3 二次函数与根的判别式、韦达定理

合集下载

第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

第三讲   一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。

关于判别式法与韦达定理的论述

关于判别式法与韦达定理的论述

关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

关键词:判别式法 韦达定理在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。

别式法与韦达定理说明了一元二次方程中根和系数之间的关系。

它们都有着广泛的应用在整个中学阶段。

一、韦达定理的由来法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

判别式法与韦达定理在方程论中有着广泛的应用。

二、对判别式法的介绍及概括一般的关于一元二次方程ax^2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b^2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

关于x 的一元二次方程x^2+mx+n=0有两个相等的实数根,求符合条件的一组的实数值。

这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a 、b 、c 的值;使用判别式的前提是方程为一元二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。

判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数(或参数)的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax^2+bx+c(a≠0)能否在实数范围内分解因式(1) 当△≥0 时,二次三项式在实数范围内能分解因式;(2)当△≤0 时,二次三项式在实数范围内不能分解因式。

根的判别式与韦达定理

根的判别式与韦达定理

一元二次方程根与系数的关系应用例析及训练对于一元二次方程)0(02≠=++a c bx ax ;当判别式042≥-=∆ac b 时;其求根公式为:aacb b x 24221-±-=、;当0≥∆时;设一元二次方程的两根为21x x 、;有:abx x -=+21;a c x x =⋅21;根与系数的这种关系又称为韦达定理;它的逆定理也是成立的;即当ab x x -=+21;ac x x =⋅21时;那么21x x 、则是方程)0(02≠=++a c bx ax 的两根..一元二次方程的根与系数的关系;综合性强;应用极为广泛;在中学数学中占有极重要的地位;也是数学学习中的重点..学习中;除了要求熟记一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆存在的三种情况外;还常常要求应用韦达定理解答一些变式题目;以及应用求根公式求出方程)0(02≠=++a c bx ax 的两个根21x x 、;进而分解因式;即))((212x x x x a c bx ax --=++..下面就对韦达定理的应用可能出现的问题举例做些分析;希望能带来小小的帮助..一、根据判别式;讨论一元二次方程的根..例1:已知关于x 的方程103)21(22=-+--a x a x 有两个不相等的实数根;且关于x 的方程201222=-+-a x x 没有实数根;问a 取什么整数时;方程1有整数解分析:在同时满足方程1;2条件的a 的取值范围中筛选符合条件的a 的整数值.. 解:说明:熟悉一元二次方程实数根存在条件是解答此题的基础;正确确定a 的取值范围;并依靠熟练的解不等式的基本技能和一定的逻辑推理;从而筛选出a ;这是解答本题的基本技巧..二、判别一元二次方程两根的符号..例2:不解方程;判别方程07322=-+x x 两根的符号 ..判别根的符号;需要把“根的判别式”和“根与系数的关系”结合起来进行确定;倘若由题中021<⋅x x ;所以可判定方程的根为一正一负;倘若021>⋅x x ;仍需考虑21x x +的正负;倘若021>+x x ;则方程有两个正数根;倘若021<+x x ;则方程有两个负数根..解:说明:对于)0(02≠=++a c bx ax 来说;往往二次项系数;一次项系数;常数项皆为已知;可据此求出根的判别式∆;但∆只能用于判定根的存在与否;若判定根的正负;则需要确定21x x ⋅ 或21x x +的正负情况..因此解答此类题的关键是:既要求出判别式的值;又要确定21x x ⋅ 或21x x +的正负情况..三、已知一元二次方程的一个根;求出另一个根以及字母系数的值..例3:已知方程052622=+-+-m m x x 的一个根为2;求另一个根及m 的值..分析:此类题通常有两种解法:一是根据方程根的定义;把x =2代入原方程;先求出m 的值;再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m 的值.. 解法一: 解法二:例4:已知方程04)2(222=++-+m x m x 有两个实数根;且两个根的平方和比两根的积大21;求m 的值..分析:本题若利用转化的思想;将等量关系“两个根的平方和比两根的积大21”转化为关于m 的方程;即可求得m 的值.. 解:说明:当利用根与系数的关系求出m 后;还需注意使用韦达定理的必要条件0≥∆;应舍去不合题意的m .. 四、运用判别式及根与系数的关系解题.. 例5:已知21x x 、是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根;问1x 和2x 能否同号 若能同号;请求出相应的m 的取值范围;若不能同号;请说明理由..解: 说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系;是分析研究有关一元二次方程根的问题的重要工具;也是计算有关一元二次方程根的计算问题的重要工具..知识的运用方法灵活多样;是设计考察创新能力试题的良好载体;在中考中与此有联系的试题出现频率很高;是重点练习的内容..五、运用一元二次方程根的意义及根与系数的关系解题..例6:已知βα、是方程0522=-+x x 的两个实数根;求ααβα22++的值..分析:本题可充分运用根的意义和根与系数的关系解题;应摒弃常规的求根后;再带入的方法;力求简解.. 解法一: 解法二:说明:既要熟悉问题的常规解法;也要随时想到特殊的简捷解法;是解题能力提高的重要标志;是努力的方向..有关一元二次方程根的计算问题;当根是无理数时;运算将十分繁琐;这时;如果方程的系数是有理数;利用根与系数的关系解题可起到化难为易、化繁为简的作用..这类问题在解法上灵活多变;式子的变形具有创造性;重在考查能力..六、运用一元二次方程根的意义及判别式解题..例7:已知两方程052=++-m mx x 和0713)17(2=+++-m x m x 至少有一个相同的实数根;求这两个方程的四个实数根的乘积..分析:可设两方程的相同根为α;根据根的意义;可以构成关于α和m 的二元方程组;得解后再由根与系数的关系求值.. 解:说明:本题的易错点为求解出关于α、m 的二元方程组后;忽略m 对方程和判别式的讨论..∆与韦达定理综合训练一、填空题:1、如果关于x 的方程062=++k x x 的两根之差为2;那么k = ..2、已知关于x 的一元二次方程01)1()1(22=++--x a x a 两根互为倒数;则a = .. 3、已知关于x 的方程0)1(232=-+-m mx x 的两根为21x x 、;且431121-=+x x ;则m = .. 4、已知21x x 、是方程04722=--x x 的两个根;那么:=+2221x x ;=++)1)(1(21x x ;=-21x x ..5、已知关于x 的一元二次方程0642=--x mx 的两根为21x x 、;且221-=+x x ;则m = ;=+⋅21)(21x x x x ..6、如果关于x 的一元二次方程022=++a x x 的一个根是21-;那么另一个根是 ;a 的值为 ..7、已知32+是042=+-k x x 的一根;则另一根为 ;k 的值为 ..8、一个一元二次方程的两个根是62+和62-;那么这个一元二次方程为: ..二、求值题:1、已知21x x 、是方程01322=--x x 的两个根;利用根与系数的关系;求321231x x x x +的值.. 2、已知21x x 、是方程01232=--x x 的两个根;利用根与系数的关系;求22221)(x x -的值.. 3、已知21x x 、是方程04322=-+x x 的两个根;利用根与系数的关系;求52212251x x x x ⋅+⋅的值.. 4、已知两数的和等于6;这两数的积是4;求这两数..5、已知关于x 的方程01)1(22=++--m x m x 的两根满足关系式121=-x x ;求m 的值及方程的两个根..6、已知方程042=++mx x 和016)2(2=---x m x 有一个相同的根;求m 的值及这个相同的根.. 三、能力提升题:1、实数k 为何值时;方程0)1(22=-+-k kx kx 有正的实数根 2、已知关于x 的一元二次方程0321)2(2=-+-+m x m x 1求证:无论m 取什么实数值;这个方程总有两个不相等的实数根.. 2若这个方程的两个实数根21x x 、满足1221+=+m x x ;求m 的值..3、若0>n ;关于x 的方程041)2(2=+--mn x n m x 有两个相等的正的实数根;求n m 的值..4、是否存在实数k ;使关于x 的方程06)74(922=+--k x k x 的两个实根21x x 、;满足2321=x x ;如果存在;试求出满足条件的k 的值;如果不存在;请说明理由..5、已知关于x 的一元二次方程)0(01)3(222≠=+-+m x m x m 的两实数根为21x x 、;若2111x x m +=;求m 的值.. 6、实数m 、n 分别满足方程0199192=++m m 和099192=++n n ;求代数式nm mn 14++ 的值..答案与提示: 一、填空题:1、提示:;;;∴;∴;解得:2、提示:;由韦达定理得:;;∴; 解得:;代入检验;有意义;∴..3、提示:由于韦达定理得:;;∵; ∴;∴;解得:..4、提示:由韦达定理得:;;;;由;可判定方程的两根异号..有两种情况:①设>0;<0;则;②设<0;>0;则..5、提示:由韦达定理得:;;∵;∴;;∴;∴..6、提示:设;由韦达定理得:;;∴;解得:;;即..7、提示:设;由韦达定理得:;;∴;∴;∴8、提示:设所求的一元二次方程为;那么;;∴;即;;∴设所求的一元二次方程为:二、求值题:1、提示:由韦达定理得:;2、∴3、提示:由韦达定理得:;;∴4、提示:由韦达定理得:;;∴5、提示:设这两个数为;于是有;;因此可看作方程的两根;即;;所以可得方程:;解得:;;所以所求的两个数分别是;..6、提示:由韦达定理得;;∵;∴;∴;∴;化简得:;解得:;;以下分两种情况:①当时;;;组成方程组:;解这个方程组得:;②当时;;;组成方程组:;解这个方程组得:7、提示:设和相同的根为;于是可得方程组:;①②得:;解这个方程得:;以下分两种情况:1当时;代入①得2当时;代入①得..所以和相同的根为;的值分别为;..三、能力提升题:1、提示:方程有正的实数根的条件必须同时具备:①判别式△≥0;②>0;>0;于是可得不等式组:解这个不等式组得:>12、提示:1的判别式△>0;所以无论取什么实数值;这个方程总有两个不相等的实数根..2利用韦达定理;并根据已知条件可得:解这个关于的方程组;可得到:;;由于;所以可得;解这个方程;可得:;;3、提示:可利用韦达定理得出①>0;②>0;于是得到不等式组:求得不等式组的解;且兼顾;即可得到>;再由可得:;接下去即可根据;>;得到;即:=44、答案:存在..提示:因为;所以可设;由韦达定理得:;;于是可得方程组:解这个方程组得:①当时;;②当时;;所以的值有两个:;;5、提示:由韦达定理得:;;则;即;解得:6、提示:利用求根公式可分别表示出方程和的根:;;∴;∴;∴;又∵;变形得:;∴;∴。

