圆的有关性质PPT课件
合集下载
初中圆 ppt课件
作圆的切线
切线的定义
切线是与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的判定
要判定一条直线是否为圆的切线, 可以通过切线的定义进行判定,即 看直线与圆是否只有一个公共点。
切线的作法
在已知圆上任取一点,过这一点作 圆的切线,这样的切线有且只有一 条。
作圆的直径和半径
01
02
03
直径的定义
通过圆心并且两端都在圆 上的线段叫做圆的直径。
详细描述:在几何证明题中,有时需要通过添加辅助线 来构造与圆相关的图形,从而利用圆的性质来证明题目 中的结论。
详细描述:解决与圆相关的几何证明题需要掌握一些解 题技巧,如利用圆的性质进行等量代换、利用切线性质 进行转化等,这些技巧能够简化问题并提高解题效率。
圆与其他几何图形的关系
总结词:相交和相切 总结词:组合图形
详细描述
圆内接四边形定理指出,圆内接 四边形的对角线互相平分。这个 定理是解决与圆内接四边形相关 问题的重要依据。
切线长定理
总结词
切线长定理是关于圆的切线与经过切点的半径之间关系的定 理。
详细描述
切线长定理指出,从圆外一点引出的两条切线,它们的切线 长相等。这个定理在证明其他与圆有关的定理时经常用到, 如垂径定理。
详细描述:圆与其他几何图形如三角形、矩形等 经常出现相交或相切的情况,这些关系涉及到一 些重要的几何定理和性质,如切线长定理、相交 弦定理等。
详细描述:在解决几何问题时,有时需要将圆与 其他几何图形组合起来形成复杂的组合图形,这 些组合图形具有一些特殊的性质和定理,能够为 解题提供重要的思路和方法。
详细描述:圆形具有优美的对称性和流畅的线条,常用 于装饰和艺术设计中,如建筑设计、绘画和雕塑等。
圆的定义及性质ppt课件
(2)半圆是弧; ⒈我谈就判 在保附证近金”应。按说照完谈之判后文你件就规赶定快的离数开额这和位方客式户交。纳客。户从紧张到放松,这是一个过程。刚刚看到你走过来的时候,他紧张了,然后你
3给、他爱一护张各名类片消,沟防这通器个谈材时判、候技设他巧施在:,紧是不张否随的要意过求挪程应用当聘消中者防有具器一备材些较,缓强不冲的乱,沟堆你通杂在能物几力而秒丰堵钟富塞之的通内谈道把判。话经说验完?了,他感觉到自己的威胁已经消失了,这时他的 七心小、理提如 状 示患态74者又:已回询经到问死了内亡进部,店应必门聘要之者时前要应的调在那换规种岗定舒位时适的限的原内状因向态。其,亲这属个正时式候提他出就并可送以达在书那面看尸车检了建。议,并力争得到患方书面答复。
),
小于半圆的弧叫做劣弧. 如:
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧叫做半圆.
1.如图,弧有:______________ A
B 2 .劣弧有: A⌒B B⌒C
O●
优弧有: A⌒CB B⌒AC
C
想一想 判断下列说法的正误:
(1)弦是直径; 从心理学角度讲,客户进门之前本来是比较愉快的,因为他要购买的商品一定是他所需要的。一旦进了门,发现销售人员迎过来的时
一个圆。
1.要确定一个圆,必须确定圆的
__圆__心和__ _半_ 径
O
圆心确定圆的位置,
●
半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为 “⊙2.圆O”是指. “圆周”,是曲线,而不是“圆面”。
3.同一个圆的半径处处相等。
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等 于定长(半径r); (2)到定点的距离等于定长的点都在圆上.
P
3给、他爱一护张各名类片消,沟防这通器个谈材时判、候技设他巧施在:,紧是不张否随的要意过求挪程应用当聘消中者防有具器一备材些较,缓强不冲的乱,沟堆你通杂在能物几力而秒丰堵钟富塞之的通内谈道把判。话经说验完?了,他感觉到自己的威胁已经消失了,这时他的 七心小、理提如 状 示患态74者又:已回询经到问死了内亡进部,店应必门聘要之者时前要应的调在那换规种岗定舒位时适的限的原内状因向态。其,亲这属个正时式候提他出就并可送以达在书那面看尸车检了建。议,并力争得到患方书面答复。
),
小于半圆的弧叫做劣弧. 如:
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧叫做半圆.
