C .与D .【答案】C 【解析】 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【详解】A、-|-2|=-2,故A错误;B、-4=B错误;C、C正确;D、不是相反数,故D错误;故选C.【点睛】本题考查了相反数,利用了相反数的意义.27.()A.2 B.-2 C.±2 D.不存在【答案】A【解析】【分析】根据立方根的定义求解即可.【详解】∵-2的立方等于-8,∴-8的立方根等于-2,=-.2=--=.∴(2)2故选A.【点睛】此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.28,则x和y的关系是().A.x=y=0 B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数, 故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y . 29.下列说法正确的是( )A .4的平方根是±2B .8的立方根是±2C 2=±D 2=-【答案】A 【解析】解:A .4的平方根是±2,故本选项正确; B .8的立方根是2,故本选项错误;C =2,故本选项错误;D =2,故本选项错误; 故选A .点睛:本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.30.下列等式正确的是( )A .712=± B .32=-C .3=-D .4=【答案】D 【分析】原式各项利用立方根及算术平方根定义计算即可得到结果. 【详解】A 、原式=712,错误; B 、原式=-(-32)=32,错误;C 、原式没有意义,错误;D、原式=4,正确,故选D.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.31的立方根是( )A.-1 B.0 C.1 D.±1【答案】C【解析】【详解】,=1,故选C.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.32.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;5=-⑤一定是负数A.1个B.2个C.3个D.4个【答案】B【分析】根据平方根、立方根的定义进行判断即可得.【详解】①负数没有平方根,但负数有立方根,正确;②一个数的立方根等于它本身,则这个数是0或1或-1,故错误;=,故错误;5,3的平方根是⑤当a=0时,,故错误;综上,正确的有2个,故选B.【点睛】本题考查了平方根、立方根的定义,熟练掌握相关的定义是解题的关键.33)A.2 B.±2 C D.【答案】C【分析】的值,再继续求所求数的算术平方根即可.【详解】,而2,故选C.【点睛】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.34)A.±2 B.±4 C.4 D.2【答案】D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.35.若a是(﹣3)2( )A.﹣3 B C D.3或﹣3【答案】C【解析】分析:由于a是(﹣3)2的平方根,则根据平方根的定义即可求得a的值,进而求得代数式的值.详解:∵a是(﹣3)2的平方根,∴a=±3,C.点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.36.8的相反数的立方根是()A.2 B.12C.﹣2 D.12【答案】C【解析】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C.【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键.37时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10-1)C.D-1【答案】B【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零. 于是,先将原来显示的结果左端的数字“1”1. 为了使该结果的整数部分不为零,再将该结果的101. 这样,位于原来显示的结果左端的数字消失小数点向右移动一位,即计算)了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.101的值.根据以上分析,为了满足要求,应该在这个计算器中计算)故本题应选B.点睛:本题综合考查了计算器的使用以及小数的相关知识. 本题解题的关键在于理解计算器显示数字的特点和规律. 本题的一个难点在于如何构造满足题目要求的算式. 解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失. 只有当整数部分不为零时,左端的零才不显示. 另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理.38的立方根是()A.2 B. 2 C.8 D.-8【答案】A【解析】=8,然后根据立方根的意义,求得其立方根为2. 故选A.39的值约为( )A.3.049 B.3.050C.3.051 D.3.052【答案】B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B.40.下列命题中正确的是()(1)0.027的立方根是0.3;(2(3)如果a是b的立方根,那么ab≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A .(1)(3)B .(2)(4)C .(1)(4)D .(3)(4)【答案】A 【解析】根据立方根的概念和性质,可知0.027的立方根为0.3,故(1)正确;根据一个负数的立方根为负数,故(2)不正确;如果a 是b 的立方根,那么ab≥0(a 、b 同号),故(3)正确;一个数的平方根与其立方根相同,则这个数是0,故(4)错误. 故选:A.点睛:本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.(a 不等于0)如果x 2=a (a≥0),则x 是a 的平方根.若a >0,则它有两个平方根,我们把正的平方根叫a 的算术平方根:若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0:负数没有平方根. 41.下列计算正确的是( ) A.﹣4 B4C﹣4D﹣4【答案】D 【解析】试题分析:根据二次根式的意义,可知被开方数为非负数,因此A 不正确;根据算术平方根是平方根中带正号的,故B{0aa a ==-(0)(0)(0)a a a =><,故C ,故D 正确. 故选D二、解答题42.已知某正数的两个平方根分别是a ﹣3和2a +15,b 的立方根是﹣2.求﹣2a ﹣b 的算术平方根. 