韦达定理与根的判别式

韦达定理与根的判别式

韦达定理与根的判别式这个专题是一二次方程是的判别式与韦达定理知识要点和练习韦达定理与根的判别式知识点:1、根的判别式b24ac(1)b24ac 0 ,方程有两个不相等的实数根;(2)b2 4ac 0,方程有两个相等的实数根;(3)b2 4ac 0,方程没有实数根;2、韦达定理已知x1,x2是一元二次方程的两根,则有xb1 x2ax1x2ca例1:已知一元二次方程x22x m 1 0 (1)当m取何值时,方程有两个不相等的实数根?(2)设x21,x2是方程的两个实数根,且满足x1 x1x2 1,求m的值练习:1、方程x23 0的根的情况是()A有两个不等的有理实根B有两个相等的有理实根C有两个不等的无理实根D有两个相等的无理实根2、已知x2 1,x2是方程2x 3x 4 0的两个根,则()A x331 x2 2 ,x1x2 2 B x1 x2 2 ,x1x2 2 C x1 x322,x1x2 2 D x31 x22,x1x2 23、已知方程x2 2 0,则此方程()A 无实数根B两根之和为C两根之积为2D有一根为2 1这个专题是一二次方程是的判别式与韦达定理知识要点和练习4、已知x1,x2是方程2x 3x 1 0的两个根,则3221x11x2的值为()A 3B -3C D5、若将二次三项式x2 px 6因式分解,分解后的一个因式是x-3,则p的值是()A -5 B -1 C 1 D 56、已知x1,x2是方程x 4x 3 0的两个根,那么x1x2的值是() A - 4 B 4 C -3 D 37、在一元二次方程ax2 bx c 0(a 0)中,若a与c异号,则方程()A 有两个不相等的实数根 B 有两个相等的实数根 C 没有实数根 D 根的情况无法确定8、已知一元二次方程的两根分别为x1 3,x2 4,则这个方程为() A (x 3)(x 4) 0 B (x 3)(x 4) 0 C (x 3)(x 4) 0 D (x 3)(x 4) 09、关于x的一元二次方程3x 2x k 1 0有两个不相等的实数根,则k的取值范围是() A k432243且k 1 C k2243D k4310、若关于x的一元二次方程(m 2)x (2m 1)x 1 0有两个不相等的实数根,则m的取值范围为() A m43B m43C m43且m 2 D m43且m 22211、已知一直角三角形的三边为a、b、c,∠B=90 ,那么关于x的方程a(x 1) 2cx b(x 1) 0的根的情况为()A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 无法确定12、设x1,x2是方程2x 4x 3 0的两个根,则2221x11x213、已知关于x的方程x 2(m 2)x m 0有两个实数根,且两根的平方和等于16,则m的值为14、已知方程x (12x20的两根为x1,x2,则x1 x2的值为2215、关于x的一元二次方程mx (3m 1)x m 0,其根的判别式的值为1,求m的值及该方程的根。

二次函数根的判别式与韦达定理

二次函数根的判别式与韦达定理

X1X2>0 X1+X2>0
两个负根
△≥0
{ X1X2>0 X1+X2<0
①当Δ>0,即a<1时,方程有两个不等实根
x1 1 1 a
x2 1 1 a
②当Δ=0,即a=1时,方程有两个相等的实数根 x1=x2=1;
③当Δ<0,即a>1时,方程没有实数根.
分类讨论是初中数学中重要的思想方法.
根与系数的关系(韦达定理)的发现过程
解下列方程并完成填空:
(1)x2-7x+12=0 (2)x2+3x-4=0 (3) 2x2+3x-2=0
例1 、 判定方程根的情况(其中a为常数) 如果方程有实数根,写出方程的实数根. (1)x2-ax-1=0 (2)x2-2x+a=0.
解(1)Δ=a2-4×1×(-1)=a2+4>0,
所以方程一定有两个不等的实数根
x1 a
a2 4 2
x2 a
a2 4 2
(2)Δ=22-4×1×a=4-4a=4(1-a),
4a 2
= 4a2
=
c a
一元二次方程的根与系数的关系:
如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 ,
那么X1+x2= -
b a
,
X1x2=
c a
注:能用公式的前提条件为b2-4ac≥0
特殊情况:当二次项系数a=1 时
如果方程x2+px+q=0的两根是 X1 ,X2,
那么
X1+X2=
例4、若x1和x2分别是方程2x2+5x-3=0的两根.
(1)求| x1-x2|的值;
7 2
(2)求

二次函数及其根的分布

二次函数及其根的分布

二次函数及其根的分布【摘要】 二次函数根的分布是二次函数中的重要内容,但解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。

结合二次函数图象寻找有关一元二次方程的根的分布特点。

结合例题和图像师生共同探讨二次函数根的分布情况。

【关键词】 二次函数 根的分布 判别式 韦达定理 图像法二次函数根的分布是二次函数中的重要内容。

这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。

很多同学遇到这些问题总是感到很头痛。

问题的实质就是关于实系数一元二次方程的根的分布,一旦把实系数一元二次方程的根的分布的情况(规律)搞清楚了,上述问题也就不那么难了。

回顾我们在解答这类题目时,总是要运用到判别式,韦达定理,然后结合二次函数图象我们从中并不难发现有关一元二次方程的根的分布的特点。

设方程()200ax bx c a ++=≠的两根为12,x x ,相应的二次函数为()()为常数c b a a c bx ax x f ,,,02≠++=,不妨设0>a ,方程)0(02≠=++a c bx ax 的实根,如若从二次函数图形角度去观察理解,其实质就是对应的二次函数)0(02≠=++=a c bx ax y 的抛物线与x 轴交点的横坐标。