1.如图,弧有:______________ A
B 2 .劣弧有: A⌒B B⌒C
O●
优弧有: A⌒CB B⌒AC
C
想一想 判断下列说法的正误:
(1)弦是直径; 从心理学角度讲,客户进门之前本来是比较愉快的,因为他要购买的商品一定是他所需要的。一旦进了门,发现销售人员迎过来的时
一个圆。
1.要确定一个圆,必须确定圆的
__圆__心和__ _半_ 径
O
圆心确定圆的位置,
●
半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为 “⊙2.圆O”是指. “圆周”,是曲线,而不是“圆面”。
3.同一个圆的半径处处相等。
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等 于定长(半径r); (2)到定点的距离等于定长的点都在圆上.
P
小学圆的认识ppt课件
圆在日常生活中的运用
总结词
圆在日常生活中的运用非常广泛,如轮胎、餐具、体育器材 等。
详细描述
轮胎的外形是圆形,因为圆形可以保证车辆在行驶过程中平 稳,减少摩擦阻力。此外,许多餐具和体育器材也是圆形设 计,如碗、盘子、篮球等。这些设计都是基于圆的性质和特 点,能够满足人们的生活需求。
02
圆的构成要素
用直尺和圆规画圆
总结词
结合直尺的精确性
详细描述
使用直尺确定半径的长度,然后用圆规在直尺上确定圆心位置。接着,将圆规的尖端固定在圆心位置,另一端在 纸上旋转一圈即可。这种方法结合了直尺的精确性和圆规的简便性,能够快速准确地画出所需的圆。
05
圆的性质与定理
圆内角和定理
总结词
圆内角和定理描述了圆内角的度 数总和。
圆与圆锥的关系
圆锥的侧面展开图是圆
将圆锥的侧面展开,可以得到一个圆 ,这个圆的半径等于圆锥的母线长。
圆锥的底面是圆
圆锥的底面是一个圆,其半径等于圆 锥的底面半径。
圆与其他曲线的结合
圆与椭圆的结合
将椭圆的长轴和短轴分别作为圆的直 径,可以得到两个圆,这两个圆与椭 圆相切。
圆与抛物线的结合
将抛物线的准线作为圆的直径,可以 得到一个圆,这个圆与抛物线相切于 焦点。
小学圆的认识ppt课件
目
CONTENCT
录
• 圆的定义与基本性质 • 圆的构成要素 • 圆的度量 • 圆的画法 • 圆的性质与定理 • 圆的拓展知识
01
圆的定义与基本性质
什么是圆
总结词
圆的定义是平面内到定点距离等 于定长的所有点的集合。
详细描述
圆是一种常见的几何图形,它由 平面内满足特定条件的所有点组 成。这个定点被称为圆心,而定 长被称为半径。
初中数学圆ppt课件
谢谢聆听
总结词
圆内接四边形定理是关于圆内接四边形的性质和定理。
详细描述
圆内接四边形定理指出,对于圆内接四边形,其对角之和为180°。具体来说, 如果一个四边形所有顶点都在同一个圆上,则其对角之和为180°。这个定理在 解决与圆有关的几何问题时非常有用。
弦定理和切线定理
要点一
总结词
弦定理和切线定理是关于圆的弦和切线的性质和定理。
圆的周长计算公式为C=2πr,其中r为 圆的半径,π是一个常数约等于 3.14159。这个公式用于计算圆的周 长,对于解决与圆相关的实际问题非 常重要。
圆面积和周长的应用
总结词
圆面积和周长的应用广泛,需结合实际问题理解
详细描述
圆面积和周长的应用非常广泛,例如在计算圆的面积时,可以解决与圆相关的几何问题 ,如计算圆的面积、周长、半径等;在计算圆的周长时,可以解决与圆相关的实际问题 ,如计算圆的周长、直径等。此外,圆面积和周长的应用还涉及到日常生活、工程、科
03 圆的面积和周长
圆的面积计算公式
总结词
掌握圆的面积计算公式是学习圆的基 础
详细描述
圆的面积计算公式为A=πr^2,其中r 为圆的半径,π是一个常数约等于 3.14159。这个公式是圆的面积计算 的基石,需要学生熟练掌握。
圆的周长计算公式
总结词
理解圆的周长计算公式有助于解决相 关问题
详细描述
同圆或等圆中,相等的 弦所对的弧相等。
直径的性质
同圆或等圆中,相等的 直径所对的圆周角相等 。
圆的分类
根据半径和直径的比 例划分:可分为等圆 、半圆、不同比例的 圆。
根据是否有中心划分 :可分为有中心圆的 和无中心圆的。
根据是否在同一平面 内划分:可分为共面 圆和异面圆。
《圆的有关性质》圆PPT课件 (共22张PPT)
圆是生活中常见的图形,许多物
英镑
圆的概念
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
O
r