【答案】4【解析】试题分析:根据正数的平方根有两个,且互为相反数,得出a-3+2a+15=0,求出a,再根据b的立方根是-2,求出b,再求-2a-b的算术平方根.解:由题意得a-3+2a+15=0,解得a=-4,由b的立方根是-2,得b=(-2)3=-8.则-2a-b=-2×(-4)-(-8)=16,则-2a-b的算术平方根是4.43.计算下列各题:(1(2.【答案】(1)1 (2)11 4 -【解析】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -44.已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c 的平方根.【答案】±4.【解析】【分析】根据题意分别求得a,b,c的值,然后代入式子求解即可.【详解】解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c ﹣3的平方根是±2, ∴c ﹣3=4,即c=7; ∴a+b+c=0+9+7=16, 则a+b+c 的平方根是±4. 【点睛】本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键. 45.求出下列x 的值: (1)4x 2﹣81=0; (2)8(x+1)3=27.【答案】(1)92x =±.(2)12x =【分析】(1)先整理成x 2=a ,直接开平方法解方程即可; (2)先整理成x 3=a 的形式,再直接开立方解方程即可. 【详解】解:(1)24x 810-=,∴2814x =, 9x 2∴=±;(2)()38x 127+=, ∴327(1)8x +=, ∴312x +=, ∴12x =【点睛】本题考查算术平方根和立方根的相关知识解方程,属于基础题..关键是熟练掌握相关知识点,要灵活运用使计算简便.46.已知x ﹣2的一个平方根是﹣2,2x +y ﹣1的立方根是3,求x +y 的算术平方根.【解析】 【分析】根据x ﹣2的一个平方根是﹣2,可以得到x 的值,根据2x +y ﹣1的立方根是3,可以得到y 的值,从而可以求得x +y 的算术平方根. 【详解】∵x ﹣2的一个平方根是﹣2,∴x ﹣2=4,解得:x =6. ∵2x +y ﹣1的立方根是3,∴2x +y ﹣1=27.∵x =6,∴y =16,∴x +y =22,∴x +y .即x +y 【点睛】本题考查了立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.47.已知某正数的平方根是2a ﹣7和a+4,b ﹣12的立方根为﹣2. (1)求a 、b 的值; (2)求a+b 的平方根.【答案】(1)1a =,4b =;(2)【解析】试题分析:利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据平方根的定义求出+a b 的平方根.试题解析:(1)由题意得,2a −7+a +4=0, 解得:a =1, b −12=−8, 解得:b =4; (2)a +b =5,a +b 的平方根为48.已知x 的两个不同的平方根分别是a +3和2a -15,且 4=,求x ,y的值.【答案】x=49,y=17 【解析】试题分析:根据平方根的性质,一个正数平方根有两个,它们互为相反数,因此可列方程求出a 的值,然后根据立方根的意义,求出y 的值. 试题解析:∵x 的两个不同的平方根分别是a +3和2a -15 ∴a +3+2a -15=0解之,得a =4∴x =(a +3)2=494=∴49+y -2=64解之,得y =1749.已知 2x-y 的平方根为 ±3, -2是 y 的立方根,求 -4xy 的平方根.【答案】±4 【解析】试题分析:首先根据平方根和立方根的性质列出关于x 和y 的二元一次方程组,从而得出x 和y 的值,然后求出-4xy 的平方根.试题解析:根据题意得:298x y y -=⎧⎨=-⎩ , 解得:128x y ⎧=⎪⎨⎪=-⎩, 则-4xy=16 ,∴4==±.点睛:本题主要考查的是平方根和立方根的性质,属于简答题型.正数的平方根有两个,他们互为相反数;零的平方根为零;负数没有平方根;每个数的立方根只有一个,正数有一个正的立方根,负数有一个负的立方根.立方根等于本身的数有0和±1;平方根等于本身的数只有0;算术平方根等于本身的数为0和1.50.计算:201811--【答案】【解析】分析:收下根据立方根、算术平方根、绝对值、立方根的性质求出各式的值,然后进行求和得出答案.详解:原式15123=-++-=.点睛:本题主要考查的是实数的计算,属于基础问题.解决这个问题的核心就是要明确各种计算法则.51.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.【答案】2.【分析】根据平方根与算术平方根的定义得到3a -b +2=16,2a -1=9,则可计算出a =5,b =1,然后计算a +b 后利用立方根的定义求解.【详解】∵2a -1的平方根是±3∴2a -1=9,即a =5∵3a -b +2的算术平方根是4,a=5∴3a -b +2=16,即b =1∴a +3b =8∴a +3b 的立方根是252.已知m M =是m 3+的算术平方根,2m 4n N -=n 2-的立方根,求:M N -的值的平方根.【答案】2【详解】解:因为m M =是m+3的算术平方根,2m 4n N -=n ﹣2的立方根,所以可得:m ﹣4=2,2m ﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n ﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M ﹣N=3﹣1=2.53.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.【答案】(1)魔方的棱长6cm ;(2)长方体纸盒的长为10cm .【解析】试题分析:(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.试题解析:(1)设魔方的棱长为xcm ,可得:x 3=216,解得:x=6,答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,6y 2=600,y 2=100,y=10,答:该长方体纸盒的长为10cm .54.解方程:()2116(2)9x -= ()3227(1)640x +-=.【答案】()11114x =,254x =,()123x =. 【解析】分析:(1)根据平方根的定义进行计算即可;(2)根据立方根的定义进行计算即可.详解:(1)(x ﹣2)2=916,x ﹣2=±34,x =±34+2,x 1=114,x 2=54; (2)(x +1)3=6427 x +1=43 x =43﹣1=13. 点睛:本题考查了立方根和平方根,掌握平方根和立方根的定义是解题的关键.55.已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4 cm.