一元二次方程实根分布,简单地说就是方程的根与某些确定的常数大小关系比较。

下列将举例进行学习:教学目标:使学生掌握一元二次方程实根分布问题的处理,加强求解一元二次不等式及不等式组,初步训练学生的数形结合能力。

教学重点:利用二次函数的图象,把一元二次方程根的分布−−→−转化图形问题−−→−转化代数表达式(不等式组)−−→−计算参数取值范围。

教学难点:图形问题转化成代数表达式(不等式组)并求解。

教学方法:启发式、探究式、讲练结合基本知识点回顾:1、什么叫一元二次方程?2、一元二次方程实根个数怎样判定?(△成立的前提条件?)3、一元二次方程)0(02≠=++a c bx ax 的韦达定理。

苏科版九年级上册数学第1章一元二次方程第3讲根的判别式与韦达定理(含答案)

苏科版九年级上册数学第1章一元二次方程第3讲根的判别式与韦达定理(含答案)

中考要求知识点基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题例题精讲板块一根的判别式☞定义:运用配方法解一元二次方程过程中得到2224(24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.☞判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b acx a-±-=.根的判别式与韦达定理②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.☞根的判别式的应用:☞⑴运用判别式,判定方程实数根的个数;【例1】不解方程,判断下列方程的根的情况:⑴22340x x +-=;⑵20ax bx +=(0a ≠)【解析】略【答案】⑴22340x x +-=∵2342(4)410∆=-⨯⨯-=>∴方程有两个不相等的实数根.⑵∵0a ≠∴方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零∵22()40b a b ∆=--⋅⋅=∵无论b 取任何数,2b 均为非负数∴0∆≥,故方程有两个实数根【巩固】不解方程,判别一元二次方程2261x x -=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【解析】由方程可得3680∆=+>,所以方程有两个不相等的实数根.【答案】A【巩固】不解方程判定下列方程根的情况:⑴22340x x +-=;⑵232x +=21x +=;⑷22(21)220m x mx +-+=;⑸2210x ax a ++-=220+=;⑺4(1)30x x +-=;⑻2(1)(2)x x m --=【解析】略【答案】⑴两个不等的实数根;⑵两个相等的实数根;⑶无实数根;⑷无实数根;⑸两个不等的实数根;⑹无实数根;⑺两个不相等的实数根;⑻两个不相等的实数根【例2】已知a ,b ,c 是不全为0的3个实数,那么关于x 的一元二次方程2222()()0x a b c x a b c ++++++=的根的情况().A .有2个负根B .有2个正根C .有2个异号的实根D .无实根【解析】方程2222()()0x a b c x a b c ++++++=的判别式为:2222()4()a b c a b c ∆=++-++222333222a b c ab bc ca=---+++222222222(2)(2)(2)a ab b b bc c c bc a a b c =-+-+-+-+-+----222222[()()()]a b b c c a a b c =--+-+-+++∵a ,b ,c 不全为0,∴0∆<.∴原方程无实数根.故选D .【答案】D☞⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;【例3】m 取什么值时,关于x 的方程222(3)6x mx +-=有两个相等的实数根【解析】略【答案】1m =±【巩固】如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是()A .1k <B .0k ≠C .10k k <≠且D .1k >【解析】由题可得36360k k ∆=->⎧⎨≠⎩所以10k k <≠且【答案】C【巩固】方程2610kx x -+=有两个不相等的实数根,则k 的取值范围是【解析】注意二次项系数不为0【答案】9k <且0k ≠【巩固】若关于x 的二次方程2(1)220m x mx m -++-=有两个不相等的实数根,则m 的取值范围是【解析】注意二次项系数不为0【答案】23m >且1m ≠【巩固】若关于x 的一元二次方程2(1)210k x x ++-=有实数根,则k 的最小整数值为【解析】注意题目要求以及二次项系数不为0的条件【答案】2k =-【巩固】已知方程22(21)10m x m x +++=有实数根,求m 的范围.【解析】注意分两种情况讨论:若0m =,则原方程可化为101x x +=⇒=-满足题意;若0m ≠,则由题意可知221(21)404104m m m m ∆=+-≥⇒+≥⇒≥-.综上可知,14m ≥-【答案】14m ≥-【例4】关于x的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围.【解析】由题意,得4(1)4(12)010120k k k k ++->⎧⎪+≥⎨⎪-≠⎩解得12k -≤<且12k ≠【答案】12k -≤<且12k ≠【巩固】关于x的方程210x ++=有两个不相等的实数根,则k 的取值范围为________.【解析】2400k ⎧∆=->⎪⎨>⎪⎩,解得1k >【答案】1k >【巩固】已知关于x 的方程222(1)50x m x m ++++=有两个不相等的实数根,化简:|1|m -【解析】∵0>△,∴2m >∴|1||1||2|23m m m m --+-=-【答案】23m -【巩固】已知关于x 的一元二次方程20x m -=有两个不相等的实数根,求m 的取值范围.【解析】由题意可知,原方程的判别式21(41303m m m ∆=+=+>⇒>-.又101m m -≥⇒≤,故113m -<≤.【答案】113m -<≤【巩固】k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【解析】需要分两种情况来讨论:⑴当10k -=时,原方程是一元一次方程,有一个实数根45x =;⑵当10k -≠时,方程是一元二次方程,故0∆≥,解得214k ≥-且1k ≠,所以当214k ≥-且1k ≠时方程有两个实数根.综上所述,当214k ≥-时,方程有实数根.【答案】214k ≥-【例5】关于x 的方程()26860a x x --+=有实数根,则整数a 的最大值是.【解析】由一元二次方程根的情况可知240b ac -≥,即()()284660a --⨯⨯-≥,解得263a ≤,故max 8a =.【答案】8【巩固】若方程222(1)450x a x a a ++++-=有实数根,求:正整数a .【解析】0∆≥,即()()22414450a a a +-+-≥,解不等式得3a ≤,即123a =,,.【答案】1,2,3【例6】已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【解析】∵()()2212102x a b x b b -+--+=有两个相等的实数根.∴0∆=,即()()222210a b b b ++-+=∴()()22210a b b ++-=,∴0a b +=,10b -=∴1b =,1a =-,因此321a b +=-.【答案】1-【巩固】当a b 、为何值时,方程()2222134420x a x a ab b ++++++=有实根?【解析】要使关于x 的一元二次方程()2222134420x a x a ab b ++++++=有实根,则必有0∆≥,即()()22241434420a a ab b +-+++≥,得()()22210a b a ++-≤.又因为()()22210a b a ++-≥,所以()()22210a b a ++-=,得1a =,12b =-.【答案】1a =,12b =-【例7】已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是()A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【解析】22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根,∴240b ac ->,∴220b ac ->,∴422224(2)(2)0b ac b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .【答案】C【巩固】若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=().A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【解析】∵方程2(2)2(1)0m x m x m +-++=只有一个实数根,∴20m +=,得2m =-.∴方程2(1)220m x mx m +-+-=,即为方程2440x x -+-=,∴244(1)(4)0∆=-⨯-⨯-=.∴方程2(1)220m x mx m +-+-=有2个相等的实数根.故选C .特别注意方程2(2)2(1)0m x m x m +-++=只有一个实数根.若20m +≠,则方程要么有2个根(相等或不相等),要么没有实数根.条件指明,该方程只有1个实数根,所以20m +=,且10m +≠.【答案】C☞⑶通过判别式,证明与方程相关的代数问题;【例8】对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.【解析】略【答案】∵210m +≠,故方程为一元二次方程.()()()2222422414442016m m m m m m ∆=--++=---()424241616444m m m m =---=-++()222m =-+∵220m +≠,∴0∆<,故方程无实根.【巩固】求证:关于x 的一元二次方程2(2)10x m x m -+++=有两个实数根.【解析】略【答案】∵2(2)10x m x m -+++=是关于x 的一元二次方程∴[]22(2)4(1)m m m ∆=-+-+=∵20m ≥∴原方程有两个实数根.【巩固】已知实数a 、b 、c 、r 、p 满足2pr >,20pc b ra -+=,求证:一元二次方程220ax bx c ++=必有实根.【解析】略【答案】2(2)4b ac ∆=-,因2b pc ra =+,则222()4()()2(2)pc m ac pc ra ac pr ∆=+-=++-.又2pr >,所以当0ac ≥时,0∆≥;当0ac <时,40ac ->,2()40pc ra ac ∆=+->.因此,一元二次方程220ax bx c ++=必有实根.【巩固】证明:无论实数m 、n 取何值时,方程2()0mx m n x n +++=都有实数根【解析】注意分类讨论.【答案】⑴若0m =,则方程为nx n =-,当0n ≠时,有实数根1x =-;当0n =时,方程的根为任意实数⑵当0m ≠时,原方程为一元二次方程22()4()0m n mn m n ∆=+-=-≥∴方程必有实数根综合⑴⑵可知,原结论成立【巩固】已知:方程()22250mx m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【解析】略【答案】当0m =时,()22250mx m x m -+++=可化为450x -+=,此时方程有根,故0m ≠故214(2)4(5)0404m m m m m ∆=+-+<⇒-<⇒>.方程()()25220(5)m x m x m m --++=≠的判别式为:224(2)4(5)4(94)0m m m m ∆=+--=+>故方程()()25220(5)m x m x m m --++=≠有两个实数根.板块二韦达定理☞如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12c x x a=.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=.☞利用韦达定理求代数式的值【例9】不解方程224)0x x +-,求两根之和与两根之积【解析】韦达定理成立的前提条件是0∆≥【答案】令此方程的两个实数根为1x 、2x由韦达定理得124422x x --+=-=,122x x ⋅=-=【巩固】设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值⑴12(3)(3)x x --;⑵211211x xx x +++;⑶12x x -【解析】不解方程,即利用韦达定理将12x x +、12x x 的整体构造出来【答案】由韦达定理得1274x x +=,1234x x ⋅=-⑴12121237(3)(3)3()939344x x x x x x --=-++=--⨯+=;⑵221221112121212121212(1)(1)()2()10111(1)(1)132x x x x x x x x x x x x x x x x x x x x ++++-+++===+++++++⑶2221212127397()()4()4()4416x x x x x x -=+-=-⨯-=,∴12x x -=【巩固】已知方程22430x x +-=的两个根为1x 、2x ⑴12x x +=;⑵12_______x x ⋅=;⑶1211_______x x +=;⑷2212_______x x +=【解析】略【答案】⑴2-;⑵32-;⑶43;⑷7【巩固】已知α、β是方程2520x x ++=+的值.【解析】注意α,β均为负数,很多学生求出的结果均为负值【答案】由韦达定理可得,5αβ+=-,2αβ=∴22222()2522a a ββαβαβαβαβαβ++++=++===+=☞利用韦达定理求参数的值【例10】若3-、2是方程20x px q -+=的两个根,则________p q +=【解析】略【答案】7-【巩固】若方程210x px ++=的一个根为1-,则它的另一根等于,p 等于【解析】部分学生喜欢将1x =-代入原方程,求p 的数值,然后再求方程另外一个根,此方法较慢。

