(完整)七年级数学专题规律探究题
七年级数学下学期末复习题(规律探究)与答案解析
一、数的规律1、观察一列有规律的数:4,8,16,32,…,它的第2010个数是( )A . 22009B . 22009=1C . 22010D .220112、观察下列等式:122=,224=,328=,4216=,5232=,6264=,72128=,…….通过观察,用你所发现的规律确定20062的个位数字是 .当输入数据是时,输出的数是( ) A.861B.865C.867D.8694、请你认真观察和分析图中数字变化的规律,由此得到图中所缺的数字应为( ) A.32 B.29 C.25 D.235、按一定规律排列的一列数依次为23,58,1015,1724,2635,,按此规律排列下去,这列数的第n 个数是(n 是正整数).6、观察规律并填空:111123248,,,…,第5个数是 ,第n 个数是 . 7、我们把分子为1的分数叫做单位分数.如111234,,,…,任何一个单位分数都可以拆分成两个不同单位分数的和,如11111111123634124520=+=+=+,,,…(1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数; (2)进一步思考,单位分数1n(n 是不小于2的正整数)11=+△☆,请写出△,☆所表示的式子,并加以验证.二、式的规律1、观察下面的单项式:a ,22a -,34a ,48a -,.根据你发现的规律,第8个式子是 .2、观察下列单项式:x , -3x 2, 5x 3, -7x 4, 9x 5,…按此规律,可以得到第2010个单项式是______,第n 个单项式怎样表示________.3、观察下列一串单项式的特点:xy ,y x 22- ,y x 34 ,y x 48- ,y x 516 ,… 按此规律第9个单项式是______,第n 个单项式是______,它的系数是_____,次数是_ _.三、等式的规律1、观察下列等式:第1行 341=-第2行 594=-第3行 7169=- 第4行 92516=- … …按照上述规律,第n 行的等式为 .2、观察下列各式:21321⨯=- 22431⨯=-23541⨯=- 24651⨯=-…………请你根据发现的规律,写出第n 个等式: .3、已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,…,若299a a b b+=⨯(a b ,为正整数),则ab = . 4、观察下列等式:22(12)4114+-⨯=+ 22(22)4224+-⨯=+ 22(32)4334+-⨯=+ …则第n 个等式可以表示为 .5、观察算式:211=; 21342+==; 213593++==;21357164+++==; 213579255++++==;……用代数式表示这个规律(n 为正整数):13579(21)n ++++++-= .6、观察下列各式:22151(11)1005225=⨯+⨯+=, 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=, ……依此规律,第n 个等式(n 为正整数)为 .7、观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:(2)通过猜想,写出与第n 个图形相对应的等式_______________________. 8、观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+ .(2)直接写出下列各式的计算结果: ①111112233420062007++++=⨯⨯⨯⨯ ;②1111122334(1)n n ++++=⨯⨯⨯+ .四、图形的规律1、用M ,N ,P ,Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.图-1—图-4是由M,N,P,Q 中的两种图形组合而成的(组合用“&”表示).M&P N&P N&Q M&Q 图-1图-2 图-3 图-4 ①401413⨯+=⨯-; ②411423⨯+=⨯-;421433⨯+=⨯-;③④ ⑤ _________________; _________________;那么,下列组合图形中,表示P&Q 的是( )2、如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .3、用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,,则搭n 条小鱼需要 根火柴棒.(用含n 的代数式表示)4、按如下规律摆放三角形:则第(4)堆三角形的个数为 ;第(n )堆三角形的个数为 .5、将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第n 个图形中,其有 个六边形.参考答案:一、数的规律1、C2、43、B4、B…… 图① 图② 图③ 图④3()2()1()… 图① 图② 图③A .B .C .D .5、nn n 2122++ 6、3215,n n 21+ 7、(1)6,30;(2)1+n ,)1(+n n二、式的规律1、8128a - 2、20104019x -,n n x n )12()1(1--+ 3、y x 9256,y x n n n 112)1(-+-三、等式的规律1、22)1(12n n n -+=+2、1)1()2(2-+=+n n n3、7204、44)2(22+=-+n n n5、2n 6、225100)1()510(+⨯+=+n n n 7、(1)344134-⨯=+⨯,354144-⨯=+⨯; (2)341)1(4-=+-n n8、(1)1+n n ;(2)①20072006,②1+n n四、图形的规律1、B2、25+n3、26+n4、(1)14, (2)23+n5、23-n。
七年级数学下册 专题训练:平面直角坐标系中点的规律探究(精选30题)(解析版)
七年级下册数学《第七章平面直角坐标系》专题:平面直角坐标系中点的规律探究一、选择题(共10题)1.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2022=505×4+2即可得出点A2022的坐标.【解答】解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(506,1011).故选:D.【点评】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律是解题的关键.2.(2022秋•古田县期中)在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+…+x2017的值为()A.2016B.2017C.﹣2016D.2015【分析】根据给定的平移规律,可得x1=1,x2=﹣1,x3=﹣1,x4=3,进一步可得x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,再根据2017÷4=504...1,进一步计算即可.【解答】解:根据题意,可得x1=1,x2=﹣1,x3=﹣1,x4=3,∴x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,∵2017÷4=504...1,∴x2017=2×504+1=1009,∴x1+x2+…+x2017=504×2+1009=2017,故选:B.【点评】本题考查了坐标与平移,找出点坐标之间的规律是解题的关键.3.(2022秋•李沧区期末)如图,在平面直角坐标系中,A1(1,﹣2),A2(2,0),A3(3,2),A4(4,0),…根据这个规律,点A2023的坐标是()A.(2022,0)B.(2023,0)C.(2023,2)D.(2023,﹣2)【分析】由图形得出点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,继而求得答案.【解答】解:观察图形可知,点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,2023÷4=505……3,所以点A2023坐标是(2023,2).故选:C.【点评】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解题的关键是根据图形得出规律.4.(2021春•浉河区期末)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2021次跳动至点A2021的坐标是()A.(﹣1009,1009)B.(﹣1010,1010)C.(﹣1011,1011)D.(﹣1012,1012)【分析】根据点的坐标、坐标的平移寻找规律即可求解.【解答】解:因为A1(﹣1,1),A2(2,1),A3(﹣2,2),A4(3,2),A5(﹣3,3),A6(4,3),A7(﹣4,4),A8(5,4),…A2n﹣1(﹣n,n),A2n(n+1,n)(n为正整数),所以2n﹣1=2021,n=1011,所以A2020(﹣1011,1011),故选:C.【点评】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.5.(2021秋•九江期末)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙都从点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,0)D.(﹣1,﹣1)【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【解答】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒,则两个物体每次相遇时间间隔为121+2=4秒,则两个物体相遇点依次为(﹣1,1)、(﹣1,﹣1)、(2,0),∵2022=3×673…3,∴第2022次两个物体相遇位置为(2,0),故选:A.【点评】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.6.(2022春•启东市期中)如图,在平面直角坐标系xOy中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8)…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2020+a2021+a2022的值为()A.2021B.2022C.1011D.1012【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【解答】解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),……,即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a2021=﹣505,2023÷4=505……3,∴a2022=506,故a2020+a2021+a2022=1012,故选:D.【点评】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.7.(2022•浉河区校级开学)如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为()A.(﹣1012,−20232)B.(﹣1011,20232)C.(﹣1011,−20232)D.(﹣1012,−20212)【分析】根据题意得点∁n的位置按4次一周期的规律循环出现,可求得点C2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n的位置按4次一周期的规律循环出现,∵2022÷4=505……2,∴点C2022在第二象限,∵位于第二象限内的点C2的坐标为(﹣1,32),点C6的坐标为(﹣3,72),点C10的坐标为(﹣5,112),……∴点∁n的坐标为(−2,r12),∴当n=2022时,−2=−20222=−1011,r12=2022+12=20232,∴点C2022的坐标为(﹣1011,20232),故选:B.【点评】此题考查了点的坐标方面规律性问题的解决能力,关键是能根据题意确定出该点的出现规律.8.(2022春•冷水滩区校级期中)如图,已知A1(1,2)A2(2,2)A3(3,0)A4(4,﹣2)A5(5,﹣2)A6(6,0)……,按这样的规律,则点A2021的坐标为()A.(2021,2)B.(2020,2)C.(2021,﹣2)D.2020,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解答】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故选:C.【点评】本题考查了平面直角坐标系中的点的规律问题,发现题中的规律并正确计算出点A2021所处的循环组是解题的关键.9.(2022春•宣化区期末)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2021,﹣1)C.(2022,1)D.(2022,0)【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:12×2×1=,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,∴点P1秒走12个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2022÷4=505余2,∴P的坐标是(2022,0),故选:D.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0)B.(14,﹣1)C.(14,1)D.(14,2)【分析】观察图形可知,横坐标相等的点的个数与横坐标相同,根据求和公式求出第100个点的横坐标以及在这一横坐标中的所有点中的序数,再根据横坐标是奇数时从上向下排列,横坐标是偶数时从下向上排列,然后解答即可.【解答】解:由图可知,横坐标是1的点共有1个,横坐标是2的点共有2个,横坐标是3的点共有3个,横坐标是4的点共有4个,…,横坐标是n的点共有n个,1+2+3+…+n=or1)2,当n=13时,13×(13+1)2=91,当n=14时,14×(14+1)2=105,所以,第100个点的横坐标是14,∵100﹣91=9,∴第100个点是横坐标为14的点中的第9个点,∵第142=7个点的纵坐标是0,∴第9个点的纵坐标是2,∴第100个点的坐标是(14,2).故选:D.【点评】本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.二、填空题(共10题)11.(2022春•东洲区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是.A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)【分析】观察图形可知:每4次运动为一个循环,并且每一个循环向左运动4个单位,用2022÷4可判断出第2022次运动时,点P在第几个循环第几次运动中,进一步即可计算出坐标.【解答】解:动点P的运动规律可以看作每运动四次为一个循环,每个循环向左运动4个单位,∵2022÷4=505……2,∴第2022次运动时,点P在第506次循环的第2次运动上,∴横坐标为﹣(505×4+2)=﹣2022,纵坐标为0,∴此时P(﹣2022,0).故答案为:(﹣2022,0).【点评】本题考查规律型:点坐标,解答时注意探究点的运动规律,又要注意动点的坐标的象限符号.12.(2022秋•肃州区校级期末)如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2022的坐标是.【分析】根据题意可以发现规律:A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n ﹣1),A4n+3(﹣n﹣1,﹣n﹣1),根据规律求解即可.【解答】解:根据题意可以发现规律:A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),A6(2,﹣2),A7(﹣2,﹣2),A8(﹣2,2),…,∴A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n﹣1),A4n+3(﹣n﹣1,﹣n﹣1),∵2022=4×505+2,∴点A2022的坐标为(506,﹣506),故答案为:(506,﹣506).【点评】本题主要考查规律性:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.13.(2021秋•同安区期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),由2021是奇数,且2021=2n﹣1,则可求A2n﹣1(3032,1010).