【解析】试题分析:于个正方体的体积是1000cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm 3,设截得的每个小正方体的棱长xcm ,根据已知条件可以列出方程,解方程即可求解.试题解析:设截去的每个小正方体的棱长是xcm ,则由题意得310008488x -=,解得x =4.答:截去的每个小正方体的棱长是4厘米.点睛:此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.56.已知一个正数的平方根是a+3和2a﹣15,b的立方根是﹣2,求﹣b﹣a的平方根.【答案】±2.【解析】由一个数的平方根互为相反数,有a+3+2a﹣15=0,可求出a值,又b的立方根是﹣2,可求出b值,然后代入求出答案.解:∵一个数的平方根互为相反数,∴a+3+2a﹣15=0,解得:a=4,又b的立方根是﹣2,∴b=﹣8,∴﹣b﹣a=4,其平方根为:±2,即﹣b﹣a的平方根为±2.57.已知M2m n+=m+3的算术平方根,N2m=是n﹣2的立方根.求(n﹣m)2008.【答案】1【解析】【分析】由于算术平方根的根指数为2,立方根的根指数为3,由此可以列出关于m、n的方程组,解方程组求出m和n,进而代入所求代数式求解即可.【详解】∵M2m n+=m+3的算术平方根,N2m=n﹣2的立方根,∴2m+n﹣3=2,2m﹣n=3,∴m=2,n=1,∴(n﹣m)2008=1.【点睛】本题考查了算术平方根、立方根的定义.解决本题的关键是利用根的指数知识得到未知字母的值.58.已知a是16的算术平方根,b是9的平方根,c是﹣27的立方根,求a2+b2+c3+a ﹣c+2的值.【答案】7【分析】根据算术平方根的定义,平方根的定义,立方根的定义,求出a、b、c的值,然后代入求解即可.【详解】解:因为a是16的算术平方根,所以a=4,所以a2=16,又因为b是9的平方根,所以b2=9,因为c是﹣27的互方根,所以c3=﹣27,c=﹣3,所以a2+b2+c3+a﹣c+2=16+9﹣27+4+3+2=7.【点睛】此题主要考查了算术平方根,平方根,立方根,熟记概念并列式求出a、b、c的值是解题关键.59.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c的整数部分,∴c=3,(2)由(1)可知a=5,b=2,c=3∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值是解题关键.60.我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若1的值.【答案】(1)成立;(2)-1【解析】【试题分析】举例:8和-8的立方根分别为2和-2. 2和-2互为相反数,则8和-8也互为相反数;(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.【试题解析】(1)8和-8的立方根分别为2和-2;2和-2互为相反数,则8和-8也互为相反数(举例符合题意即可),成立.(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.故答案为-1.【方法点睛】本题目是一道关于立方根的拓展题目,根据立方根互为相反数得到这两个数互为相反数;反之也成立.运用了从特殊的到一般的数学思想.61.已知2a 一1的平方根是531a b ±+-,的立方根是4,求210a b ++的平方根.【答案】 ±【解析】试题分析:由平方根的定义和列方程的定义可求得2a-1=25,3a+b-1=64,从而可求得a 、b 的值,然后可求得代数式a+2b+10的值,最后再求其平方根即可.试题解析:∵2a 一1的平方根是±5,3a+b ﹣1的立方根是4,∴2a ﹣1=25,3a+b ﹣1=64.解得:a=13,b=26.∴a+2b+10=13+52+10=75.∴a+2b+10的平方根为(或±)62.正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【答案】(1) a=﹣10;(2) 4-x的立方根是﹣5【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3﹣a+2a+7=0,∴a=﹣10,(2)由(1)可知x=169,则44-x=﹣125,∴44-x的立方根是-5.【点睛】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.63.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根.【答案】a-b的平方根是±4.【解析】分析:根据算术平方根和立方根的定义得出2a-1=9,3a+b+4=8,求出a、b的值,求出3a+b=4,根据平方根定义求出即可.详解:∵2a-1的算术平方根是3,3a+b+4的立方根是2,∴2a-1=9,3a+b+4=8,解得a=5,b=-11,∴a-b=16,∴a-b的平方根是±4.点睛:本题考查了算术平方根和立方根的定义、平方根定义等知识点,能理解平方根、立方根、算术平方根定义是解此题的关键.64.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3 900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?【答案】(1)0.9h (2)9.7km【解析】【分析】(1)根据t 2=3900d ,其中d=9(km )是雷雨区域的直径,开立方,可得答案; (2)根据t 2=3900d ,其中t=1h 是雷雨的时间,开立方,可得答案. 【详解】(1)当d =9时,则t 2=3900d ,因此t 0.9. 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(2)当t =1时,则3900d =12,因此d 答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.65.已知x+12平方根是2x+y ﹣6的立方根是2,求3xy 的算术平方根.【答案】6.【分析】由题意可知:x+12=13,2x+y ﹣6=8,分别求出x ,y 的值即可求出3xy 的值.【详解】由题意可知:x+12=13,2x+y ﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为6【点睛】本题考查了平方根和立方根的综合.66.已知5a ﹣1的算术平方根是3,3a+b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a+4b 的平方根.【答案】(1)a=2,b=3(2)±4 【分析】(1)根据算术平方根与立方根定义得出5a ﹣1=32,3a+b ﹣1=23,解之求得a 、b 的值;。