二次函数与根的判别式韦达定理

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理讲点1:公共点问题【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围.【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度向下最多可平移多少个单位长度讲点2:距离问题【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点,已知CD,在抛物线上共有三个点到直线BC的距离为m,求m的值.【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物线与直线y=2x的最近,求a的值.讲点3:隐藏判别式【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)请说明理由.讲点4:交点间的距离【例4】已知二次函数y=x2-2mx+m2+m的图象与函数y=kx+1的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)如图1,当k=1,m取不同值时,猜想AB的长是否不变?并证明你的猜想;(2)如图2,当m=0,k取不同值时,猜想△AOB的形状,并证明你的猜想.【例5】如图,抛物线y=x2-4x+5与y轴交于点C,过点N(1,2)作直线l,交抛物线于点P,交y轴于点E,连接PC,若PE=PC,求直线l的解析式.【练】如图,抛物线C1:y=x2+4x+3交x轴于A,B两点,交y轴于点C,将抛物线C1沿y轴翻折得新抛物线C2,过点C作直线l交抛物线C1于点M,交抛物线C2于点N,若MN=,求直线l的解析式.三、对称问题【例6】如图,已知抛物线y=x2-2x-3,直线y=kx-1与抛物线交于P,Q两点,且y轴平分线段PQ,求k的值.【练】如图,已知抛物线y=x2-4x+3,过点D(0,-52)的直线与抛物线交于点M,N,与x轴交于点E,且点M,N关于点E对称,求直线MN的解析式.四、与面积结合【例7】如图,抛物线y=x2-4x+5顶点为M,平移直线y=x交抛物线于点H,K,若S△MHK=3,求平移后直线的解析式.【课后反馈】1.如图,已知抛物线y =x 2-2x -3与x 轴交于A,B 两点,与y 轴交于点C ,将抛物线沿对称轴向上平移k 个单位长度后与线段BC 交于D,E 两个不同的点,求k 的取值范围.2.如图,抛物线y =ax 2-6ax +5a 与x 轴交于A,B 两点(A 左,B 右),若抛物线不通过直线y =2x 上方的点,求抛物线顶点纵坐标的取值范围. 3.如图,抛物线y =14x 2+32x +2与x 轴交于A,B 两点(点A 在点B 的左边),与y 轴交于点C ,将抛物线沿直线BC 平移,与射线AC (含点A )仅有一个公共点,求抛物线顶点横坐标的值或取值范围.4.如图,已知抛物线C :y =x 2-2x +4和直线l :y =-2x +8,直线y =kx (k >0)与抛物线C 交于A,B 两点,与直线l 交于点P ,分别过A,B,P 作x 轴的垂线,垂足依次为A 1、B 1、P 1,若11OA +11OB =1u OP ,求u 的值.5.如图1,抛物线C 1:y =x 2+4x +3顶点为M ,抛物线C 2与抛物线C 1开口方向相反,形状相同,顶点为N ,且M,N 关于点P (0,2)对称.(1)求抛物线C 2的解析式;(2)直线y =m 交抛物线C 1于点A,B ,交抛物线C 2于点C,D ,若AB =2CD ,求m 的值;。

根的判别式与韦达定理

根的判别式与韦达定理

第3讲 一元二次方程根的判别式和韦达定理一、根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。

时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为 【典型例题】1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。

(1)有两个相等实根;(2)有两个不相等的实根; (3)没有实根。

2.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。

3.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。

【课堂练习】一、填空题:1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。

2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。

二、选择题:1、下列方程中,无实数根的是( )A 、011=-+-x xB 、 762=+yy C 、021=++x D 、0232=+-x x2、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43<m B 、m ≤43 C 、43>m 且m ≠2 D 、m ≥43且m ≠2 3、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定 一、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。

三个“二次”的关系(一、二)

三个“二次”的关系(一、二)