【解答】解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,(3032,1010),∴A2n﹣1故答案为(3032,1010).【点评】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.14.(2022•嘉峪关一模)如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),……按这样的运动规律,动点P第2022次运动到的点的坐标是.【分析】根据图形分析点P的运动规律:第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,即可得到答案.【解答】解:∵第1次运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),…,∴第n次运动到的点的横坐标为n,纵坐标每四次一个循环,从第一次运动到的纵坐标开始,分别为0、﹣2、0、1、…,∵2022÷4=505⋯2,∴动点P第2022次运动到的点的坐标是(2022,﹣2),故答案为:(2022,﹣2).【点评】此题考查了图形坐标的规律,正确理解图形运动坐标变化规律,得到点P的坐标是解题的关键.15.(2022秋•涡阳县校级月考)如图,一动点在第一象限内及x轴,y轴上运动,第一分钟,它从原点运动到(1,0),第二分钟,从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,每分钟运动1个单位长度.第30分钟,动点所在的位置的坐标是.【分析】根据移动次数与点的坐标的所呈现的规律进行计算即可.【解答】解:根据移动的方向,距离所呈现的规律可得,当移动到点(1,0)时,对应的移动次数为1次,当移动到点(2,0)时,对应的移动次数为4+2×2=8次,当移动到点(3,0)时,对应的移动次数为8+1=9次,当移动到点(4,0)时,对应的移动次数为9+3×2+1+4×2=24次,当移动到点(5,0)时,对应的移动次数为24+1=25次,所以移动30次,所对应的点的坐标为(5,5),故答案为:(5,5).【点评】本题考查点的坐标,发现移动次数与点的坐标所呈现的规律是正确解答的关键.16.(2022•绥化三模)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,点P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2),…,根据这个规律,点P2022的坐标为.【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限,被4除余3的点在第一象限的角平分线上,点P2022的在第三象限,且横纵坐标的绝对值=2022÷4的商,纵坐标是2022÷4的商+1,再根据第三项象限内点的符号得出答案即可.【解答】解:∵2022÷4=505…2,∴点P2022在第二象限,∵P6(﹣1,2),P10(﹣2,3),P14(﹣3,4),…,6÷4=1…2,10÷4=2…2,14÷2=3..2,…,∴P2022(﹣505,506).故答案为:(﹣505,506).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.17.(2022秋•杏花岭区校级期中)在平面直角坐标系xOy中,对于点P(x,y),我们把点P1(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,⋯,A n,若点A1的坐标为(3,1),则点A2022的坐标为.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.【解答】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同,为(0,4);故答案为:(0,4).【点评】此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.18.(2022春•长安区校级期中)如图1,弹性小球从点P(0,3)出发,沿图中所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到长方形的边时,记为点P1,第2次碰到长方形的边时,记为点P2,…,第n次碰到长方形的边时,记为点P n,则点P3的坐标是;点P2022的坐标是.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,根据图形知点P3的坐标是(8,3),根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2022÷6=337,当点P第2021次碰到矩形的边时为第337个循环组的第6次反弹,点P的坐标为(0,3),故答案为:(8,3),(0,3).【点评】本题考查了矩形的性质、点的坐标的规律;作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.19.(2022春•五华区校级期中)如图,在直角坐标系中,长方形OABC的长为2,宽为1,将长方形OABC沿x轴翻转1次,点A落在A1处,翻转2次,点A落在A2处,翻转3次,点A落在A3处(点A3与点A2重合),翻转4次,点A落在A4处,以此类推…,若翻转2022次,点A落在A2022处,则A2022的坐标为.【分析】探究规律,利用规律解决问题即可.【解答】解:由题意A1(3,2),A2(A3)(5,0),A4(6,1),•••,发现4次一个循环,∵2022÷4=505.....2,∴A2022的纵坐标与A2相同,横坐标=505×6+5=3035,∴A2022(3035,0),故答案为:(3035,0).【点评】本题考查坐标与图形的变化﹣对称,规律型问题,解题的关键是学会探究规律的方法,属于中考填空题中的压轴题.20.(2022春•江岸区校级月考)如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点.其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第87个点的坐标为,第2022个点的坐标为.【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点的横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束.例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,......,右下角的点的横坐标为9时,共有92=81个,9是奇数,以横坐标为9,纵坐标为0的点结束,故第87个点的坐标为(10,5),右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),∴第2020个点的坐标为(45,3)故答案为:(10,5),(45,3).【点评】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题(共10题)21.(2022秋•无为市月考)在平面直角坐标系中,一个动点A从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4,A6,A12,A14.(2)按此规律移动,n为正整数,则点A4n的坐标为,点A4n+2的坐标为.(3)动点A从点A2022到点A2023的移动方向是.(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.【解答】解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A6(3,1),A12(6,0),A14(7,1);故答案为:(2,0),(3,1),(6,0),(7,1);(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);点A4n+2的坐标为(2n+1,1);故答案为:(2n,0),(2n+1,1);(3)因为每四个点一个循环,所以2023÷4=505…3.所以从点A2022到点A2023的移动方向是向下.故答案为:向下.【点评】本题考查了规律型﹣点的坐标,解决本题的关键是根据点的坐标变化发现规律,总结规律,运用规律.22.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9(、),P12(、),P15(、)(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是(、);(4)指出动点从点P210到点P211的移动方向.【分析】由题意可以知道,动点运动的速度是每次运动一个单位长度,(0,1)→(1,1)→(1,0)→(1,﹣1)……通过观察找到有规律的特殊点,如P3、P6、P9、P12,发现其中规律是脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,明确这个规律即可解决以上所有问题.【解答】解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0),P15(5、0).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0)故答案为(20、0).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定动点移动的数字与方向上的规律,然后再进一步按规律解决要求的点的位置.23.(2021秋•长丰县期末)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2、4、6、8、…,顶点依次用A1、A2、A3、A4、…表示.(1)请直接写出A5、A6、A7、A8的坐标;(2)根据规律,求出A2022的坐标.【分析】(1)看图观察即可直接写出答案;(2)根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n 为自然数)”,依此即可得出结论.【解答】解:(1)A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2);(2)观察发现:A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1),A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2),A9(﹣3,﹣3),…,∴A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数),∵2022=505×4+2,∴A2022(﹣506,506).【点评】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.24.一个质点在第一象限及x轴、y轴移动,在第一秒时,它从原点移动到(0,1),然后按着下列左图中箭头所示方向移动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动1个单位.(1)该质点移动到(1,1)的时间为秒,移动到(2,2)的时间为秒,移动到(3,3)的时间为秒,…,移动到(n,n)的时间为秒.(2)该质点移动到(7,4)的时间为秒.【分析】(1)根据图形可得出质点移动到(1,1),(2,2),(3,3)的时间,根据规律可得出质点移动(n,n)的时间;(2)现有(1)的结论得出(7,7)的时间,再加上3即可得出移动到(7,4)的时间.【解答】解:(1)由图可知移动到(1,1)的时间为2秒,移动到(2,2)的时间为6秒,移动到(3,3)的时间为12秒,根据变化规律可得移动到(n,n)的时间为n(n+1),故答案为:2,6,12,n(n+1);(2)由(1)可得移动到(7,7)的时间为7×8=56,56+3=59,∴移动到(7,4)的时间为59秒,故答案为59.【点评】本题主要考查点的坐标的变化规律,关键是要能找到质点移动到(n,n)的时间的规律.25.(2022•马鞍山一模)如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为,A n的坐标为用含n的代数式表示;(2)若护栏长为2020,则需要小正方形个,大正方形个.【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.【解答】解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3,∴A 3(5+3,2),A n (2+3+3+⋅⋅⋅+3︸(K1)个3,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.【点评】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.26.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变成△OA 2B 2,第三次将△OA 2B 2变成△OA 3B 3,已知A (1,5),A 1(2,5),A 2(4,5),A 3(8,5);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后三角形有何变化,找出规律.按此规律将△OA 3B 3变成△OA 4B 4,则A 4的坐标是,B 4的坐标是.(2)若按第(1)题中找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点的坐标有何变化,找出规律,推测A n 的坐标是,B n 的坐标是.【分析】(1)对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是5,同理B 1,B 2,B n 也一样找规律.(2)根据第一问得出的A 4的坐标和B 4的坐标,再此基础上总结规律即可知A n 的坐标是(2n ,5),B n 的坐标是(2n +1,0).【解答】解:(1)因为A(1,5),A1(2,5),A2(4,5),A3(8,5)…纵坐标不变为5,同时横坐标都和2有关,为2n,那么A4(16,5);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);故答案为:(16,5),(32,0);(2)由上题第一问规律可知A n的纵坐标总为5,横坐标为2n,B n的纵坐标总为0,横坐标为2n+1,∴A n的坐标是(2n,5),B n的坐标是(2n+1,0).故答案为:(2n,5),(2n+1,0).【点评】本题考查了学生观察图形及总结规律的能力,涉及的知识点为:平行于x轴的直线上所有点纵坐标相等,x轴上所有点的纵坐标为0.27.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…∁n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,∁n,D n;(3)请求出四边形A5B5C5D5的面积.【分析】(1)根据点的坐标规律解答即可;(2)根据点的坐标规律解答即可;(3)根据四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5计算即可.【解答】解:(1)A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).(2)A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).(3)∵A5(17,0),B5(0,18),C5(﹣19,0),D5(0,﹣20).∴四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5=12×17×18+12×18×19+12×19×20+12×20×17=684.故答案为:A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).【点评】此题考查点的坐标,关键是根据图形得出点的坐标的规律进行分析.28.(2021春•自贡期末)综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1,P2.探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解答】解:(1)如图:A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB和CD中点P1、P2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为(1+22,1+22).故答案为:(1+22,1+22).(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,32)、(2,52)、(0,3)∴①HG过EF中点(1,32)时,r12=1,r42=32解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,52)时,−1+2=2,2+2=52解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,3+2=0,1+2=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).【点评】本题考查了坐标与图形性质.通过此题,要熟记平面直角坐标系中线段中点的横坐标为对应线段的两个端点的横坐标的平均数,中点的纵坐标为对应线段的两个端点的纵坐标的平均数.29.(2022•包河区二模)如图,在平面直角坐标系中,点A1的坐标为(1,0)、点A2的坐标为(2,0)、点A3的坐标为(3,0)、…,过点A1、A2、A3、…分别作x轴垂线,交直线y=x于点B1、B2、B3、…,△OA1B1覆盖的整点(横、纵坐标均为整数的点)的个数记为P1,面积的值记为S1;△OA2B2覆盖的整点的个数记为P2,面积的值记为S2;△OA3B3覆盖的整点的个数记为P3,面积的值记为S3;…(1)由题意可知:P1=3、S1=12;P2=6、S2=2;P3=10、S3=92;则P4=、S4=;(2)P7﹣S7=;。