立方根练习题及答案

立方根练习题及答案

A.1
B.−1
C.4
D.−4
8. 一个数的立方根是4,这个数的平方根是( )
A.8
B.−8
C.8或−8
D.4或−4
9. 下列说法中正确的是( )
A.−0.064的立方根是0.4
B.−9的平方根是±3
C.0.001的立方根是0.000001
D.16的立方根是3√16
10. 下列说法错误的是( )
A.−9没有平方根
3√19 − 1 − (−1)2017
27

(2)求满足条件的������值:(������ − 1)2 = 9.
第1页共8页 ◎ 第2页共8页
27. 已知2������ − 1的平方根是±3,3������ + ������ − 9的立方根是2,������是√57的整数部分,求������ + 2������ + ������的算术平方根.
B.3√−1 = −1
C.3√64 = 8
D.±√9 = −3
13. 下列命题中:
①立方根等于它本身的数有−1,0,1;
②负数没有立方根; ③3√6 = 2;
④任何正数都有两个立方根,且它们互为相反数; ⑤平方根等于它本身的数有0和1.
正确的有( ) A.1个
B.2个
C.3个
D.4个
14. 下列说法中,不正确的有( )个
③3√6 = 2,错误;④任何正数都有两个立方根,且它们互为相反数,错误;
⑤平方根等于它本身的数有0,故错误,
14.【答案】A【解答】解:①−64的立方根是−4,正确,不合题意; ②49的算术平方根是7,故此选项错误,
符合题意;③217的立方根为13,正确,不合题意; ④14是116的平方根,正确,不合题意.