【初高中衔接】4-5.三个“二次”的关系【知识要点归纳】 一. 一元二次方程1. 根的判别式:2. 根与系数的关系(韦达定理):如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么 .这一关系也被称为韦达定理.二. 一元二次不等式三.一元二次函数根的分布【经典例题】例1:已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.例2:已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12xx λ=,试求λ的值.例3:解不等式:(1)x 2+2x -3≤0;(2)x -x 2+6<0;(3)4x 2+4x +1≥0;(4)x 2-6x +9≤0;(5)-4+x -x 2<0.例4:已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.例5:解关于x 的一元二次不等式210(x ax a ++>为实数).例6:已知方程2x -2(m+2)x +2m -1=0,根据下列条件求实数m 的取值范围(只列式,无需求出结果) (1) 有两个不相等的正根(2) 有两个不等实根都大于2(3)有两个不等实根,一个根大于0小于1,一个根大于1小于2【课后练习】1.解下列不等式:(1)3x 2-x -4>0;(2)x 2-x -12≤0;答案:(1)x <-1,或x >43; (2)-3≤x ≤4;2.使实系数一元二次方程2(1)0kx k x k --+=有两个实根的k 的取值范围是( ) A .113k -<<且 0k ≠ B .113k -≤≤C .1k ≤-或13k ≥D .113k -≤≤且0k ≠【解析】A. 若方程有两个根,则其必为二次函数,那么0k≠,同时方程的判别式0∆>,即()()()22141310k k k k --=-->,解得113k <<,综合0k ≠,可得A 为正确选项。

-二次函数与根的判别式、韦达定理

-二次函数与根的判别式、韦达定理

二次函数与根的判别式、韦达定理讲点1:公共点问题【例1】如图,抛物线y =-x 2+4x -3的顶点为M ,直线y =-2x -9与y 轴交于点C ,与直线MO 交于点D ,现将抛物线的顶点在直线OD 上平移,平移后的抛物线与射线CD (含顶点C )只有一个公共点,求它的顶点横坐标的值或取值范围.CO DM yx【练】如图,已知抛物线y =-x 2+2x +8与x 轴交于点A,B 两点,与y 轴交于点C ,点D 为抛物线的顶点,直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?FD CE A B O y x讲点2:距离问题【例2】如图,抛物线y =a(x -1)2+4与x 轴交于A,B 两点,与y 轴交于点C ,点D 是抛物线的顶点,已知CD =2,在抛物线上共有三个点到直线BC 的距离为m ,求m 的值.CD BAOyx【练】如图,抛物线y =ax 2-6ax +5a 与x 轴交于A,B 两点(A 左,B 右),若抛物线与直线y =2x 的最近点之间的距离为255,求a 的值. yxO B A讲点3:隐藏判别式【例3】如图,点P 是直线l :y =-2x -2上的点,过点P 的另一条直线m 交抛物线y =x 2与A,B 两点,试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立.PBAO yx【练】如图,已知二次函数y =a(x 2-6x +8)(a >0)的图象与x 轴分别交于点A,B ,与y 轴交于点C ,点D 是抛物线的顶点.当点P 在抛物线对称轴上时,设点P 的纵坐标t 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA,PB,PC,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.CPDB AO y x讲点4:交点间的距离【例4】已知二次函数y =x 2-2mx +m 2+m 的图象与函数y =kx +1的图象交于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点.(1)如图1,当k =1,m 取不同值时,猜想AB 的长是否不变?并证明你的猜想;A BxOy(2)如图2,当m =0,k 取不同值时,猜想△AOB 的形状,并证明你的猜想.BAyOx【例5】如图,抛物线y =x 2-4x +5与y 轴交于点C ,过点N (1,2)作直线l ,交抛物线于点P ,交y 轴于点E ,连接PC ,若PE =PC ,求直线l 的解析式.lE P CN Oy x【练】如图,抛物线C 1:y =x 2+4x +3交x 轴于A,B 两点,交y 轴于点C ,将抛物线C 1沿y 轴翻折得新抛物线C 2,过点C 作直线l 交抛物线C 1于点M ,交抛物线C 2于点N ,若MN =82,求直线l 的解析式.A B xyO C三、对称问题【例6】如图,已知抛物线y =x 2-2x -3,直线y =kx -1与抛物线交于P,Q 两点,且y 轴平分线段PQ ,求k 的值.QPO y x【练】如图,已知抛物线y =x 2-4x +3,过点D (0,-52)的直线与抛物线交于点M,N ,与x 轴交于点E ,且点M,N 关于点E 对称,求直线MN 的解析式.yxNEMD O四、与面积结合【例7】如图,抛物线y =x 2-4x +5顶点为M ,平移直线y =x 交抛物线于点H,K ,若S △MHK =3,求平移后直线的解析式.【课后反馈】1.如图,已知抛物线y =x 2-2x -3与x 轴交于A,B 两点,与y 轴交于点C ,将抛物线沿对称轴向上平移k 个单位长度后与线段BC 交于D,E 两个不同的点,求k 的取值范围.E C DB A O yx2.如图,抛物线y =ax 2-6ax +5a 与x 轴交于A,B 两点(A 左,B 右),若抛物线不通过直线y =2x 上方的点,求抛物线顶点纵坐标的取值范围.yxO B A3.如图,抛物线y =14x 2+32x +2与x 轴交于A,B 两点(点A 在点B 的左边),与y 轴交于点C ,将抛物线沿直线BC 平移,与射线AC (含点A )仅有一个公共点,求抛物线顶点横坐标的值或取值范围.CBAOyx4.如图,已知抛物线C :y =x 2-2x +4和直线l :y =-2x +8,直线y =kx (k >0)与抛物线C 交于A,B 两点,与直线l 交于点P ,分别过A,B,P 作x 轴的垂线,垂足依次为A 1、B 1、P 1,若11OA +11OB =1u OP ,求u 的值.A 1B 1P 1B AP O yx5.如图1,抛物线C 1:y =x 2+4x +3顶点为M ,抛物线C 2与抛物线C 1开口方向相反,形状相同,顶点为N ,且M,N 关于点P (0,2)对称. (1)求抛物线C 2的解析式;N MPOyx(2)直线y =m 交抛物线C 1于点A,B ,交抛物线C 2于点C,D ,若AB =2CD ,求m 的值;DCB ANMOyx。

根的判别式与韦达定理

根的判别式与韦达定理

一元二次方程根与系数的关系应用例析及训练对于一元二次方程ax?+bx+c = 0(a式0),当判别式心= b?_4ac兰0时,其求根公式为:%、=―' b——4ac;当2ab c.:_0时,设一元二次方程的两根为X「x2,有:x-i x2,x-i x2;根与系数的这种关系又称为韦达定理;它的a ab c逆定理也是成立的,即当x-i x2,x-i x2时,那么为、x2则是方程ax2bx c = 0(a = 0)的两根。

一元二次方程a a的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。

学习中,除了要求熟记一元二次方程ax2 bx c =0(a =0)根的判别式厶二b2 -4ac存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程ax2 bx 0(^- 0)的两个根为、x2,进而分解因式,即ax2bx • c = a(x-xj(x-x2)。

下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。

一、根据判别式,讨论一元二次方程的根。

例1:已知关于x的方程(1) X2 -(1-2a)x • a2 -3 =0有两个不相等的实数根,且关于x的方程⑵x2-2x,2a-1=:0没有实数根,问a取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a的取值范围中筛选符合条件的a的整数值。

解:a的取值范围,并依靠熟练的解不等式的基本技说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定能和一定的逻辑推理,从而筛选出a,这是解答本题的基本技巧。

二、判别一元二次方程两根的符号。

例2:不解方程,判别方程2x2・3x-7=0两根的符号。

判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中x1 x^:: 0,所以可判定方程的根为一正一负;倘若为x2 0,仍需考虑x1 X2的正负,倘若x1 x2 • 0,则方程有两个正数根;倘若x1 X2:::0,则方程有两个负数根。

第14讲根的判别式与韦达定理(word版)

第14讲根的判别式与韦达定理(word版)