数学规律题集锦(七年级专题)
数学规律题集锦(七年级专题)本文档是一份数学规律题集锦,专为七年级学生准备。
以下将介绍一些常见的数学规律题,并提供相应的解答。
希望这些题目能够帮助学生加深对数学规律的理解和运用。
例题1问题:下列数列中的规律是什么?下列数列中的规律是什么?1, 4, 7, 10, 13, ...解答:这个数列中,每一个数都比前一个数增加了3。
因此,规律是每一项都比前一项增加3。
这个数列中,每一个数都比前一个数增加了3。
因此,规律是每一项都比前一项增加3。
例题2问题:下列数列中的规律是什么?下列数列中的规律是什么?2, 4, 8, 16, 32, ...解答:这个数列中,每一项都是前一项的2倍。
因此,规律是每一项都是前一项的2倍。
这个数列中,每一项都是前一项的2倍。
因此,规律是每一项都是前一项的2倍。
例题3问题:下列数列中的规律是什么?下列数列中的规律是什么?1, 3, 6, 10, 15, ...解答:这个数列中,每一项都比前一项增加了一个连续的自然数。
即第1项增加1,第2项增加2,第3项增加3,以此类推。
因此,规律是每一项都比前一项增加一个连续的自然数。
这个数列中,每一项都比前一项增加了一个连续的自然数。
即第1项增加1,第2项增加2,第3项增加3,以此类推。
因此,规律是每一项都比前一项增加一个连续的自然数。
例题4问题:下列数列中的规律是什么?下列数列中的规律是什么?1, 1, 2, 3, 5, 8, ...解答:这个数列中,每一项都是前两项的和。
即第3项等于第1项和第2项的和,第4项等于第2项和第3项的和,以此类推。
因此,规律是每一项都是前两项的和。
这个数列中,每一项都是前两项的和。
即第3项等于第1项和第2项的和,第4项等于第2项和第3项的和,以此类推。
因此,规律是每一项都是前两项的和。
结论数学规律题在学习数学中扮演着重要的角色。
通过解答这些题目,学生们可以培养数学思维和逻辑推理能力。
希望这份题集能够帮助七年级的学生们更好地掌握数学规律的概念,并在解答题目中获得乐趣和成就感。
部编数学七年级下册专题11平面直角坐标系中利用点的坐标变化规律探究问题(解析版)含答案
专题11 平面直角坐标系中利用点的坐标变化规律探究问题(解析版)第一部分典例精析类型一点的运动规律探究(1)沿坐标轴运动的点的坐标规律探究1.(2022•丛台区开学)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…,根据这个规律探索可得,第10个点的坐标为 ,第55个点的坐标为 .思路引领:从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.解:在横坐标上,第一列有一个点,第二列有2个点…第n列有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为(n,n−12)(n,n−12−1)…(n,1−n2);偶数列的坐标为(n,n2)(n,n2−1)…(n,1−n2),由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为(4,2),第55个点的坐标为(10,5),故答案为:(4,2),(10,5).总结提升:本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.2.(2022•麻城市校级模拟)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2022秒时,点P的坐标是 .思路引领:计算P点运动过程中走一个半圆所用的时间,根据规律即可求得第2022秒P点位置.解:由题意可知,点P运动一个半圆所用的时间为:π÷π2=2(秒),∵2022=1011×2,∴2022秒时,P在第1011个半圆的最末尾处,∴点P的坐标为(2022,0).故答案为:(2022,0).总结提升:本题主要考查的是坐标系中的规律探究问题,找出运动规律的同时也要考虑坐标系位置是解题的关键.3.(2021春•洛龙区期中)在平面直角坐标系中,一只蚂蚁从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2021的坐标是( )A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)思路引领:观察图形可知,A4,A8,…都在x轴上,求出OA4,OA8,…OA4n的长度,然后写出坐标即可;根据以上规律写出点A4n的坐标即可求出点A2020的坐标,则A2021点的坐标即可求出.解:由图可知,A4,A8,…都在x轴上,蚂蚁每次移动1个单位,∴OA4=2,OA8=4,…OA4n=2n,∴点A4n的坐标为(2n,0),∴点A2020的坐标为(1010,0),∴A2021(1010,1),故选:B.总结提升:本题主要考查了点的变化规律,仔细观察图形,确定出点A 4n 都在x 轴上是解题的关键.(2)绕定点呈“回”字形运动的点的坐标变化规律4.如图是一回形图,其回形通道的宽和OB 的长均为1, 回形线与射线OA 交于A 1,A 2,A 3,….若从O点到A 1点的回形线为第1圈(长为7),从A 1点到A 2点的回形线为第2圈,…,依此类推.则第10圈的长为 .思路引领:如图,以点O 为原心,建立平面直角坐标系,则A 1,A 2,A 3,…的坐标分别为(-1,0),(-2,0),(-3,0),…,A 10的坐标为(-10,0),然后大致描出第10圈的形状,很轻松求出第10圈的长.解:观察图形发现:第一圈的长是2(1+2)+1=7;第二圈的长是2(3+4)+1=15;第三圈的长是2(5+6)+1=23;则第n 圈的长是2(2n-1+2n )+1=8n-1.当n=10时,原式=80-1=79.故答案为79.题眼直击:坐标表示图形,规律探究.总结提升:依次计算第一圈长,第二圈长,……,探究这几个数的一般规律性,然后应用规律求出第10圈.5.(2022•金凤区校级二模)如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2022的坐标为 .思路引领:根据题意可得到规律,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),再根据规律求解即可.解:根据题意可得到规律,P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),P7(2,﹣2),P8(2,2),P12(3,3),P16(4,4),...,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),∵2022=4×505+2,∴P2022(﹣506,﹣506),故答案为:(﹣506,﹣506).总结提升:本题主要考查规律型:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.类型二图形变换的点的坐标规律探究6.(2018春•兴城市期末)如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1换成三角形OA2B2,第三次将三角形OA2B2换成三角形OA3B3,……,若A(﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8),点B(0,2),B1(0,4),B2(0,6),B3(0,8),按这样的规律,将三角形OAB进行2018次变换,得到三角形OA2018B2018,则A2018的坐标是 .思路引领:探究规律后利用规律即可解决问题;解:∵A 1(﹣3,2),A 2 (﹣3,4),A 3(﹣3,8);∴A 点横坐标为﹣3,纵坐标依次为:2,22,23,…得出:A n (﹣3,2n ),∴n =2018时,A 2018(﹣3,22018),故答案为(﹣3,22018)总结提升:此题主要考查了规律型:点的坐标,根据题意得出A ,B 点横纵坐标变化规律是解题关键.7.12.如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1第二次将OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)求三角形OAB 的面积;(2)写出三角形OA 4B 4的各个顶点的坐标;(3)按此图形变化规律,你能写出三角形OA n B n 的面积与三角形OAB 的面积的大小关系吗?解:(1)S 三角形OAB =12×2×3=3;(2)根据图示知O 的坐标是(0,0);已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),对于A 1,A 2…A n 坐标找规律比较从而发现A n 的横坐标为2n ,而纵坐标都是3;同理B 1,B 2…B n 也一样找规律,规律为B n 的横坐标为2n +1,纵坐标为0.由上规律可知:A 4的坐标是(16,3),B 4的坐标是(32,0);综上所述,O(0,0),A 4(16,3),B 4(32,0);(3)根据规律,后一个三角形的底边是前一个三角形底边的2倍,高相等都是4,所以OB n =2n +1,S 三角形OA n B n =12×2n +1×3=3×2n =2n S 三角形OAB ,即S 三角形A n B n =2n S 三角形OAB 。
七年级数学找规律经典题型
七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。
解析:首先观察这个数列,发现相邻两个数的差值都是2。
第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。
所以可以得出第n个数为2n 1。
例2:观察数列2,4,8,16,32,…,求第n个数。
解析:这个数列中,后一个数都是前一个数的2倍。
第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。
所以第n个数为2^n。
2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。
解析:观察这组数字,发现数字是1和 1交替出现。
当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。
可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。
二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。
解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。
所以搭n个三角形需要2n+1根火柴棒。
例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。
人教版数学七年级上学期专题05 整式中的两种规律探索问题(原卷版+解析版)(人教版)
专题06 整式中的两种规律探索问题类型一、数字类规律探索例.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2019﹣1的值为_____.【变式训练1】a是不为1的有理数,我们把11-a称为a的差倒数,如2的差倒数为1-11-2=,-1的差倒数为111(1)2=--,已知15a=,2a是1a差倒数,3a是2a差倒数,4a是3a差倒数,以此类推……,2021a的值是()A.5B.14-C.43D.45【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2021个数的和是______.【变式训练3】有一列数11315,,,,228432---,…,那么第n个数为______.【变式训练4】杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则()7a b +的展开式中从左起第三项为______.()1a b a b+=+()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++类型二、图形类规律探索例.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n 条直线相交最多有______个交点.【变式训练1】如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第_____个图形共有45个小球.【变式训练2】为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,则n的值为______.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第n层含有正三角形个数为___个.【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为()A.99B.100C.101D.1022.如图,将若干颗棋子按箭头方向依次摆放,记第一颗棋子摆放的位置为第1列第1排,第二颗棋子摆放的位置为第2列第1排,第三颗棋子摆放的位置为第2列第2排……,按此规律摆放在第16列第8排的是第()颗棋子.A.85B.86C.87D.883.将一正方形按如图方式分成n个完全相同的长方形,上、下各横排三个,中间两行各竖排若干个,则n的值为()A.12B.16C.18D.204.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A .9B .10C .11D .125.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.6.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M 的值为________.7.为了求220211222+++⋯+的值,可令220211222S =+++⋯+,则220222222S =++⋯+,因此2022221S S -=-,所以220212022122221+++⋯+=-.按照以上推理计算出1220211333---+++⋯+的值是______.8.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n (n 为正整数)张桌子时,最多可就坐_____人.9.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其⨯-⨯=,中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7136147⨯-⨯=,不难发现,结果都是7.1723162472012年8月(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)换一个月的月历试一下,是否有同样的规律?(3)请你利用整式的运算对以上的规律加以证明.10.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:(3)如果用n表示六边形边上的小圆圈数,m表示这个六边形中小圆圈的总数,那么m和n的关系是什么?11.对任意一个四位正整数m,如果m的百位数字等于个位数字与十位数字之和,m的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“筋斗数”.例如:m =5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m =8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”. (1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m 是“筋斗数”,且m 与13的和能被11整除,求满足条件的所有“筋斗数”m .12.