七年级下数学立方根练习题含答案

七年级下数学立方根练习题含答案

七年级下数学立方根练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列命题中,是真命题的是( )A.√9的算术平方根是3B.5是25的一个平方根C.(−4)2的平方根是−4D.64的立方根是±42. −27的立方根是( )A.3B.−3C.9D.−93. 计算√273的结果是( )A.±3√3B.3√3C.±3D. 34. 立方根等于它本身的有( )A.0,1B.−1,0,1C.0D.15. 如图是马小虎同学的答卷,他的得分应是( )A.80B.60C.40D.206. 若√x 3+√y 3=0,则x 与y 的关系是( )A.x =y =0B.x =yC.x 与y 互为相反数D.x 与y 互为倒数7. 已知√8.9663=2.078,√y 3=0.2708,则y =( )A.0.8966B.89.66C.0.008966D.0.000089668. (620−√2002)3的结果(保留三位有效数字)是( )A.1.90×108B.1.9×108C.1.91×108D.以上答案都不对9. 下列说法中,正确的是( )A.−2是−4的平方根B.1的立方根是1和−1C.−2是(−2)2的算术平方根D.2是(−2)2的算术平方根10. 下列各数互为相反数的是( )A.−2与B.−2与C.|−2|与2D.与11. −64的立方根是________.12. 用计算器计算(结果精确到0.01).(1)√4.225≈________;(2)√68923≈________.13. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).14. 当k <0时,随着k 的增大,它的立方根随着________.15. 求一个正数的立方根,有些数可以直接求得,如√83=2,有些数则不能直接求得,如√93,但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得,请同学观察下表:≈6,运用你发现的规律求√216000003=________.16. 已知√20203≈12.64,√202.03≈5.867 ,√20.203≈2.723;则 √2020003≈________.17. 若√x 3=−35,则x =________;若√|x|3=6,则x =________.18.的倒数是________;=________.19. 计算√−273的结果为________.20. 若√52b+1和√a −13都是5的立方根,则a =________,b =________.21. 解方程:(3x −1)3+64=0.22. 求下列式子中x 的值.(1)12(x −2)2=825;(2)64(x +1)3+125=0.23. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.24. 用计算器求下列各式的值(精确到0.001).(1)√7653;(2)√0.4262553;(3)−√7233.25. 解方程:(1)3(x −1)3=24;(2)x x+2−1=1x−2.26. 某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?27. 计算:(2+√3)(2−√3)+(2+√3)2.28. 一个底面的长为25cm ,宽为16cm 的长方体玻璃容器中装满了水,现小明从这个长方体玻璃容器中打水,然后装进另一个正方体储水容器,当正方体容器装满水时,长方体容器的水面下降了20cm .(1)求正方体储水容器装满水时水的体积.(2)求正方体储水容器的棱长(容器的厚度忽略不计)29. 用计算器比较大小,A =√25.4,B =√38.83.30. 求出下列式子中的x :(2x −1)3+8=031. 计算:(−1)2018+|2−√5|−√83.32. 求x 的值:14x 3+3=5.33. 求式子x 3=32768中x 的值.34. 计算:(1)√32+42;(2)√81+√−273+√(−23)2;(3)|√2−√3|+2√2−√3;(4)−√(−2)2+√214+√(−1)813.35. 用计算器计算(精确到0.01)(1)3√2−2√3(2)√3×√2+√5−π2.36. 计算下列各式.(1)|√2−√3|+√83+2(√3−1).(2)若x ,y 为实数,且y =√1−4x +√4x −1+12,求x ⋅y 的算术平方根.37. (1)填表:(2)由上表发现什么规律?请用语言叙述这个规律. 37.(3)根据你发现的规律填空: ①已知√33=1.442,则√30003=________,√0.0033=________;②已知√0.0004563=0.07697,则√4563=________.38. 计算:(1)√1−925;(2)4√3−2(1−√3)+√(−2)2;(3)√83+√0+√4;(4)√2+3√2−5√2.39. 计算:√−83+√(−1)2+√25.40. 已知第一个立方体纸盒的棱长是6厘米,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127立方厘米,求第二个纸盒的棱长.参考答案与试题解析七年级下数学立方根练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】命题与定理平方根算术平方根立方根【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答5.A【考点】平方根相反数绝对值近似数和有效数字立方根【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答8.【答案】A【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】立方根的性质【解答】此题暂无解答10.【答案】A【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−4【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答12.【答案】2.06;19.03.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答13.