第14讲根的判别式与韦达定理模块一一元二次方程根的判别式知识导航式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母“△”来表示,即△=b2-4ac.当△>0时,方程ax2+bx+c=0(a≠0)有两个不等的实数根;当△=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根;当△<0时,方程ax2+bx+c=0(a≠0)无实数根.计算判别式的值,可以判断一元二次方程根的情况;反之,若一元二次方程有两个不等实数根,则△>0;若一元二次方程有两个相等实数根,则△=0;若一元二次方程无实数根,则△<0.注意:①当△=0时,方程有两个相等的实根,不能说方程只有一个根②当△≥0时,方程有两个实根(一元二次方程有实根).例1(1)已知关于x的一元二次方程x2-2x+m=0有解,求m的范围.-1x-m=0有两个不相等实数根,求m的取值范围.(2)己知关于x的一元二次方程x2-m(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围(5) (2016武汉元月调考第9题)关于x的方程(m-2)x2+2x+1=0有实数根,求m的取值范围.拓展己知关于x的方程(n-1)x2+mx+1=0有两个相等的实数根,试说明关于y的方程m2y2—2my-m2—2n2+3=0的根的情况【总结】1、在处理【例1】和【练1】这类问题时,一定要注意先判断方程类型,若方程类型不确定,则需要分类讨论2、关于方程类型,题目在设问方面会有下列说法:(1)“关于x的一元二次方程有解”则方程一定为一元二次方程.(2)“关于x的方程有两实根”则方程一定为一元二次方程.(3)“关于x的方程有解”则方程类型不确定,需要分类讨论例2(1) 己知a、b、c是三角形三边,求证:关于x的方程(a+b)x2+2cx+(a+b)=0无实根.(2) 己知:a、b、c分别是△ABC的三边长,求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.练习己知△ABC三边a,b,c,关于x的方程(a+c)x2 +2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.模块二 一元二次方程根与系数关系知识导航:由因式分解法可知,方程(x -x 1)(x -x 2)=0(x 1,x 2为已知数)的两根为x 1和x 2,将方程化为x 2+px +q =0的形式,即x 2一(x 1+x 2)x + x 1x 2=0,则二次项系数为1,一次项系数为p =-(x 1+x 2),q = x 1x 2. 于是,上述方程两个根的和、积与系数的关系分别有如下关系:x 1+x 2=-p , x 1x 2=q对于一般地一元二次方程ax 2+bx +c =0,二次项系数a 未必是1.根据求根公式,x 1=a ac b b 24-2-+, x 2=aac b b 24-2-- 由此可知,x 1+x 2=-a b , x 1x 2=ac 这表明任何一个一元二次方程的根与系数的关系为:两根之和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.例3(1)若x 1,x 2是一元二次方程x 2—5x +6=0的两个根,则x 1+x 2的值是____(2)一元二次方程x 2—4x -c =0的一个根是3,则另一个根是____,c =___________(3)若方程x 2-3x 一1=0的两根为x 1、x 2,则11x +21x 的值为____ (4)关于x 的一元二次方程x 2一mx +2m -1=0的两个实数根分别是x 1、x 2,且x 12+x 22=7, 则(x 1-x 2)2的值是_____________练习(1)方程x 2—2x -1=0的两个实数根分别为x 1、x 2,(x 1-l )( x 2-1)=______________cz ,设x 1、x 2是方程2x 2—6x +l =o 的两个实数根,则(x 1-21x )( x 2-11x )的值为__________ 【总结】1、用韦达定理,常见的恒等变形有:11x +21x =2121x x x x +,x 12+x 22=(x 1+x 2)2-2x 1x 2,(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 21x x -=212214)(x x x x -+x 13 +x 23=(x 1 +x 2)(x 12+x 22-x 1x 2)=(x 1+x 2)3-3x 1x 2(x 1+x 2)2、韦达定理只有在两根存在的情况下才成立,故使用韦达定理的前提条件是b 2—4ac ≥0例4已知x 1,x 2是方程x 2—3x +l =0的两个实数根,则x 12+x 22=________________(x 1-2)(x 2-2)=______________;x 12+x 1·x 2+x 22=_____________,12x x +21x x =_________ x 1-x 2=__________, x 12-x 22=________;11x -21x =__________;12x x -21x x =___________练习已知x 1,x 2是方程2x 2—3x -5 =0的两个根,求下列代数式的值:x 12+x 22=__________,12x x +21x x =_________; 21x x -=___________ x 12-x 22=________;12x x -21x x =___________,x 12+3x 22-3x 2=_________________例5已知关于x 的方程x 2—2(k -l )x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围.(2) 若x l +x 2 =1-x 1x 2,求k 的值.练习关于x 的方程x 2+2(a -l )x +a 2 -7a -4=0的两根为x 1. x 2,且x 1x 2 -3x l -3x 2 +2=0,求a 的值例6关于一元二次方程x 2 +2x +k +l =0的实数解是x l 和x 2.(1)求k 的取值范围;(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值.练习己知关于x 的方程x 2 +2(m +2)x +m 2 -5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.例7己知△ABC 的两边AB 、AC 的长是关于x 的一元二次方程x 2 -(2k +3)x +k 2 +3k +2=0的两个实数根,第三边BC 的长是5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形;(2)k 为何值时,△ABC 是等腰三角形,并求△ABC 的周长.练习在等腰△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x 2+mx +2-21m =0的两个实数根,求△ABC 的周长. 课后作业A 基础巩固1.已知x =l 是方程x 2+bx -2=0的一个根,则方程的另一个根是( )A .1B .2C .-2D .-12. 已知一元二次方程x 2—4x +3=0两根为x 1,x 2,则x 1·x 2=( )A .4B .3C .-4D .-3 3. 己知关于x 的一元二次方程(1-2k )x 2—21+k x -1=0有两个不相等的实数根,则k 的取值范围是____.4. 关于x 的方程kx 2 +(l -k )x -l =0有两个不等实根,则k 的取值范围是____________.5. 关于x 的方程kx 2+(l -k )x -l =0有实根,则k 的取值范围是_______________6. 求证:不论m 为何值时,关于x 的方程x 2一2mx -2m -4=0总有两个不相等的实根.7. 如果一直角三角形的三边长分别为a ,b ,c ,b 为斜边,求证:关于x 的方程a (x 2 -1)一2cx +b (x 2 +1)=0有两个相等的实数根8. 己知x 1,x 2是方程x 2-5x +2=0的两个实数根,则x 12+x 22=________________(x 1-2)(x 2-2)=______________;x 12+x 1·x 2+x 22=_____________,12x x +21x x =_________ x 1-x 2=__________, x 12-x 22=________;11x -21x =__________;12x x -21x x =___________B 综合训练 9. (2015年汉阳区九上期中)己知关于x 的方程x 2—2(k -l )x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2) 若x 1+x 2=1- x 1x 2,求k 的值.10.已知关于x 的一元二次方程mx 2—2x +l =0.(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且x 1x 2一x 1一x 2=21,求m 的值 111.己知,关于x 的方程x 2一kx +k -1=0(1)求证:无论k 取何值,方程总有两实数根(2)若等腰△ABC 的一边长为2,另两边为这个方程的两个根,求△ABC 的周长数学故事“石头剪刀布”或能揭示演化策略“石头剪刀布”是游戏中解决争端的常用方式,每人各出剪刀、石头、布中的一种,通过石头砸剪刀、剪刀剪布、布包住石头的规则,可以在两人甚至多人中决出胜负.不过,科学家发现,大自然也用自己的方式玩着类似“石头剪刀布”这样的游戏,数学家和生物学家利用这种方式研究了从人类社会到培养皿中的细菌的各种现象.如今,研究者又发现,当玩家不断改变策略时,三种武器的使用频率会轮流上升与下降,呈现出一种固定的模式.这一发现或许可以帮助我们理解生物在生存之争中是如何维持竞争策略的.一旦应用到生物中来,石头剪刀布就不仅仅是两个小孩子的游戏,而变成多玩家之间的复杂关系了.比方说,某些蜥蜴用来赢得伴侣的策略就有三种:侵略、合作与欺骗,这三种策略就和石头剪刀布一样,有着环状的胜负关系(侵略战胜合作,欺骗战胜侵略,合作战胜欺骗),而对于蜥蜴来说,成功繁衍后代就意味着赢得游戏,在生物的“石头剪刀布”游戏中,通常是大的种群中随机产生一对玩家开始比拼,每个玩家通常都保持一种固定的策略一一即对每一个对手都出同样的姿势(石头、剪刀或者布).每次对决之后,赢家就增加一个(对应着繁衍后代),使用同样的策略,而输家则消失.对这种模型进行仔细的数学研究以后发现,出石头、剪刀和布的玩家会随着时间波动.随着初始情况中每种策略所占比例不同,整个群体的情况会分别演变成不同的长期行为,比如用石头、剪刀、布的个体各占三分之一,或者一种策略大幅减少另两种上升,过一段时间又反过来,呈现剧烈的周期波动.受到计算机模拟的启发,康奈尔大学的两位数学家Steven Strogatz 和Danielle Toupo 决定研究一下如果玩家中途改变策略会发生什么.“我觉得这个想法很吸引人,就想找到一种最简洁的数学模型来描述它,”Strogatz 说.他们试图回到最基础的原理,寻找纯粹的公式,而非复杂的计算机模拟.Strogatz 和Toupo 修正了“石头剪刀布”方程,允许一些“突变子女”存在,它们所采用的策略和亲代不同.此前的研究者也研究了突变,但一直假设突变是对称的,即每种策略变成其他策略的几率相同,但Strogatz 和To upo 考虑到了其他的模式,比如出石头的玩家可能会生下出布的子女,但反过来则不尽然.每种突变最终都会导致一种循环,即出石头、剪刀和布的玩家数都各自不停地上下波动,循环不息.而更令人惊讶的是,他们还证明哪怕突变率极低甚至接近于0,整个游戏还是会进入这种循环模式,论文发表于本月的《物理评论E 》(Physical ReviewE )中,只是增加了一点点突变的因素,游戏结果就不再是三种各占三分之一的稳定态或是剧烈波动态了, “我认为该研究最吸引入的一点是,这种‘游戏’在自然界中真的存在,”加州大学圣克鲁兹分校的生态学家BarrySinervo 说,他没有参与这项工作,“哪怕你不是数学家,也会欣赏这一研究.”Sinervo-直在研究加州一种侧斑鬣蜥,该蜥蜴的种群行为也会进入像“石头剪刀布”一样的振荡状态.Sinervo和同事通过野外的长期观察发现,采取侵略、合作和欺骗三种策略的蜥蜴数目有一个6年的变化周期,每一代新的蜥蜴诞生时,主导策略都会变化.Strogatz和Toupo的新研究为Sinervo的工作提供了数学模型,来解释了这种变化周期,“对我来说,这篇论文的有趣之处就在这里.”Sinervo说,由于数学方面的限制,康奈尔大学的研究者还不能证明他们的发现适用于所有的突变模式,但Strogatz说他们预测会如此.研究更广泛的突变模式也可以更进一步地提供数学基础,帮助我们解释自然界这个大剧场里物种策略的兴衰变迁.。