看图填空:如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成面积为18的长方形,如此进行下去……(1)试利用图形揭示的规律计算:1111111112481632641282562n++++++++=_______. 并使用代数方法证明你的结论.(2)请给利用图(2),再设计一个能求:2341111122222n+++++的值的几何图形.专题05 整式中的两种规律探索问题类型一、数字类规律探索例.观察:(x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,据此规律,当(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0时,代数式x 2019﹣1的值为 _____. 【答案】0或﹣2【详解】解:根据题意得∶ (x ﹣1)(x +1)=x 2﹣1, (x ﹣1)(x 2+x +1)=x 3﹣1, (x ﹣1)(x 3+x 2+x +1)=x 4﹣1, ……∶(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1 ∶(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0, ∶x 6﹣1=0,解得:x =1或x =﹣1, 则x 2019﹣1=0或﹣2, 故答案为:0或﹣2.【变式训练1】a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为1-11-2=,-1的差倒数为111(1)2=--,已知15a =,2a 是1a 差倒数,3a 是2a 差倒数,4a 是3a 差倒数,以此类推……,2021a 的值是( ) A .5 B .14-C .43D .45【答案】B【解析】∶15a = , 2a 是1a 的差倒数,∶211154a ==--, ∶3a 是2a 的差倒数,4a 是3a 的差倒数,∶314151-4a ==⎛⎫- ⎪⎝⎭,∶415415a ==-,根据规律可得n a 以5,1-4,45为周期进行循环,因为2021=673×3…2,所以202114a =-. 故选B .【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1, 那么前6个数的和是______, 这2021个数的和是______. 【答案】0 1【解析】由题意得:第3个数是101-=,第4个数是110-=,第5个数是011-=-,第6个数是101--=-, 则前6个数的和是()()0110110++++-+-=, 第7个数是1(1)0---=,第8个数是0(1)1--=, 归纳类推得:这2021个数是按0,1,1,0,1,1--循环往复的,202163365=⨯+,且前6个数的和是0,∴这2021个数的和与前5个数的和相等,即为()011011++++-=,故答案为:0,1.【变式训练3】有一列数11315,,,,228432---,…,那么第n 个数为______. 【答案】()12nnn - 【详解】解:()11122-=-⨯,()221221242==-⨯,()3333182-=-⨯, ()4414414162==-⨯,()55551322-=-⨯,…… 由此发现:第n 个数为()12nnn-. 故答案为:()12nnn - 【变式训练4】杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则()7a b +的展开式中从左起第三项为______.()1a b a b+=+()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++【答案】5221a b【详解】解:根据题意,()7a b +=7652433425677213535217a a b a b a b a b a b ab b +++++++,∶()7a b +的展开式中从左起第三项为5221a b ,故答案为:5221a b .类型二、图形类规律探索例.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n 条直线相交最多有______个交点.【答案】 6(1)2n n - 【详解】解: 如图,两条直线相交最多有1个交点,即()22112⨯-=;三条直线相交最多有3个交点,即()33132⨯-=;四条直线相交最多有6个交点,即()44162⨯-=,五条直线相交最多有10个交点,即()551102⨯-=,……∶n 条直线两两相交,最多有(1)2n n -个交点(n 为正整数,且n ≥2). 故答案为6;(1)2n n -. 【变式训练1】如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第_____个图形共有45个小球.【答案】9【详解】解:第1个图中有1个小球, 第2个图中有3个小球,3=1+2, 第3个图中有6个小球,6=1+2+3, 第4个图中有10个小球,10=1+2+3+4,……照此规律,第n 个图形有1+2+3+4+…+n =12n (1+n )个小球,n(1+n)=45,∶12解得n=9或-10(舍去),故答案为:9.【变式训练2】为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,则n的值为______.【答案】10【详解】解:由题可知:第n个图形有(6n+2)根火柴棒,第(n+1)个图形有(6n+8)根火柴棒,∶摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,∶6n+2+6n+8=130,解得n=10.故答案为:10.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第n 层含有正三角形个数为___个.n-【答案】114 126【解析】根据题意分析可得:从里向外的第1层包括6个正三角形,第2层包括18个正三角形,此后,每层都比前一层多12个,依此递推,第10层中含有正三角形个数是6+12×9=114个,n-个,则第n层中含有正三角形个数是6+12×(n-1)=126n-.故答案为:114,126【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.【答案】2021【解析】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,∶第n个图形五角星的个数是:1+3•n=1+3n,∶6064120213-=,∶用6064个五角星摆出的图案应该是第2021个图形,故答案为:2021.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为()A.99B.100C.101D.102【答案】B【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n个图中有1+2×n=2n+1=201(个)正方形,解得n=100故选B .2.如图,将若干颗棋子按箭头方向依次摆放,记第一颗棋子摆放的位置为第1列第1排,第二颗棋子摆放的位置为第2列第1排,第三颗棋子摆放的位置为第2列第2排……,按此规律摆放在第16列第8排的是第( )颗棋子.A .85B .86C .87D .88【答案】B 【详解】偶数列数与排数表:∶当n =16时,排数为:192n+=,∶前16列共有棋子:()9102123+-3=2-3=872⨯+++⨯…9(颗), ∶第16列第8排的棋子位次是:87-1=86. 故选B .3.将一正方形按如图方式分成n 个完全相同的长方形,上、下各横排三个,中间两行各竖排若干个,则n 的值为( )A.12B.16C.18D.20【答案】C【详解】解:设长方形的长为a,宽为b,根据题意得,2a+2b=3a,整理得,a=2b,∶竖排的一行的长方形的个数为3a÷b=(3×2b)÷b=6,∶n=3×2+6×2=6+12=18.故选:C.4.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【详解】解:设如图表所示:根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22, ∶x -y =-2+z -(2z -22)=-4+z ,解得:z =12, ∶x +y =3z -24=12 故选:D .5.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.【答案】16 674【详解】 每一行的最后一个数字分别是1,4,7,10 ,……,∴第n 行的最后一个数字为:1+3(1)32n n -=-,∴第6行最后一个数字为:36216⨯-=;322020n -=,解得:674n =,故答案为:16,674.6.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M 的值为________.【答案】143【详解】解:∶1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,∶右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),∶M =m (n +1), ∶M =11×(12+1)=143. 故答案为:143.7.为了求220211222+++⋯+的值,可令220211222S =+++⋯+,则220222222S =++⋯+,因此2022221S S -=-,所以220212022122221+++⋯+=-.按照以上推理计算出1220211333---+++⋯+的值是______. 【答案】2021332-- 【详解】解:令1220211333S ---=+++⋯+, 则1220212022133333S ----=++⋯++, 因此20221313S S --=-,则20222313S --=-,得:2021332S --=,所以20211220213313332-----+++⋯+=. 故答案为:2021332--.8.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n (n 为正整数)张桌子时,最多可就坐_____人.【答案】(6n +2) 【详解】解:根据图示知,拼1张桌子,可以坐(2+6)人. 拼2张桌子,可以坐[2+(6×2)]人. 拼3张桌子,可以坐[2+(6×3)]人. …拼接n (n 为正整数)张桌子,可以坐(6n +2)人. 故答案是:(6n +2).9.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7136147⨯-⨯=,172316247⨯-⨯=,不难发现,结果都是7. 2012年8月(2)换一个月的月历试一下,是否有同样的规律? (3)请你利用整式的运算对以上的规律加以证明.【答案】(1)111710187⨯-⨯=,符合;(2)392107⨯-⨯=;(3)见解析【详解】解:(1)由题意得:111710187⨯-⨯=,符合;(2)392107⨯-⨯=;答:换一个月的月历试一下还是同样的规律;(3)设上边第一个数为x ,则其后的数为(x +1),第二行的两个数分别为(x +7),(x +8), 根据题意,得22(1)(7)(8)8787x x x x x x x x ++-+=++--=.10.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:m 表示这个六边形中小圆圈的总数,那么m 和n 的关系是什么?【答案】(1)第1个图形:1个;第2个图形:7个;第3个图形:19个;第4个图形:37个;第5个图形:61个,理由见解析;(2)1,7,19,37,61;(3)2331m n n =-+ 【详解】(1)观察每个图形的特点,就可以算出第1个图形的小圆圈有1个, 第2个图形的小圆圈有2+3+2=7个, 第3个图形的小圆圈有3+4+5+4+3=19个, 第4个图形的小圆圈有4+5+6+7+6+5+4=37个,由此可推知第5个图形的小圆圈有5+6+7+8+9+8+7+6+5=61个; (2)将(1)算出的结果填入下列表格,如下表所示,()()()()()1...212...1m n n n n n n n n n n =+++++-++-++-++++首尾相加得()()21...(2)1m n n n n n n =+++++-++-⎡⎤⎣⎦()()21322213312n n n n n --=+-=-+2331m n n =-+.11.对任意一个四位正整数m,如果m的百位数字等于个位数字与十位数字之和,m的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m为“筋斗数”.例如:m=5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m=8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m是“筋斗数”,且m与13的和能被11整除,求满足条件的所有“筋斗数”m.【答案】(1)9633是“筋斗数”;2642不是“筋斗数”;理由见解析(2)m的值为9909或2110或6422【解析】(1)解:9633是“筋斗数”,2642不是“筋斗数”,理由如下:∶6=3+3,9=2×3+3,∶9633是“筋斗数”;∶6=4+2,28+2≠,∶2642不是“筋斗数”;(2)设m的个位数为a,0≤a≤9,十位数为0<b≤9,且a、b为整数∶m是“筋斗数”,∶m的百位数为a+b,千位数为2b+a;∶m=1000(2b+a)+100(a+b)+10b+a=1100a+110b+2000b+a∶m与13的和能被11整除,∶1100a+110b+2000b+a+13能被11整除,∶2b+a≤9且a、b为整数,∶b≤4.5∶1100a+110b能被11整除,∶2000b+a+13能被11整除,∶b=0,a=9或b=1,a=0或b=2,a=2或b=3,a=4,或b=4,a=6,∶a+b=9,2b+a=9或a+b=1,2b+a=2或a+b=4,2b+a=6或a+b=7,2b+a=10(舍去)或a+b=10,2b+a=14(舍去),∶m的值为9909或2110或642212.看图填空:如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成面积为18的长方形,如此进行下去……(1)试利用图形揭示的规律计算:1111111112481632641282562n++++++++=_______.并使用代数方法证明你的结论.(2)请给利用图(2),再设计一个能求:2341111122222n+++++的值的几何图形. 【答案】(1)112n- ,证明见解析;(2)见解析【解析】(1)解:①由题意可知当最后一个小长方形的面积为12n时 , 1111111112481632641282562n++++++++的值为正方形面积减去最后一个小长方形面积,即:112n- ,1111111111124816326412825622n n ∴++++++++=-; ②设1111111112481632641282562ns =++++++++, 111111111212481632641282n s -=++++++++, 1212n s s ∴-=-,即112ns =-,1111111111124816326412825622n n∴++++++++=-; (2)如图所示,将面积为1的正方形等分成两个面积为12的三角形,接着把面积为12的三角形等分成两个面积为14的三角形,再把面积为14的三角形等分成面积为18的三角形,如此进行下去,则2341111122222n +++++的值即为正方形面积减去最后一个小三角形面积:112n-。
人教版七年级上册数学找规律精选题
平方数列规律:〔序 +某〕2 正方形点图,点变边也变〔平方列规律〕
总点数分别是4,9,16,平方列规律〔n+1〕2
平方数列规律:〔序 +某〕2
正方形点变边变〔平方规律〕+1 正方形框的点数分别是1,4,9,16.规律 是n2
6.以下图是某同学在沙滩上用石于摆成的小 房子.
观看图形的变化规律,写出第n个小房子用了 块石子.
n行共有(2n-1) 个数。 1
23 4
56 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
3=4-1=〔序 +某〕2-1= 〔① +1〕2-1 第n个数=〔n+1〕2-1
平方数列规律:〔序 +某〕2
平方数列规律:〔序 +某〕2 练习〔1〕9,16,25,36,。。。。。
第一个数9=〔序 +某〕2= 〔① +2〕2 第n个数=〔n+2〕2
练习〔2〕5,10,17,26,。。。。。
5=4+1=〔序 +某〕2+1= 〔① +1〕2+1 第n个数=〔n+1〕2+1
2 5 10 17 26 n 37
依据规律,请你写出第n个数是 n 2 1 。
5、观看一列数:1
2
, 2 ,3
5 10
, 4
17
,5
26
, 6
37
……
依据规律,请你写出第n个数是
1n1
n n2 1
.