【答案】0.464【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答14.【答案】增大【考点】立方根的实际应用【解答】此题暂无解答15.【答案】278.5【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答16.【答案】58.67【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答17.【答案】−27,±216125【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答18.【答案】∼4,3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答19.【答案】−3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答20.【答案】6,1【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)(x −2)2=1625,x −2=±45,x 1=145,x 2=−65. (2)(x +1)3=−12564,x +1=−54, x =−94.【考点】立方根平方根【解析】23.【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】此题暂无解析【解答】此题暂无解答24.【答案】解:(1)√7653≈9.1457≈9.146;(2)√0.4262553≈0.7525≈0.753;(3)−√7233≈−0.6726≈−0.673.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答25.【答案】方程整理得:(x −1)3=8,开立方得:x −1=2,解得:x =3;去分母得:x 2−2x −x 2+4=x +2,解得:x =23,经检验x =23是分式方程的解.【考点】解分式方程立方根的性质【解析】26.【答案】πr3=13.5,解得r≈1.5.解:根据球的体积公式,得43故这个球罐的半径r为1.5米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:原式=8+4√3.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答28.【答案】长方体中打出的水的体积为25×16×20=8000(cm3),故正方体储水容器装满水时水的体积为8000cm3.3=20,∵√8000∴正方体储水容器的棱长为20cm.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答29.【答案】3≈3.39,解:∵√25.4≈5.04,√38.8而5.04>3.39,3,∴√25.4>√38.8∴A>B.【考点】计算器—数的开方【解析】此题暂无解析【答案】解:(2x−1)3=−8 2x−1=−2x=−1 2【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答31.【答案】√5−3【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答32.【答案】∵14x3+3=5,∴14x3=2,则x3=8,∴x=2.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:x3=32768,开立方得:x=32.【考点】立方根的实际应用【解析】此题暂无解析【答案】解:(1)原式=√9+16=5.(2)原式=9−3+23=623.(3)原式=√3−√2+2√2−√3=√2.(4)原式=−2+32−1=−3+32=−32.【考点】立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】解:(1)原式≈3×1.414−2×1.732≈0.78;(2)原式≈1.732×1.414+2.236−3.142÷2≈3.11.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:(1)|√2−√3|+√83+2(√3−1)=√3−√2+2+2√3−2=3√3−√2;(2)由题意得,1−4x≥0,4x−1≥0,解得,x=14,则y=12,故xy=18,则x⋅y的算术平方根是√24.立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】0.01,0.1,1,10,100(2)被开方数的小数点每向右(或向左)移动3位,立方根的小数点就相应的向右(或向左)移动1位.14.42,0.1442,7.697【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:(1)原式=√1625=45.(2)原式=4√3−2+2√3+2=6√3.(3)原式=2+0+2=4.(4)原式=−√2.【考点】立方根的应用实数的运算算术平方根合并同类项【解析】此题暂无解析【解答】此题暂无解答39.【答案】解:原式=−2+1+5=4.【考点】立方根的应用算术平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵第一个立方体的体积是63=216,∴第二个立方体的体积是216+127=343,∴第二个立方体的棱长是343的立方根,即棱长为7厘米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答。

立方根的习题和答案

立方根的习题和答案

一、选择题1.下列说法不正确的是( )A.-1的立方根是-1B.-1的平方是1C.-1的平方根是-1D.1的平方根是±12.下列说法中正确的是( )A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35- 3.在下列各式中:327102=34,3001.0=0.1,301.0=0.1,-33)27(-=27,其中正确的个数是( )A.1B.2C.3D.4二、填空题4.-81的立方根是 ,125的立方根是 。