根的判别式与韦达定理

根的判别式与韦达定理

一元二次方程根与系数的关系应用例析及训练对于一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,其求根公式为:aacb b x 24221-±-=、;当0≥∆时,设一元二次方程的两根为21x x 、,有:a b x x -=+21,acx x =⋅21;根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当a b x x -=+21,ac x x =⋅21时,那么21x x 、则是方程)0(02≠=++a c bx ax 的两根。

一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。

学习中,除了要求熟记一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程)0(02≠=++a c bx ax 的两个根21x x 、,进而分解因式,即))((212x x x x a c bx ax --=++。

下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。

一、根据判别式,讨论一元二次方程的根。

例1:已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a 的取值范围中筛选符合条件的a 的整数值。

解: ?说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定a 的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出a ,这是解答本题的基本技巧。

二、判别一元二次方程两根的符号。

例2:不解方程,判别方程07322=-+x x 两根的符号 。

判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中021<⋅x x ,所以可判定方程的根为一正一负;倘若021>⋅x x ,仍需考虑21x x +的正负,倘若021>+x x ,则方程有两个正数根;倘若021<+x x ,则方程有两个负数根。

例谈“根的判别式”的用法

例谈“根的判别式”的用法

例谈“根的判别式”的用法作者:李恩义来源:《甘肃教育》2014年第12期〔关键词〕数学教学;根的判别式;求根公式;韦达定理;二次三项式〔中图分类号〕 G633.6〔文献标识码〕 C〔文章编号〕 1004—0463(2014)12—0092—01在学习一元二次方程、二次函数以及二次不等式时,一元二次方程ax2+bx+c=0(a≠0)根的判别式?驻=b2-4ac,无时不在,无处不有.正确理解“?驻”的真实含义,熟练掌握其用法,不仅对解决相关问题有所帮助,而且对学生进一步弄清这几部分知识间的相互关系十分必要.一、应用求根公式时,不能忽视“?驻”例1解关于x的一元二次方程(m-1)x2+2mx+(m+3)=0这类问题最容易出错的是不讨论“?驻”的情况,就用公式法解.其正确的解法为:解:?驻=(2m)2-4(m-1)(m+3)=-4(2m-3)(1)当m≤■且m≠1时,?驻≥0,原方程有两个实数根,x=■.(2)当m>■时,?驻<0,原方程没有实数根.二、应用韦达定理时,要注意“?驻”1.一元二次方程有实根,必须有?驻≥0.例2k为何值时,方程2x2+kx-2k+1=0的两个实数根的平方和等于■?解:设α、β是方程的两个实数根,由题意得?驻=k2-4×2(1-2k)≥0①α+β=-■②αβ=■ ③α2+β2=■④由②③④得α2+β2=(α+β)2-2αβ=(-■)2-2×■=■解得:k1=-11,k2=3.把k1=-11和k2=3分别代人①,可知k1=-11不满足.因此,k的值是3.2.a、c异号或两根异号隐含着“?驻>0”.对于方程ax2+bx+c=0(a≠0)来说,若■<0,则必有?驻=b2-4ac>0成立.因此,解题时,只考虑■>0即可.两根异号可得到a,c异号,进一步可得?驻>0.在这两种情况下,不必重复列出?驻>0的条件.三、二次三项式 ax2+bx+c是完全平方式的充要条件为“?驻=0”设ax2+bx+c=0,由于a≠0,故配方有(x+■)2=■显然?驻=0,则方程有两个相等的实数根,ax2+bx+c是一个完全平方式;反之,ax2+bx+c是完全平式,方程有两个相等的实数根,则?驻=0.例3已知多项式2x2+2(a-c)x+(a-b)2+(b-c)2是一个完全平方式,求证:a+c=2b.证明:∵关于x的一元二次方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有两个相等的实数根,故?驻=0,即[2(a-c)]2-4×2×[(a-b)2+(b-c)2]=0整理得a2+4b2+c2-4ab-4bc+2ac=0,即(a-2b+c)2=0∴a-2b+c=0,故有a+c=2b成立.四、二次函数的图象和x轴的交点数与“?驻”相关抛物线y=ax2+bx+c与x轴的交点数与一元二次方程ax2+bx+c=0的根的个数一致.例4求证:抛物线y=x2+(k+3)x+2k-k2与x轴总有两个交点.证明:由方程y=x2+(k+3)x+(2k-k2)=0,得?驻=(k+3)2-4(2k-k2)=5k2-2k+9=5(k-■)2+■,∵无论k取何实数值(k-■)2≥0,∴?驻=5(k-■)2+■>0,∴抛物线y=x2+(k+3)x+2k-k2与x轴总有两个交点. 编辑:谢颖丽。