6、观看一列数:
1 2
(完整)七年级数学专题规律探究题
七年级数学专题-----规律探究题题型一:数字变化类问题1.观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n=__________.2.下表中的数字是按一定规律填写的,表中a的值应是.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …3.观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是.4.有一组等式:2222222222222222++=++=++=++=……请观察1233,2367,341213,452021它们的构成规律,用你发现的规律写出第8个等式为_________5.把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是.5.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。
而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的十进位0 1 2 3 4 5 6 …制二进制0 1 10 11 100 101 110 …写成十进制数为 .(二)6.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…7.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.8.有这样一组数据a1,a2,a3,…a n,满足以下规律:,(n≥2且n为正整数),则a2013的值为______(结果用数字表示).9.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1)11.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.712.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是.-4 a b c 6 b -2…13.将连续正整数按以下规律排列,则位于第7行第7列的数x 是85.题型二:图形变化类问题14.如图,是用火柴棒拼成的图形,则第n个图形需__________根火柴棒.15.电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有.(请填入方块上的字母)16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A 1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013= 度。
初一找规律经典题型(含部分答案)
初一找规律经典题型(含部分答案)初一数学规律题应用知识汇总有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
因此,将变量和序列号放在一起比较,就更容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例如,对于数列4、10、16、22、28……,求第n位数。
我们可以发现,从第二位数开始,每位数都比前一位数增加6,增幅都是6.因此,第n位数是4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
例如,古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它们之间有一定的规律性。
要求第24个三角形数与第22个三角形数的差,我们可以通过求出第24个和第22个三角形数的值,再相减得到答案。
除了基本方法外,还可以用分析观察的方法求解。
例如,在一个面积为S的等边三角形中,我们将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形。
当n=5时,共向外作出了4个小等边三角形;当n=k时,共向外作出了k-2个小等边三角形。
中考规律类试题在素材选取、文字表述、题型设计等方面都别具一格,旨在考察学生的创新意识与实践能力。
部编数学七年级上册专题07探究与表达规律(八大题型)专项讲练(解析版)含答案
专题07 探究与表达规律(八大题型) 专项讲练1. 解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:1)一列数的规律:把握常见几类数的排列规律及每个数与排列序号n 之间的关系.2)一列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n 之间的关系.3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n 之间的关系.4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.5)数形结合的规律:观察前n 项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.2. 常见的数列规律:1)1,3,5,7,9,… ,21n -(n 为正整数).2) 2,4,6,8,10,…,2n (n 为正整数).3) 2,4,8,16,32,…,2n (n 为正整数).4)2, 6, 12, 20,…, (1)n n +(n 为正整数).5)x -,x +,x -,x +,x -,x +,…,(1)n x -(n 为正整数).6)特殊数列: ①三角形数:1,3,6,10,15,21,…,(1)2n n +.②斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.题型1:数列的规律1.(2022·山东烟台·期末)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,……,第n 个单项式是( )A .()211n n x --B .()1211n n x -+-C .()1211n n x ---D .()211n n x +-【答案】B【分析】先观察系数与指数的规律,再根据规律定出第n 个单项式即可.【详解】解:∵3x ,5x -,7x ,9x -,11x ,……,∴系数是奇数项为-1,偶数项为1,即系数的规律是(-1)n -1,指数的规律为2n +1,∴第n 个单项式为()1211n n x -+-,故选:B.【点睛】本题考查数式的变化规律,通过观察单项式的系数和指数,找到它们的规律是解题的关键.2.(2022·江苏盐城·七年级阶段练习)已知:21=2,22=4,23=8,24=16,25=32,…,那么22021的个位数字是().A.2B.4C.6D.8【答案】A【分析】观察不难发现,2n的个位数字分别为2、4、8、6,每4个数为一个循环,用2021÷4,根据余数的情况确定答案即可.【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,∴个位数字分别为2、4、8、6依次循环,∵2021÷4=505……1,∴22021的个位数字与21个位数字相同,即22021的个位数字是2,故A正确.故选:A.【点睛】本题主要考查了尾数特征,观察数据发现每4个数为一个循环,个位数字依次循环,是解题的关键.3.(2022·山东泰安·期中)古希腊著名的毕达哥拉斯学派把1、3、6、10…,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.则第5个“三角形数”与第5个“正方形数”的和是()A.35B.40C.45D.50【答案】B【分析】分别探究“三角形数”与“正方形数”的存在规律,求出第5个“三角形数”与第5个“正方形数”,再求第5个“三角形数”与第5个“正方形数”的和.【详解】第1个“三角形数”:1,第2个“三角形数”:1+2=3,第3个“三角形数”:1+2+3=6,第4个“三角形数”:1+2+3+3=10,第5个“三角形数”:1+2+3+4+5=15,第1个“正方形数”:1,第2个“正方形数”:22=4,第3个“正方形数”:32=9,第4个“正方形数”:42=16,第5个“正方形数”:52=25,∴15+25=40.故选:B.【点睛】本题主要考查了“三角形数”与“正方形数”,解决问题的关键是探究“三角形数”与“正方形数”的规律,运用规律求数.4.(2021·广西百色·二模)观察下列一组数:﹣32,1,﹣98,1711,﹣3314,…,它们是按一定规律排列的,那么这一组数的第8个数是_____.5.(2022·内蒙古赤峰·七年级期末)边长为1的正方形OABC从如图所示的位置(点O对应数0,点A对应数-1)开始在数轴上顺时针滚动(无滑动).当正方形的某个顶点落在数2023在数轴上对应的点处时停止运动,此时落在数2023在数轴上对应点的这个顶点是()A.点A B.点B C.点C D.点O【答案】A【分析】滚动四次一个循环,用2023除以4,商即是循环的次数,由余数即可得到与2023重合的点.【详解】解:∵2023=505×4+3,∴与2023重合的点即是滚动后与3重合的点,而与1重合的是C,与2重合的是B,与3重合的是A,∴与2023重合的是A,故A正确.故选:A.【点睛】本题主要考查图形类规律探究、数轴上点表示的数,解题的关键是理解与2023重合的点即是与3重合的点.6.(2022·福建漳州七年级开学考试)观察下列各项:114,126,138,1410,…,依此规律下去,则第7项是__________;第n项是__________.【答案】1716()121nn++【分析】观察可知:整数部分是从1开始的自然数,分数部分的分子为1,分母为从2开始的自然数的两倍,据此可得.【详解】解:114=()11211+´+,126=()12221+´+,138=()13231+´+,1410=()14241+´+,…∴第7项是1716,第n项是()121nn++,故答案为:1716,()121nn++.【点睛】此题考查数字的变化规律,找出数字之间的联系,利用规律解决问题.题型2:数表的规律1.(2022·山东济南·七年级期末)将正整数按如图所示的规律排列,若用有序数对(a,b)表示第a行,从左至右第b个数,例如(4,3)表示的数是9,则(15,10)表示的数是()A.115B.114C.113D.112【答案】A【分析】观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,1)表示的数,然后得出(15,10)表示的数即可.2.(2022·山东烟台·期中)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了()n a b +(n 为非负数)的项数及各项系数的有关规律,例如:请写出8()a b +展开式中间一项的系数( )A .70B .64C .56D .54【答案】A【分析】根据题意可得每行第一个和最后一个数都是1,其他位置的数下面的数等于上面两个数的和,即可求出8()a b +展开式中间一项的系数.【详解】解:由题意可得下面一个数等于上面两个数的和,∴()7a b +中,各项的系数分别为:1,7,21,35,35,21,7,1,∴()8a b +中,各项的系数分别为:1,8,28,56,70,56,28,8,1,∴8()a b +展开式中间一项的系数为70,故选:A .【点睛】此题考查了多项式的系数规律问题,解题的关键是根据题意正确分析出各项系数的有关规律.3.(2022·辽宁葫芦岛·七年级期中)将正整数按如图所示的规律排列.若用有序数对(a ,b )表示第a 排,从左至右第b 个数.例如(4,3)表示的数是9,则(7,3)表示的数是( )A .22B .23C .24D .254.(2022·河北承德·七年级期末)观察下面的数:按着上述的规律排下去,那么第12行从左边数第4个数是( )A .121-B .123-C .125-D .127-【答案】C【分析】先根据行数确定出最后一个数的变化规律,再根据得出的规律确定出第11行的数,然后用11行的最后一个数的绝对值与4相加即可.【详解】解:因为行数是偶数时,它的最后一个数是每行数的平方,当行数是奇数时,它的最后一个数是每行数的平方的相反数,所以第11行最后一个数字是:-11×11=-121,它的绝对值是121,第12行从左边第4个数的绝对值是:121+4=125.故第12行从左边第4个数是-125.故选:C.【点睛】此题考查了数字的变化类,找出最后一个数的变化规律,确定出第11行最后一个数是解题关键.5.(2021·云南红河·七年级期末)将连续奇数1,3,5,7,9……排成如图所示的数表.用长方形框在如图所示的数表中任意框出九个数,将长方形框上下左右移动,可框住另外九个数.若这九个数中最小的数是171,则最大的数是_____.【答案】207【分析】先设九个数中最小的数为m,根据规律表示九个数m,m+2,m+4,m+16,m+18,m+20,m+32,m+34,m+36,其中最小的是m=171,求代数式的值即可.【详解】解:设九个数中最小的为m,m+2,m+4,m+16,m+18,m+20,m+32,m+34,m+36,∵这九个数中最小的数是171,∴m=171,∴这九个数中最大的数是171+36=207,故答案为:207.【点睛】本题考查数中排列规律,找出方框中九个数的规律,代数式的值,掌握数中排列规律,找出方框中九个数的规律,利用代数式的值求出最大数是解题关键.6.(2021·四川成都·七年级期中)我国南宋数学家杨辉所著的《详解九章算术》书中辑录了一个三角形数表,称之为“开方作法本源”图,即是著名的“杨辉三角形”.以下数表的构造思路源于“杨辉三角形”:该表由若干行数字组成,从第二行起,每一行中的数字均等于“其肩上”两数之和,表中最后一行仅有一个数,则这个数为___.【答案】102×299【分析】分析得出第101行有1个数,即为最后一行的数,根据每行的第一个数字得到规律,从而判断.【详解】解:由题意,第1行有101个数,第2行有100个数,…,第101行有1个数,故第1行的第一个数为:1=2×2-1,第2行的第一个数为:3=3×20,第3行的第一个数为:8=4×21,第n行的第一个数为:(n+1)×2n-2,∴第101行的第一个数为:102×299,故答案为:102×299.【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.题型3:算式的规律算式规律这一类没有固定的套路,主要依靠学生对已知算式的观察、总结、逻辑推理,发现期中的规律。