5的立方根是 .67.-3是 的平方根,-3是 的立方根.三、计算题8. 求下列各式中的x.(1)125x 3=8 (2) (-2+x)3=-2169.(1)327-+2)3(--31-(2)33364631125.041027-++---【试题答案】一、选择题1.C 【思路分析】负数没有平方根,所以本题答案是C.2.D 【思路分析】任何数都有立方根,且一个数的立方根只有一个,据此可以排除A,B 两个选项;由于361的算术平方根是61,故C 选项也是错误的.3.C 【思路分析】由于327102=34,3001.0=0.1, -33)27(-=27,故本题答案C.二、填空题 4. -21,5【思路分析】本题直接根据立方根的概念求解.5.三次根号26.54-54125643-=-.7. 9,-27【思路分析】逆用平方根,立方根的概念求解.三、计算题8.(1) 125x 3=8 ,1258x 3=,即x=52;(2)-2+x=-6,所以x=-4.【思路分析】先把方程变成a x =3的形式,然后求a 的立方根即可.9、(1)1 (2)负4分之11。

初二数学上册立方根练习题及答案

初二数学上册立方根练习题及答案

初二数学上册立方根练习题及答案一、选择题1. 下列数中,哪个数的立方根是3?A. 8B. 27C. 64D. 125答案:B2. 求出9的立方根是多少?A. 3B. 4C. 6D. 9答案:A3. 若a^3 = 216,则a的值为多少?A. 3B. 6C. 9D. 12答案:B4. 已知x是正整数,且x^3 = 512,则x的值为多少?A. 4B. 6C. 8D. 10答案:C5. 若(-2)^3 = -8,则(-2)的立方根为多少?A. -4B. -2C. 2D. 4答案:B二、填空题1. 若a的立方根为5,则a的值为______。

答案:1252. 若x^3 = 64,则x的值为______。

答案:43. 将27开3次方,结果为______。

答案:34. 若y的立方根为8,则y的值为______。

答案:5125. 将-27开3次方,结果为______。

答案:-3三、计算题1. 将125开3次方。

答案:5解析:125的立方根等于5。

2. 求解方程x^3 = 216。

答案:x = 6解析:将方程两边开3次方,得到x = 6。

3. 求解方程2y^3 = 512。

答案:y = 8解析:将方程两边除以2后开3次方,得到y = 8。

4. 求解方程(-4)^3 = x。

答案:x = -64解析:将方程两边开3次方,得到x = -64。

5. 求解方程a^3 = -27。

答案:a = -3解析:将方程两边开3次方,得到a = -3。

四、解答题1. 请用立方根的概念解释什么是立方根。

答案:立方根是指一个数的立方等于给定数的根,即一个数的立方根是指将该数三次相乘得到给定数的算术运算。

2. 将512开3次方,并解释你的计算过程。

答案:512开3次方等于8。

计算过程如下:先找到一个数的立方等于512,可以得出8^3 = 512。

将512开3次方即为求解8。

以上是初二数学上册立方根练习题及答案,通过以上练习题的训练,相信你对立方根的概念和计算方法有了更深入的理解。

立方根练习题及答案

立方根练习题及答案

立方根练习题及答案### 立方根练习题及答案1. 求立方根:找出下列数的立方根。

- (a) 8- (b) -27- (c) 64- (d) -12. 立方根的运算:计算下列表达式的值。

- (a) ³√(2³)- (b) ³√(-8)³- (c) ³√(-27) × ³√(64)- (d) ³√(0.064) ÷ ³√(0.064)3. 立方根与幂的互化:将下列表达式转换为幂的形式。