·
我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
B
I
D F A O
E C
⌒ ⌒ ⌒ ACD,ACF,ADE,ADC ⌒ ⌒ ⌒ ⌒ AC,AE,AF,AD
⌒
1、请写出图中所有的弦; 2、请任选一条弦,写出这条弦所对的弧;
A
B
O D
C
想一想
判断下列说法的正误:
(1)弦是直径; (2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧; (6)直径是最长的弦;
议一议
小明和小强为了探究 ⊙O 中有没有最长的弦,经过 了大量的测量,最后得出一致结论,直径是圆中最 长的弦,你认为他们的结论对吗?试说说你的理由.
A
O
B
A
O
B
C
D
C
D
请将自己所画的圆与同伴所画的 圆进行比较, 它们是否能够完全重
合?并思考什么情况下两个圆能够完
全重合?半径相等的两个圆叫做等圆。 r r O2
O1
判断题
圆心相同,半径相等的两个圆是同心圆;
半径相等的两个圆是等圆.
三、巩固新知
用一用
应用新知
如图,一 根 5m 长的绳子 , 一端栓在柱子 上,另一端栓 着一只羊,请 画出羊的活动 区域.
5
5m
4m
o
英镑
圆的概念
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
O
r
·
我国古人很早对 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
B
I
D F A O
E C
⌒ ⌒ ⌒ ACD,ACF,ADE,ADC ⌒ ⌒ ⌒ ⌒ AC,AE,AF,AD
⌒
1、请写出图中所有的弦; 2、请任选一条弦,写出这条弦所对的弧;
A
B
O D
C
想一想
判断下列说法的正误:
(1)弦是直径; (2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧; (6)直径是最长的弦;
议一议
小明和小强为了探究 ⊙O 中有没有最长的弦,经过 了大量的测量,最后得出一致结论,直径是圆中最 长的弦,你认为他们的结论对吗?试说说你的理由.
A
O
B
A
O
B
C
D
C
D
请将自己所画的圆与同伴所画的 圆进行比较, 它们是否能够完全重
合?并思考什么情况下两个圆能够完
全重合?半径相等的两个圆叫做等圆。 r r O2
O1
判断题
圆心相同,半径相等的两个圆是同心圆;
半径相等的两个圆是等圆.
三、巩固新知
用一用
应用新知
如图,一 根 5m 长的绳子 , 一端栓在柱子 上,另一端栓 着一只羊,请 画出羊的活动 区域.
5
5m
4m
o
圆的有关概念及性质PPT课件
推论3:如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形.
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )
24-1 圆的有关性质 课件(共60张PPT)
平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
九年级数学上册(人教版)第二十四章《圆》课件
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
圆的有关性质-课件ppt
在 Rt△ABC 中,
A
O
B
BC= AB2 AC 2 = 102 62 =8(cm)
D
应用
如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm, ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.
C
∵ CD 平分ACB,
∴ ACD=BCD,
∴ AOD=BOD . ∴ AD=BD.
重要思路:(由)垂径定理—构造直角三角形— (结合)勾股定理—建立方程.
31.1.3 弧、弦、圆心角
• 教学目标: 1.了解圆心角的概念; 2.掌握在同圆或等圆中,两个圆心角、两条弧、两 条弦中有一组量相等,就可以推出它们所对应的 其余各组量也相等.
• 教学重点: 同圆或等圆中弧、弦、圆心角之间的关系.
性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
性质
把圆心角等分成 360 份,则每一份的圆心角是 1°,
同时整个圆也被分成了 360 份.