部编数学七年级上册专题04有理数运算中的规律探究(解析版)含答案
专题04 有理数运算中的规律探究1.观察下列等式:第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø……请解答下列问题:(1)按以上规律列出第5个等式:5a =________=_______(2)用含有n 的式子表示第n 个等式:(n 为正整数)n a =______=_______(3)求12341000a a a a a ++++¼+的值.【答案】(1)1911´,1112911æö´-ç÷èø(2)()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)100201【解析】【分析】(1)根据所给的等式的形式求解即可;(2)根据所给的等式,进行总结可得出规律;(3)利用(2)中的规律进行求解即可.(1)解:观察等式找到规律,第5个等式为: 511119112911a æö==´-ç÷´èø故答案为:1911´,1112911æö´-ç÷èø(2)解:Q 第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø第5个等式:511119112911a æö==´-ç÷´èø……第n 个等式:()()1111212122121n a n n n n æö==´-ç÷-´+-+èø故答案为:()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)解:12341000a a a a a ++++¼+=11123æö´-ç÷èø+111235æö´-ç÷èø+111257æö´-ç÷èø…+1992011112æö´-ç÷èø11111112335199201æö=-+-+×××+-ç÷èø1112201æö=-ç÷èø12002201=´100201=【点睛】本题主要考查数字的变化规律,解题的关键是由所给的等式总结出存在的规律并灵活运用.2.先阅读下列式子的变形规律:111122=-´;1112323=-´;1113434=-´;1111111113111223342233444++=-+-+-=-=´´´然后再解答下列问题:【注:第(1)小题直接写结果,不用写过程】(1)类比计算:1910=´______,120192020=´______,归纳猜想:若n 为正整数,那么猜想()11n n =+______.(2)知识运用,选用上面的知识计算111112233420192020++++´´´´LL 的结果.(3)知识拓展:试着写出111113355779+++´´´´的结果.【答案】(1)11910-;1120192020-;111n n -+(2)20192020(3)49【解析】【分析】(1)根据题意分解形式求解即可;(2)根据式子规律求解即可;(3)将113´分解成11123æö-ç÷èø的形式,其余各式比照该分解形式进行分解,然后求和计算即可.(1)解:由题意知111910910=-´1112019202020192020=-´()11111n n n n =-´++故答案为:11910-;1120192020-;111n n -+.(2)解:1111······+12233420192020+++´´´´1111111111 (223342018201920192020)=-+-+-++-+-211200=-20192020=(3)解:111113355779+++´´´´11111111111123235257279æöæöæöæö=-+-+-+-ç÷ç÷ç÷ç÷èøèøèøèø11111111123355779æö=-+-+-+-ç÷èø11129æö=´-ç÷èø49=【点睛】本题考查了数字类规律的探究.解题的关键在于概括出分解运算规律.3.(1)观察下列各式:123456733,39,327,381,3243,3729,32187,=======L1234561313,13169,132197,1328561,13371293,134826809,======L根据你发现的规律回答下列问题:①20223的个位数字是___________;9913的个位数字是___________;②9943的个位数字是___________;5543的个位数字是___________;(2)自主探究回答问题:①997的个位数字是___________,557的个位数字是___________;②9952的个位数字是___________,5552的个位数字是___________.(3)若n 是自然数,则9955n n -的个位上的数字( )A .恒为0B .有时为0,有时非0C .与n 的末位数字相同D .无法确定【答案】(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A【解析】【分析】(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知99n 与55n 个位上的数字相同即可得出答案.【详解】解:(1)①Q 123456733,39,327,381,3243,3729,32187,=======L\3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环20224505 (2)¸=Q \20223的个位数字是9;Q 1234561313,13169,132197,1328561,13371293,134826809,======L\13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424 (3)¸=Q \9913的个位数字是7;故答案为:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9943的个位数字是7,5543的个位数字是7;故答案为:7;7;(2)①123456777497343724017168077117649...======Q ,,,,,\7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\997的个位数字是3,557的个位数字是3故答案为:3;3②123456222428216232264...======Q ,,,,,\2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环\52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9952的个位数字是8,5552的个位数字是8故答案为:8;8(3)由(1)(2)中的结论可知99n 与55n 个位上的数字相同\9955n n -的个位上的数字恒为0故选A .【点睛】本题考查数字的变化规律,找出数字之间的规律是解题的关键.4.观察下列各式:3312189+=+=,而2332(12)9,12(12)+=\+=+;33312336++=,而23332(123)36,123(123)++=\++=++;33331234100+++=,而233332(1234)100,1234(1234)+++=\+++=+++;(1)猜想并填空:3333312345++++=_______2=_______;(2)根据以上规律填空:3333123n ++++=L _______2=_______;(3)求解:333331617181920++++.【答案】(1)(1+2+3+4+5),225(2)()123n ++++L ,()212n n +éùêúëû(3)29700【解析】【分析】观察题中一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,据些规律来求解.(1)根据上述规律填空即可求解;(2)根据上述规律填空,然后把123n ++++L 变为2n 个()1n +相乘来求解;(3)对所求的式子前面加上1到15的立方和,然后根据上述规律分别求出1到15的立方和与16到20的立方和,再求出两数相减即可求解.(1)解:由题意可知:()2333331234512345225++++=++++=.故答案为:(1+2+3+4+5),225;(2)解:()()()1121211222n n n n n n n n +éùæö+++=+++-++-+=éùç÷êúëûèøëûQ L L ()()22333311231232n n n n +éù\+++=++++=êúëûL L .故答案为:()123n ++++L ,()212n n +éùêúëû;(3)解:333331617181920++++()()333333331232012315=+++-+++L L()()221232012315=+++-+++L L 22210120=-29700=故答案为:29700.【点睛】本题考查了探究数字规律,主要要求学生综合运用观察、想象、归纳、推理概括等思维方式,运用总结的规律解决问题的能力.找出规律是解答关键.5.爱读书的乐乐在读一本古书典籍上有这么一段记载:相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方,三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3,4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=______;(2)若b=4,c=6,求a的值;(3)通过研究问题(1)和(2),利用你发现的规律,将5,7,-5,3,9,-1,11,-3,1这九个数字分别填入图3的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】(1)-6(2)8(3)图形见解析(答案不唯一)【解析】【分析】(1)根据幻和等于九宫格中最中心数的3倍即可得答案;(2)根据b=4先求出第二行第三列的数字,根据c=6求出第一行第三列的数字,根据对角线求出第一行第一列的数字,最后根据第一行三个数字之和等于幻和即可求解;(3)根据九宫格中所有数字相加,其和为幻和的3倍先求出中心数为3,幻和为9,进一步将数据分成5与1一组,7与-1一组,-5与11一组,9与-3一组,按照此条件分组将数据填入九宫格中即可.(1)解:由题意可知:幻和等于九宫格中最中心数的3倍,∴图2中幻和=-2×3=-6.(2)解:由(1)知幻和为-6,当b=4,c=6时:第二行第三列的数字为:-6-b-(-2)=-6-4+2=-8,第一行第三列的数字为:-6-(-8)-c=-6+8-6=-4,根据对角线可知:第一行第一列的数字为:-6-(-2)-6=-10,∴a=-6-(-10)-(-4)=-6+10+4=8.(3)解:将图3中的九宫格分别标记为A~I,如下图所示:由于九宫格中横行、纵向的数字之和均相等,其和叫做幻和,∴九宫格中所有数字相加,其和为幻和的3倍,∴幻和=(5+7-5+3+9-1+11-3+1)÷3=9,又幻和为九宫格中最中心数的3倍,∴最中心的E代表的数为3,∵对角线、横行、纵向的数字之和是幻和的3倍,∴A+I=6,B+H=6,C+G=6,D+F=6,故5与1一组,7与-1一组,-5与11一组,9与-3一组,只需要满足此条件写出来九宫格必然满足题目要求,取A=5、B=7时,此时I=1,H=-1,G=9,C=-3,D=-5,F=11,如下图所示(答案不唯一):【点睛】本题主要考查数字的变化规律,读懂题意,解题的关键是掌握幻方的定义及幻和与中心数的关系即可.6.探究规律,完成相关题目.将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等.如图所示的三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到33´的方格中得到的,其每一行,每一列,每一条对角线上的三个数字之和都相等.(1)设下面的三阶幻方中间的数字是m (其中m 为正整数),请用含m 的代数式将下面的幻方填充完整;(2)若设(1)幻方中9个数的和为S ,则S 与中间的数字m 之间的数量关系为______;(3)现要用9个数:-40,-30,-20,-10,0,10,20,30,40构造一个三阶幻方,请将构造的幻方填写在下面33´的方格中.【答案】(1)答案见解析;(2)9m S =;(3)答案见解析【解析】【分析】(1)由第3列的三个代数式的和为3,m 再利用每行,每列,每一条对角线上的三个代数式之和相等逐一填好其余的空格,即可得到答案;(2)由每行,每列,每一条对角线上的三个代数式之和相等,可得()3123,S m m m =++++-从而可得答案;(3)由(2)的规律先确定最中间的数据0, 把-40,-30,-20,-10,0,10,20,30,40按从小到大的顺序排列,再把第2,4,6,8个数据放在四角的位置,再根据每行,每列,每一条对角线上的三个数之和相等,填好其余空格即可.【详解】解:(1)1m +4m -3m +2m +m 2m -3m -4m +1m -(2)由每行每列及对角线上的三个代数式的和相等可得:()31239,S m m m m =++++-=故答案为:9.S m =(3)幻方如图所示(答案不唯一):10-4030200-20-3040-10【点睛】本题考查的是数或代数式的排列的规律的探究,有理数的加减运算,整式的加减运算,掌握以上知识是解题的关键.7.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是 A .(+3)+(+2)=+5;B .(+3)+(﹣2)=+1;C .(﹣3)﹣(+2)=﹣5;D .(﹣3)+(+2)=﹣1②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是 .