- (a) ³√x³- (b) ³√(-y)³- (c) ³√(z⁶)4. 立方根的比较:比较下列各组数的立方根大小。

- (a) ³√8 和³√27- (b) ³√(-125) 和³√(-64)5. 立方根的应用:如果一个立方体的体积是64立方厘米,求其边长。

6. 立方根的混合运算:计算下列表达式的值。

- (a) ³√(64) - ³√(8)- (b) ³√(-27) + ³√(125)7. 立方根的性质:判断下列说法是否正确,并给出理由。

- (a) 任何数的立方根都是正数。

- (b) 负数的立方根是负数。

8. 立方根的逆运算:如果一个立方体的边长是4厘米,求其体积。

9. 立方根的估算:估算下列数的立方根。

- (a) 729- (b) 0.03710. 立方根的复合运算:计算下列表达式的值。

- (a) ³√(81 × 125)- (b) ³√(-343) ÷ ³√(-1)### 答案1. (a) 2, (b) -3, (c) 4, (d) -12. (a) 2, (b) -8, (c) -4, (d) 13. (a) x, (b) -y, (c) z²4. (a) ³√8 < ³√27, (b) ³√(-125) < ³√(-64)5. 边长为4厘米6. (a) 2, (b) -27. (a) 错误,因为负数的立方根是负数;(b) 正确8. 体积为64立方厘米9. (a) 9, (b) 0.210. (a) 9, (b) 7请注意,这些练习题和答案仅为示例,实际的立方根问题可能需要根据具体情况进行调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立方根同步练习
一、填空题:
1、a 的立方根是 ,-a 的立方根是 ;若x3=a , 则x= 33a = ;33)(a -= ;-33a = ;)(33a =
2、每一个数a 都只有 个立方根;即正数只有 个立方根;负数只有 个立方根;零只有 个立方根,就是 本身。

3、2的立方等于 ,8的立方根是 ;(-3)3= ,-27的立方根是 .。

4、的立方根是 ; 的立方根是-4; 的立方根是
32。

5、计算:
3125.0= ;335= ;)13(33 = ;)13(33-= 33)3(-= ;-
364
1= ;-38-= ;3
1-= 327= ;
3278= ;-3
001.0= ;33)2(-=
二、选择题
(1)下列说法正确的是( ).
(A )-64的立方根是-4 (B )-64的立方根是-8
(C )8的立方根是2± (D )()33--的立方根是-3
(2)下列各式正确的是( ).
(A )1=± (B 2=± (C 6=- (D 3=
(3)下列说法错误的是( ).
(A )任何一个有理数都有立方根,而且只有一个立方根
(B )开立方与立方互为逆运算
(C )不一定是负数
(D )
(4)下列说法正确的是( ).
(A )一个数的立方根一定比这个数小
(B )一个数的算术平方根一定是正数
(C )一个正数的立方根有两个
(D )一个负数的立方根只有一个,且为负数
(5) ).
(A )4±(B )2±, (C )2 (D )2±(6)如果-b 是a 的立方根,则下列结论正确的是( ).
(A )3b a -= (B )3b a -= (C )3b a = (D )3b a =
(7)()3a b -的立方根是( ).
(A )b a - (B )a b - (C )()a b ±- (D )()3a b -
(8)要使4a =-成立,则a 的取值范围是( ).
(A )a 4≤ (B )-a 4≤ (C )a 4≥ (D )一切实数
(9)平方根和立方根相同的数为a ,立方根和算术平方根相同的数为b ,则a+b 的立方根为(

. (A )0 (B )1 (C )0或1 (D )1±
(100.6694 1.442==,那么下列各式中正确的是( ).
(A )14.42= (B 6.694=
(C )144.2= (D 66.94=
三、判断下列说法是否正确:
1、5是125的立方根 。

( )
2、±4是64的立方根 。

( )
3、是的立方根。

( )
4、(-4)3 的立方根是-4。

( )
四、解答题
1.求下列各数的立方根:
(1) 27; (2)-38; (3)1; (4) 0.
2.求下列各式的值:
(1) 31000 (2); 37291000; (3) 364125-;(4) 31;
3、计算:(1)38321+ (2)32710
2---
答案:
一、填空:1、 3a ;3a -;3a 。

2、1;1;1;1;0 。

3、8;2;-27;-3 。

4、;-64;278 。

5、;5;13;-13;-3;4
1-;2;-1 。

二、1、A 2、A 3、D 4、D 5、D 6、B 7、B 8、D 9、C 10、B 三、1、√ 2、× 3、√ 4、√
四、1.(1) 3 (2) 338- (3)1; (4) 0. 2.(1) 10 (2) 910 (3) 4
5- (4) 1. 3、(1)23
(2)34。

相关文档
最新文档