则每一份这样的弧叫做 1°的弧.这样,
1°的圆心角对着 1°的弧,
O
2
∴
同理, BAC
CAD BAD
1 COD. 2 CAD
1 2
B BOC.D
C
证明猜想
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
探究
思考: 一条弧所对的圆周角之间有什么关系?同弧或等弧 所对的圆周角之间有什么关系? 同弧或等弧所对的圆周角相等.
A
D
O
B
C
探究
《圆的认识》圆PPT优秀教学课件
04
圆的综合应用举例
求解切线方程问题
切线定义及性质
典型例题解析
回顾切线定义,阐述切线与半径垂直 的性质。
选取具有代表性的切线方程问题,详 细解析求解过程。
切线方程求解方法
通过圆心坐标和切线斜率,利用点斜 式或斜截式求解切线方程。
求解切线长问题
切线长定义及性质
回顾切线长定义,阐述切线与半 径、切线长与弦长的关系。
圆心、半径和直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
直径
通过圆心且两端点都在圆 上的线段,用字母d表示, 且d=2r。
圆的周长与面积
圆的周长
围绕圆形绘制的线的长度,计算公 式为C=2πr或C=πd。
圆的面积
圆形所占平面的大小,计算公式为 S=πr²。
半径
03
一般方程中,半径$r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
圆的参数方程
01 02
定义
以点$O(a,b)$为圆心,$r$为半径的圆的参数方程为 $left{ begin{array}{l} x=a+rcostheta y=b+rsintheta end{array} right.$,其中$theta$为参数。
求解割线性质问题
割线性质概述
总结割线的性质,如割 线与半径的关系、割线 定理等。
割线性质应用
利用割线性质解决与圆 相关的角度、长度等问 题。
典型例题解析
选取具有代表性的割线 性质问题,详细解析求 解过程。
05
与圆相关的数学问题拓展
点到直线距离公式推导及应用
《初三数学圆》课件
圆和其他几何图形
总结词
利用圆的性质解决其他几何图形问题
详细描述
除了三角形和四边形,圆的性质还可以应用于其他几何图形问题中。例如,在解决与球 体、柱体、锥体等相关的问题时,可以通过引入辅助圆或利用圆的相关性质来简化问题
,提高解题效率。
THANKS
切线的性质
切线与半径垂直,切线与 半径相交于切点。
切线的判定
如果直线经过半径的外端 并且垂直于半径,那么这 条直线就是圆的切线。
切线的判定定理
01
切线的判定定理:如果一条直线同时满足以下 两个条件,则它是圆的切线
03
2. 与半径垂直。
02
1. 经过半径的外端;
04
应用:利用切线的判定定理可以判断一条直线是否 为圆的切线,从而确定切点。
圆心和半径
总结词
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
详细描述
圆心位于圆的中心,是圆的对称轴。 半径是从圆心到圆上任一点的线段, 所有的半径长度都相等。半径的长度 决定了圆的大小。
圆的性质
总结词
圆的性质包括其对称性、旋转不变性和相似性等。
详细描述
圆具有旋转不变性和对称性,这意味着旋转一个圆或其任何部分不会改变其形 状或大小。此外,相似的圆具有相同的面积和周长,但可以有不同的半径或圆 心位置。
《初三数学圆》ppt课件
$number {01}
目录
• 圆的基本性质 • 圆的周长和面积 • 圆和直线的位置关系 • 圆的切线定理 • 圆的定理和推论 • 圆的综合应用
01
圆的基本性质
圆的定义
总结词
通过一个定点,在平面上作所有 与定点等距离的点的集合形成的 图形称为圆。
第9讲圆的基本性质复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
《圆的有关性质》PPT课件 人教版九年级数学
B
D
O
F
E
(2)请写出以点A为端点的弦及直径;
弦AF,AB,AC.其中弦AB又是直径.
C
A
(
(
(3)请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦AF,它所对的弧是 AF 和 ABF .
巩固练习
在以下所给的命题中:①半圆是弧;②弦是直
径;③如图所围成的图形是半圆.
其中正确的命题有 ①
.
解析: 弧不但包括半圆,还包括优弧、劣弧,
探究新知
垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧.
C
推导格式:
∵ CD是直径,CD⊥AB,
⌒ =BD.