(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为2018(A 在B 的左侧,且折痕与①折痕相同),且A 、B 两点经折叠后重合,则A 点表示 B 点表示 .③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为 .(用含有a ,b 的式子表示)【答案】(1)①D ; ②﹣1009(2)①﹣2015; ②﹣1008,1010;③2a b+【解析】【分析】(1)①根据有理数的加法法则即可判断;②探究规律,利用规律即可解决问题;(2)①根据对称中心是1,即可解决问题;②由对称中心是1,AB =2018,可知A 点是1左边距1为1009个单位的点表示的数,B 点是1右边距1为1009个单位的点表示的数,即可求出点A 、B 所表示的数;③利用中点坐标公式即可解决问题.(1)解:①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D .②一机器人从数轴原点处O 开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是(﹣1)+(+2)+(﹣3)+(+4)+…+(+2016)+(﹣2017)=1×1008+(﹣2017)=﹣1009,故答案为:﹣1009.(2)①若折叠纸条,表示﹣1的点与表示3的点重合, 132-+=1,∴对称中心为1,∴2017﹣1=2016,∴1﹣2016=﹣2015,∴表示2017的点与表示﹣2015的点重合,故答案为:﹣2015;②∵对称中心为1,AB =2018,∴点A 所表示的数为:1﹣20182=﹣1008,点B 所表示的数为:1+20182=1010,故答案为:﹣1008,1010;③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为2a b+;故答案为:2a b+.【点睛】本题考查了数轴、有理数的加减混合运算、折叠等知识,理解题意,灵活应用所学知识是解决问题的关键.8.观察下面三行数:2,4-,8,16-,32,64-,……; ①0,6-,6,18-,30,66-,……; ②1-,2,4-,8,16-,32,……; ③观察发现:每一行的数都是按一定的规律排列的.通过你发现的规律,解决下列问题.(1)第①行的第8个数是________,第n 个数是________;(2)第②行的第n 个数是________,第③行的第n 个数是________;(3)取每行数的第10个数,计算这三个数的和.【答案】(1)256-;1(1)2n n +- ;(2)1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)1538-【解析】【分析】(1)第①行有理数是按照1(1)2n n +-排列的;(2)第②行为第①行的数减2;第③行为第①行的数的一半的相反数,分别写出第n 个数的表达式即可;(3)根据各行的表达式求出第10个数,然后相加即可得解.【详解】解:(1)第①行的有理数分别是﹣1×2, ﹣1×22,23, ﹣1×24,…,故第8个数是861522´=-﹣,第n 个数为(﹣2)n (n 是正整数);故答案为:256-;1(1)2n n +- ;(2)第②行的数等于第①行相应的数减2,即第n 的数为1(1)22n n +--(n 是正整数),第③行的数等于第①行相应的数的一半的相反数,即第n 个数是11(1)2()2n n +-´-或1(1)2n n --(n 是正整数);故答案为:1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)∵第①行的第10个数为101011(1)22--=,第②行的第10个数为1022--,第③的第10个数为1099(1)22-=,所以,这三个数的和为:101092(22)2-+--+1024(10242)512=-+--+102410242512=---+1538=-【点睛】本题是对数字变化规律的考查,认真观察、仔细思考,善用联想是解决这类问题的方法,观察出第②③行的数与第①行的数的联系是解题的关键.9.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7-6|=7-6;|6-7|=-6+7;|-6-7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+2|=;②|-12+15|=;(2)用简单的方法计算:|13-12|+|14-13|+|15-14|+……+|12021-12020|.【答案】(1)①7+2;②1125-;(2)20194042【解析】【分析】(1)①②根据正数的绝对值等于本身,负数的绝对值是其相反数可得答案;(2)根据绝对值的性质化简,再相互抵消可得答案.【详解】解:(1)①∵7+20> ,∴|7+2|=7+2;②∵11025-+< ,∴|-12+15|=1125-;(2)原式=11111111+...+23344520202021-+-+-- ,1122021=- ,=20194042.【点睛】本题考查有理数的混合运算,熟练地掌握运算法则和绝对值的性质是解题关键.10.给定一列数,我们把这列数中的第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).例如下面这列数1,3,5,7,9中,11a =,23a =,35a =,47a =,59a =.规定运算1123(:)n n sum a a a a a a =+++¼¼+,即从这列数的第一个数开始依次加到第n 个数,如在上面这列数中:1312313(:)59sum a a a a a =++=++=.(1)已知一列数-1,2,-3,4,-5,6,-7,8,-9,10.则110(:)sum a a =______.(2)已知一列有规律的数:1(1)1-´,2(1)2-´,3(1)3-´,4(1)4-´,¼¼,按照规律,这列数可以无限的写下去.①求12021(:)sum a a 的值.②是否有正整数n 满足等式1(:)50n sum a a =-成立?如果有,请直接写出n 的值.如果没有,请说明理由.【答案】(1)5;(2)①-1011;②n =99.【解析】【分析】(1)直接根据题中所给定义运算进行求解即可;(2)①由题意可知()12341,2,3,4, (1)n a a a a a n =-==-==-×,由此可得20212021a =-,然后求解即可;②由题意易得()12345....150nn -+-+-++-×=-,进而求解即可.【详解】解:(1)由题意得:110(:)123456789105sum a a =-+-+-+-+-+=,故答案为5.(2)解:由题意得:()12341,2,3,4, (1)n a a a a a n =-==-==-×,∴12021(:)sum a a =-1+2-3+4···+2020-2021=1×1010-2021=-1011.②由题意得:()12345....150nn -+-+-++-×=-,∴当n 为奇数时,则有11502n n -´-=-,解得:n =99,当n 为偶数时,则有1502n ´=-,解得:100n =-,(不符合题意,舍去),∴综上所述:n =99.【点睛】本题主要考查含乘方的有理数混合运算及数字规律问题,熟练掌握含乘方的有理数混合运算及数字规律问题是解题的关键.11.细心观察下面三个图形,按下述方法找出规律.(1)分别写出前面三个图形四角中四个数的积分别是 、 、 ;(2)分别写出前面三个图形四角中四个数的和分别是、、;(3)请你说明你发现的规律找出第四个正方形中的数,并说明理由.【答案】(1)24,60,120;(2)-10,-13,-16;(3)191,理由见解析【解析】【分析】(1)根据有理数乘法的性质计算,即可得到答案;(2)根据有理数加法的性质计算,即可得到答案;(3)根据有理数乘法和加法的性质计算,并结合前三个图形的数字规律,即可完成求解.【详解】(1)(-1)×(-2)×(-3)×(-4)=24;(-1)×(-3)×(-5)×(-4)=60;(-1)×(-4)×(-5)×(-6)=120;故答案为:24,60,120;(2)(-1)+(-2)+(-3)+(-4)=-10;(-1)+(-3)+(-5)+(-4)=-13;(-1)+(-4)+(-5)+(-6)=-16;故答案为:-10,-13,-16;(3)(-1)×(-5)×(-6)×(-7)=210;(-1)+(-5)+(-6)+(-7)=-19;∵第1个正方形中的数()241014=+-= 第2个正方形中的数()601347=+-=第3个正方形中的数()12016104=+-=∴第四个正方形中的数()21019191=+-=.【点睛】本题考查了有理数加减法、乘法,以及数字规律的知识;解题的关键是熟练掌握有理数加减法和乘法的性质,结合数字规律,从而完成求解.12.一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位到达点A 2;第二次从点A 2向左移动3个单位,再向右移动4个单位到达点A 3;第三次从点A 3向左移动5个单位,再向右移动6个单位到达点A 4,…,点P 按此规律移动,那么:(1)第一次移动后这个点P 在数轴上表示的数是 ;(2)第二次移动后这个点P 在数轴上表示的数是 ;(3)第五次移动后这个点P 在数轴上表示的数是 ;(4)这个点P 移动到点An 时,点An 在数轴上表示的数是 .【答案】(1)﹣1;(2)0;(3)3;(4)﹣2+n .【解析】【分析】(1)根据题意可得第一次移动后这个点P 在数轴上表示的数是﹣1;(2)第二次移动后这个点P 在数轴上表示的数是2120-+´=;(3)第五次移动后这个点P 在数轴上表示的数是2153-+´=;(4)这个点P 移动到点An 时,点An 在数轴上表示的数212n n -+´=-+.【详解】解:(1)记某次向左移动m 个单位长度,则向右移动()1m +个单位长度,从而每次移动的实际量为:123411,m m -+=-+=-++=∵一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位∴211-+=-,即第一次移动后这个点P 在数轴上表示的数是﹣1故答案为﹣1(2)∵2120,-+´=∴第二次移动后这个点P 在数轴上表示的数是0故答案为0(3)∵2153,-+´=∴第五次移动后这个点P 在数轴上表示的数是3故答案为3(4)∵212n n -+´=-+,∴这个点P 移动到点An 时,点An 在数轴上表示的数是﹣2+n 故答案为﹣2+n ,【点睛】本题考查的是点在数轴上的移动规律的探究,有理数的加法运算,掌握数轴上点的移动后对应的数的变化规律是解题的关键.13.探索规律:观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请写出满足上述规律的第6行等式:__________;(2)请猜想1+3+5+7+9+…+39=_____;(写出具体数值)(3)请猜想1+3+5+7+9+…+(2n ﹣1)+(2n +1)=_____;(用含n 的式子表示)(4)请用上述规律计算:51+53+55+…+87+89.(写出计算过程)【答案】(1)1+3+5+7+9+11=62;(2)400;(3)(n +1)2;(4)1400【解析】(1)类比得出第6行等式为:1+3+5+7+9+11=62;(2)由图形可知,从1开始的连续奇数的和等于奇数的个数的平方,然后根据此规律求解即可;(3)利用(1)(2)的规律推出一般规律即可;(4)用从1到89的连续奇数的和减去从1到49的连续奇数的和,进行计算即可得解.【详解】解:(1)第6行等式:1+3+5+7+9+11=62;(2)1至39共有(39+1)÷2=20个奇数,∴1+3+5+7+9+…+39=202=400;(3)1+3+5+7+9+…+(2n -1)+(2n +1)=22112n ++æöç÷èø=(n +1)2;(4)51+53+55+…+87+89=1+3+5+7+…+87+89-(1+3+5+7+…+47+49)=2289149122++æöæö-ç÷ç÷èøèø=452-252=2025-625=1400.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,解决问题.14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,124,6K K ==,……按此规律排列下去,第n 个图形中实心圆的个数表示为Kn .(1)n K =______(用n 表示):100K =_______(2)我们在用“*”定义一种新运算:对于任意有理数a 和正整数n .规定*2n na K a K a n -++=,例如:223336|36|(3)*2322K K --+-+--+-+-===-.①计算:(26.6)*10-的值;②比较:3*n 与(3)*n -的大小.【答案】(1)2(n +1),202;(2)①-22;②3☆n >(-3)☆n 【解析】【分析】(1)由图形可知:第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,…由此得出第n 个图形中有2(n +1)个实心圆,进一步代入求得答案即可;(2)①根据规定的运算顺序与计算方法,转化为有理数的混合运算计算即可;②根据规定的运算顺序与计算方法分别计算得出结果比较得出结论即可.【详解】解:(1)Q 第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,¼2(1)n K n \=+;1002(1001)202K =´+=;(2)①(26.6)-*10101026.6|26.6|2K K --+-+=26.6(2102)|26.6(2102)|2--´++-+´+=22=-;②n Q 是正整数,224n K n \=+…;3\*n3|3|2n n K K -++=332n nK K -++=3=,(3)-*n3|3|2n n K K --+-+=332n nK K ---+=3=-.n>-*n.所以3*(3)【点睛】此题考查图形的变化规律,有理数的混合运算,找出图形的运算规律,理解规定的运算方法是解决问题的关键.。