复习根的判别式与韦达定理

复习根的判别式与韦达定理

一元二次方程根的判别式和根与系数关系复习课教学目标(一)提高学生对于根的判别式的运用能力;(二)提高学生对于根与系数关系的运用能力• 教学重点和难点重点:会用根的判别式及根与系数关系解题•难点:根的判别式和根与系数关系的综合题;不遗漏、不重复地列出所解问题应具备的条件•特别是容易忽略隐含条件•教学设计过程(一)复习1•已知一元二次方程ax 2+bx+c=0 (a 丰 0).(1)它的根的判别式是什么?用什么记号表示根的判别式?(b2-4ac,用△表示)(2)叙述一元二次方程根的判别式的性质•(一元二次方程 ax2+bx+c=0 (a 丰 0)当厶> 0时,有两个不相等的实数根;当厶 =0时,有两个相等的实数根;当△<0时, 没有实数根•反过来也成立,即有两个不相等的实数根时,△>0,有两个相等的实数根时,△=0 ;没有实数根时,△<0)2.(1)已知x1,x2是一元二次方程 ax2+bx+c=0(a丰0)的两个根,那么 x1+x2=?,x1 x2=?(2)上述性质的逆命题怎样叙述?此逆命题是否成立?I如果口工①一牛一;t二次方律西两帳之杓沟-—,两根之机为丄,那艺这^一无二吹计①afli Kj'十虹十亡匸0仃吝0)此邊命題赴戒豆的}3•对于根的判别式和根与系数关系的性质,我们从正、反两方面 (即原命题与逆命题)都知道了,并初步做了有关练习,但涉及这两个性质的综合性较强的问题,还需要训练•(二)综合举例例1当m分别满足什么条件时,方程2x2-(4m+1)x +2m2-1=0,(1)有两个相等实根;(2)有两个不相实根;(3)无实根;(4)有两个实根•2 2解:= (4m+1 -4 X 2X(2m2-1 ) =8m+9(1)当厶=8m+9=0即m=--时,方程有两个相等的实根;8(2)当厶=8m+>0,即m>-9时,方程有两个不等的实根;8(3)当厶=8m+9< 0,即m< - 9时,方程没有实根•8例2求证:关于x的方程x2+(m+2)x+2m-仁0有两个不相等的实数根。

根的判别式及韦达定理的综合运用

根的判别式及韦达定理的综合运用

根的判别式及韦达定理的综合运用
胡怀志
【期刊名称】《现代中学生:初中学习版》
【年(卷),期】2005(000)004
【摘要】一元二次方程根的判别式及韦定理应用广泛,在中学数学中占有重要的地位,综合运用这两个内容的试题在中考和竞赛中频频出现,现举例说明。

【总页数】1页(P22)
【作者】胡怀志
【作者单位】江苏
【正文语种】中文
【中图分类】G633
【相关文献】
1.巧用韦达定理和判别式解题 [J], 施慧林;
2.例说用韦达定理解题不可忽视根的判别式 [J], 王佩其
3.课时35 小专题3——元二次方程根的判别式及韦达定理 [J],
4.应用一元二次方程根的判别式及韦达定理错解辨析 [J], 方达
5.关于一元二次方程根的判别式与韦达定理的结合运用 [J], 章锦英
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与根的判别式、韦达定理
讲点1:公共点问题
【例1】如图,抛物线y =-x 2+4x -3的顶点为M ,直线y =-2x -9与y 轴交于点C ,与直线MO 交于点D ,现将抛物线的顶点在直线OD 上平移,平移后的抛物线与射线CD (含顶点C )只有一个公共点,求它的顶点横坐标的值或取值范围.
C
O D
M y
x
【练】如图,已知抛物线y =-x 2
+2x +8与x 轴交于点A,B 两点,与y 轴交于点C ,点D 为抛物线的顶点,直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
F
D C
E A B O y x
讲点2:距离问题
【例2】如图,抛物线y =a(x -1)2+4与x 轴交于A,B 两点,与y 轴交于点C ,点D 是抛物线的顶点,已知CD =2,在抛物线上共有三个点到直线BC 的距离为m ,求m 的值.
C
D B
A
O
y
x
【练】如图,抛物线y =ax 2
-6ax +5a 与x 轴交于A,B 两点(A 左,B 右),若抛物线与直线y =2x 的最近点之间的距离为
25
5
,求a 的值. y
x
O B A
讲点3:隐藏判别式
【例3】如图,点P 是直线l :y =-2x -2上的点,过点P 的另一条直线m 交抛物线y =x 2与A,B 两点,试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立.
P
B
A
O y
x
【练】如图,已知二次函数y =a(x 2-6x +8)(a >0)的图象与x 轴分别交于点A,B ,与y 轴交于点C ,点D 是抛物线的顶点.当点P 在抛物线对称轴上时,设点P 的纵坐标t 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA,PB,PC,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.
C
P
D
B A
O y x
讲点4:交点间的距离
【例4】已知二次函数y =x 2-2mx +m 2+m 的图象与函数y =kx +1的图象交于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点.
(1)如图1,当k =1,m 取不同值时,猜想AB 的长是否不变?并证明你的猜想;
A B
x
O
y
(2)如图2,当m =0,k 取不同值时,猜想△AOB 的形状,并证明你的猜想.
B
A
y
O
x
【例5】如图,抛物线y =x 2-4x +5与y 轴交于点C ,过点N (1,2)作直线l ,交抛物线于点P ,交y 轴于点E ,连接PC ,若PE =PC ,求直线l 的解析式.
l
E P C
N O
y x
【练】如图,抛物线C 1:y =x 2+4x +3交x 轴于A,B 两点,交y 轴于点C ,将抛物线C 1沿y 轴翻折得新抛物线C 2,过点C 作直线l 交抛物线C 1于点M ,交抛物线C 2于点N ,若MN =82,求直线l 的解析式.
A B x
y
O C
三、对称问题
【例6】如图,已知抛物线y =x 2-2x -3,直线y =kx -1与抛物线交于P,Q 两点,且y 轴平分线段PQ ,求k 的值.
Q
P
O y x
【练】如图,已知抛物线y =x 2-4x +3,过点D (0,-5
2
)的直线与抛物线交于点M,N ,与x 轴交于点E ,且点M,N 关于点E 对称,求直线MN 的解析式.
y
x
N
E
M
D O
四、与面积结合
【例7】如图,抛物线y =x 2-4x +5顶点为M ,平移直线y =x 交抛物线于点H,K ,若S △MHK =3,求平移后直线的解析式.
x
y
O
M H
K
【课后反馈】
1.如图,已知抛物线y =x 2-2x -3与x 轴交于A,B 两点,与y 轴交于点C ,将抛物线沿对称轴向上平移k 个单位长度后与线段BC 交于D,E 两个不同的点,求k 的取值范围.
E C D
B A O y
x
2.如图,抛物线y =ax 2-6ax +5a 与x 轴交于A,B 两点(A 左,B 右),若抛物线不通过直线y =2x 上方的点,求抛物线顶点纵坐标的取值范围.
y
x
O B A
3.如图,抛物线y =
14x 2+3
2
x +2与x 轴交于A,B 两点(点A 在点B 的左边),与y 轴交于点C ,将抛物线沿直线BC 平移,与射线AC (含点A )仅有一个公共点,求抛物线顶点横坐标的值或取值范围.
C
B
A
O
y
x
4.如图,已知抛物线C :y =x 2-2x +4和直线l :y =-2x +8,直线y =kx (k >0)与抛物线C 交于A,B 两点,与直线l 交于点P ,分别过A,B,P 作x 轴的垂线,垂足依次为A 1、B 1、P 1,若11OA +11OB =1
u OP ,求u 的值.
A 1
B 1
P 1B A
P O y
x
5.如图1,抛物线C 1:y =x 2+4x +3顶点为M ,抛物线C 2与抛物线C 1开口方向相反,形状相同,顶点为N ,且M,N 关于点P (0,2)对称. (1)求抛物线C 2的解析式;
N M
P
O
y
x
(2)直线y =m 交抛物线C 1于点A,B ,交抛物线C 2于点C,D ,若AB =2CD ,求m 的值;
D
C
B A
N
M
O
y
x。

相关文档
最新文档