⌒ =BC,
⌒
⌒ AD
∴ AE=BE, AC
·O
A
E
D
B
温馨提示:垂径定理是圆中一个重要的定理,三种
语言要相互转化,形成整体,才能运用自如.
探究新知
想一想:下列图形是否具备垂径定理的条件?如果不
(5)半圆是最长的弧;
(6)直径是最长的弦;
(7)长度相等的弧是等弧.
课堂检测
能力提升题
一根5m长的绳子,一端栓在柱子上,另一端栓
着一只羊,请画出羊的
活动区域.
5m
课堂小结
(描述性定义)
要画一个确定的圆,关
键是确定圆心和半径
集 合 定 义
同圆半径相等
旋转定义
同心圆
定义
圆
有关
概念
同圆
等圆
等弧
直径是圆中最长的弦
例 矩形ABCD的对角线AC,BD相交于点O.
求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
×
(4)过圆心的弦是直径。
√
(5)半圆是最长的弧;
×
(6)圆心相同,半径弧. √
(8)最大弦是直径。
√
(9)直径相等的两个半圆是等弧。 √
4.应用拓展,培养能力
2.写出图中的弧、弦.
A
O
B
C
如何在草场上画一个 半径是5m的圆?说出 你的理由.
5.归纳小结
(1)通过今天的学习,你有哪些收获? (2)你是否明确圆的两种定义、弦、 弧等概念?
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
18
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
固定的端点 O 叫做圆心;
A
线段 OA 叫做半径;
r
以点 O 为圆心的圆,记作
·
⊙O,读作“圆O”.
O
2.合作交流,学习新知
A ·r O
问题1:圆上各点到定点(圆心 O)的距离有什么 规律?
问题2:到定点的距离等于定长的点又有什么特点?
归纳:
(1)圆上各点到定点(圆心) 的距离都等于定长(半径);
(2)到定点的距离等于定长 的点都在同一个圆上.
圆的第二定义: 所有到定点的距离等于定长 的点组成的图形叫做圆.
2.合作交流,学习新知
O
同心圆 圆心相同,半径不同
等圆 半径相同,圆心不同
确定一个圆的两个要素: 一是圆心, 二是半径.
2.合作交流,学习新知
动态:在一个平面内,线段 OA 绕它固定的一个端 点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
• 学习目标: 1.通过观察实验操作,感受圆的定义,结合图形认 识弧,半圆,弦,直径,等圆,等弧,优弧,劣
弧等有关概念;
2.在具体情景中,通过探究、交流、反思等活动获 得圆的有关定义,体验探求规律的思想方法.
• 学习重点: 圆的有关概念.
2.合作交流,学习新知
2.合作交流,学习新知
圆的概念 如图,在一个平面内,线段 OA 绕它固定的一个端 点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
B
O
A
C
3.与圆有关的概念
劣弧与优弧 小于半圆的弧(如图中的 AC)叫做劣弧. 大于半圆的弧(用三个字母表示,如图中的 ABC) 叫做优弧.
B
O
A
C
3.与圆有关的概念
等弧 在同圆或等圆中,能重合的弧叫等弧.
4.应用拓展,培养能力
1.判断下列说法的正误:
(1)弦是直径;
×
(2)半圆是弧;
√
(3)过圆心的线段是直径;
静态:圆心为 O、半径为 r 的圆可以看成是所有到 定点 O 的距离等于定长 r 的点的集合.
3.与圆有关的概念
弦 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
3.与圆有关的概念
弧 圆上任意两点间的部分叫做圆弧,简称弧.以 A、B 为端点的弧记作 AB,读作“圆弧 AB”或“弧 AB”. 圆的任意一条直径的两个端点把圆分成两条弧,每 一条弧都叫做半圆.
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
九年级 上册
24.1 圆的有关性质
1.阅读材料 引入新知
我国古代,半坡人就已经会造圆形的房顶了.大约 在同一时代,美索不达米亚人做出了世界上第一个轮 子——圆的木轮.很早之前,人们将圆的木轮固定在木 架上,这样就成了最初的车子. 2 000 多年前,墨子给 出圆的定义“一中同长也”,意思是说,圆有一个圆心, 圆心到圆周的长都相等.这个定义比古希腊数学家欧几 里得给圆下的定义要早很多年.