专题 整式中的规律探究题(原卷版)
(苏科版)七年级上册数学《第3章 代数式》专题 整式中的规律探究题1.(2023春•耿马县期末)按一定规律排列的单项式:2a ,3a 2,4a 3,5a 4,6a 5,…,第n 个单项式是( )A .(n +1)a nB .(n +1)a 2nC .na 2nD .2na n2.(2022春•湖北期末)按一定规律排列的单项式:2a 2,4a 3,8a 4,16a 5,32a 6,…,第n 个单项式是( )A .2n a nB .2n ﹣1a n +1C .2n a n +1D .2n +1an3.(2023•大理市模拟)观察下列关于x 的单项式:x ,﹣3x 2,5x 3,﹣7x 4,9x 5,﹣11x 6,…,按此规律,第n 个单项式为( )A .(2n ﹣1)x nB .﹣(2n ﹣1)x nC .(﹣1)n (2n ﹣1)x nD .(﹣1)n +1(2n ﹣1)x n4.(2023•楚雄市二模)按一定规律排列的单项式:a 3,−a 25,a 39,−a 417,…,第n 个单项式是( )A .(−1)n a n2n1B .(−1)n a n 2n +11C .(−1)n +1a n 2n 1D .(−1)n +1a n 2n +115.(2022秋•云阳县期中)观察下列单项式:a ,﹣a 2,a 3,﹣a 4,a 5,…,按此规律第n 个单项式是 .(n 为正整数)6.(2023•西藏)按一定规律排列的单项式:5a ,8a 2,11a 3,14a 4,….则按此规律排列的第n 个单项式为 .(用含有n 的代数式表示)7.按照规律填上所缺的单项式并回答问题:(1)a 、﹣2a 2、3a 3、﹣4a 4, ;(2)试写出第2008个单项式;(3)试写出第n 个单项式.8.观察下列单项式:﹣x ,3x 2,﹣5x 3,7x 4,…,﹣37x 19,39x 20,…,回答下列问题:(1)这些单项式的系数的规律是什么?(2)这些单项式的次数的规律是什么?(3)根据上面的规律,归纳出第n 个单项式是什么.(4)第2023和2024个单项式是什么?1.(2023•双柏县模拟)按一定规律排列的多项式:x ﹣y ,x 2+2y ,x 3﹣3y ,x 4+4y ,x 5﹣5y ,x 6+6y ,…,则第n 个多项式是( )A .x n +(﹣1)n ny B .(﹣1)n x n +ny C .x n +(﹣1)n +1nyD .(﹣1)n x n +(﹣1)n ny2.按一定规律排列的多项式:﹣x +2y ,x 2+4y ,﹣x 3+6y ,x 4+8y ,﹣x 5+10y ,x 6+12y ,…,根据上述规律,可知第n 个多项式是( )A .(﹣1)n x n +ny B .(﹣1)n x n +2ny C .(﹣1)n +1x n +2nyD .(﹣1)n x n +(﹣1)n ny3.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,……,其中第10个式子的次数是( )A .10B .17C .19D .214.(2023•巧家县二模)观察下列代数式:1﹣x 2,2+x 3,3﹣x 4,4+x 5,……,根据其中的规律可得第2023个式子是( )A .2022﹣x 2023B .2022+x 2023C .2023﹣x 2024D .2023+x 20245.有一组多项式:a ﹣b 2,a 3+b 4,a 5﹣b 6,a 7+b 8,…,请观察它们的构成规律,用你发现的规律写出第n 个多项式为 .6.按一定规律排列的多项式:x +2y ,﹣x 2+4y ,x 3+8y ,﹣x 4+16y ,x 5+32y ,…,根据上述规律,则第n 个多项式是 .7.观察下列各式及其展开式(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5……请你猜想(2x ﹣1)8的展开式中含x 2项的系数是( )A .224B .180C .112D .488.已知一列多项式:12x 2−x ,32x 2+2x ,56x 2−3x ,76x 2+4x ,910x 2−5x ,1110x 2+6x ,1314x 2−7x ,1514x 2+8x ,⋯(1)第9个多项式是 ,第10个多项式是 .(2)当n 是奇数时,第n 个多项式是 ,第(n +1)个多项式是 .(3)已知2x 2+x =3,求前100个多项式的和.1.(2023•牡丹江模拟)按一定规律排列的一列数依次为3,6,12,24,…,按此规律排列下去,这列数的第7个数是( )A .96B .124C .192D .2342.(2022秋•衡南县期末)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性,若把第一个三角数记为a 1,第二个三角数记为a 2,…,第n 个三角数记为αn ,计算a 2021﹣a 2020的值为( )A .2021B .2020C .2019D .20183.(2023春•镇雄县期末)一组按规律排列的式子:﹣2,52,−83,114,….第n 个式子是( )(n 为正整数)A .(−1)n +13n−1nB .(−1)n3n−1n 1C .(−1)n2n 1nD .(−1)n3n−1n4.(2023春•渝北区校级期中)当x ≠﹣1时,我们把−1x 1称为x 的“和1负倒数”.如:2的“和1负倒数”为−121=−13,若x 1=1,x 2是x 1的“和1负倒数”,x 3是x 2的“和1负倒数”…依次类推,则x 1•x 2•x 3•…x 2023的值为( )A .1B .﹣1C .12D .−125.(2023春•泗水县期中)将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+⋯+n =n(n 1)2,则表示2023的有序数对是( )A .(64,7)B .(64,64)C .(64,58)D .(64,57)6.(2023•新洲区模拟)有一列数,记为a 1,a 2,⋯,a n ,记其前n 项和为S n =a 1+a 2+⋯+a n ,定义T n =S 1S 2⋯S nn为这列数的“亚运和”,现有99个数a 1,a 2,⋯,a 99,其“亚运和”为1000,则1,a 1,a 2,⋯,a 99这100个数的“亚运和”为( )A .791B .891C .991D .10017.(2023•天河区校级模拟)观察按一定规律排列的一组数:2,12,27,…,其中第n个数记为a n;第n+1个数记为a n+1,第n+2个数记为a n+2,且满足1a n+1a n+2=2a n+1,则a4= ,a2023= .8.(2023•烈山区一模)观察以下等式:第1个等式21=11+11;第2个等式23=12+16;第3个等式25=13+115;第4个等式27=14+128.……按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明你的结论.9.(2023秋•瓯海区校级月考)观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5= .(2)用含有n的代数式表示第n个等式:a n= (n为正整数);(3)求a1+a2+…+a100的值.1.(2023•洪山区开学)如图,摆第一个图形需要4根火柴,摆第二个图形需要7根火柴,…,以此类推.那么摆第八个图形需要( )根火柴.A .24B .27C .25D .282.(2022秋•凤翔县期末)找出以下图形变化的规律,则第2022个图形中黑色正方形的数量是( )A .3030B .3031C .3032D .30333.(2023•东海县开学)如图,一张正方形桌子四周可以坐4人,如果按如图所示的方式拼桌子,六张桌子拼在一起可以坐 人.4.(2023春•凉州区期末)观察下列图形,它们是按一定规律排列的,按此规律,第100个图形中“〇”的个数为 .5.(2022秋•无锡月考)探究规律:将棋子按下面的方式摆出正方形.(1)按图示规律,第(6)图需要 个棋子;(2)按照这种方式摆下去,摆第n(n为正整数)个正方形需要 个棋子;(3)按照这种方式摆下去,摆第2020个正方形需要多少棋子?6.下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有 个★,第六个图形共有 个★;(2)第n个图形中有★ 个;(3)根据(2)中的结论,第几个图形中有2020个★?7.(2023春•肇东市期末)用棋子摆出下列一组图形:(1)填写表:图形编号123456图形中的棋子 (2)照这样的方式摆下去,那么第n个图形的棋子数是 枚;(3)如果某一图形共有102枚棋子,那么它是第 个图形.8.(2022秋•濮阳县期中)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)2节链条长 cm,6节链条长 cm;(2)n节链条长多少cm?(3)如果一辆自行车的链条由60节这样的链条组成,那么这辆自行车上链条总长度是多少?9.(2022秋•永兴县期末)一串图形按如图所示的规律排列.(说明:下列所指的小正方形都是与第1个图形一样大小的正方形)(1)第5个图形中有几个小正方形?第6个图形呢?(2)求出第n个图形中小正方形的个数.(3)求出第20个图形中小正方形的个数.(4)是否存在某个图形,其小正方形的个数恰好是下列各数:①5050;②1000.给出你的判断,并说明理由.。
(完整版)七年级找规律经典题汇总带答案
一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n—1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;……由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
七年级上册找规律数学题
七年级上册找规律数学题一、数字规律题。
1. 观察下列数:1,4,9,16,25,…,按此规律,第n个数是()- 解析:- 第1个数是1 = 1^2;- 第2个数是4=2^2;- 第3个数是9 = 3^2;- 第4个数是16=4^2;- 第5个数是25 = 5^2。
- 所以第n个数是n^2。
2. 有一组数:1, - 2,3,-4,5,-6,·s,按此规律,第n个数是()- 解析:- 当n为奇数时,数为正数,即第n个数为n;- 当n为偶数时,数为负数,即第n个数为-n。
- 所以第n个数是( - 1)^n + 1n。
3. 观察数列:2,5,8,11,·s,则第n个数是()- 解析:- 可以发现每一个数都比前一个数大3。
- 第1个数2 = 3×1 - 1;- 第2个数5=3×2 - 1;- 第3个数8 = 3×3-1;- 所以第n个数是3n - 1。
4. 数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,第n个数是()- 解析:- 很明显,第n个数是(1)/(n)。
5. 找规律:0,3,8,15,24,·s,第n个数是()- 解析:- 第1个数0 = 1^2-1;- 第2个数3=2^2-1;- 第3个数8 = 3^2-1;- 第4个数15=4^2-1;- 第5个数24 = 5^2-1;- 所以第n个数是n^2-1。
二、图形规律题。
6. 用火柴棒按下图的方式搭三角形:- 照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?- 解析:- 搭1个三角形需要3根火柴棒;- 搭2个三角形需要3 + 2=5根火柴棒;- 搭3个三角形需要3+2×2 = 7根火柴棒;- 搭n个三角形需要3 + 2(n - 1)=2n + 1根火柴棒。
7. 观察下列图形的构成规律,根据此规律,第n个图形中有多少个圆?- 第1个图形有1个圆;- 第2个图形有1 + 2 = 3个圆;- 第3个图形有1+2 + 3=6个圆;- 第4个图形有1+2+3 + 4 = 10个圆;- 解析:- 第n个图形中圆的个数为1 + 2+3+·s+n=(n(n + 1))/(2)。
部编数学七年级上册专题05与整式有关的规律探究问题之六大题型(解析版)含答案
专题05 与整式有关的规律探究问题之六大题型单项式规律题例题:(2023下·云南玉溪·七年级统考期末)按一定规律排列的单项式:3579112,4,8,16,32,64x x x x x x ×××,第n 个单项式是( )A .()211n n x -+B .212n n x -C .221n n x +D .212n nx +【答案】B【分析】找出给出的一列单项式的系数和次数的规律即可解答.【详解】解:因为给出的一列单项式的系数分别是1234522,42,82,162,322=====L ,次数的规律是从1开始的连续的奇数,所以第n 个单项式是212n n x -.故选:B .【点睛】本题考查了单项式的规律探寻,根据给出的单项式找出系数和次数的规律是解题的关键.【变式训练】1.(2023下·云南昭通·八年级统考期末)一列单项式按以下规律排列:x ,23x -,25x ,7x -,29x ,211x -,13x ,L ,则第2023个单项式是( )A .4045xB .24045x -C .24045x D .4045x-【答案】A【分析】根据规律,系数是从1开始的连续奇数且第偶数个是负数,第奇数个是正数,x 的指数是3个循还一次,且分别是1,2,2,然后求解即可.【详解】解:根据x ,23x -,25x ,7x -,29x ,211x -,13x ,L ,所以系数是从1开始的连续奇数且第偶数个是负数,第奇数个是正数,有理数中分数的规律问题【变式训练】有理数的运算末位数字问题∴20233的末位数字为:7故选:C【点睛】此题考查了数字类变化规律,根据题意得到规律是解题的关键.【变式训练】有理数的新运算规律问题【变式训练】有理数中分数运算的规律问题【变式训练】图形类规律探究问题(1)数一数,完成下列表格.直线的条数2345【变式训练】1.(2023上·河北邢台·七年级统考期末)下面各图均由边长相同的正方形按一定规律拼接而成,请你观察、分析并解决下列问题:(1)第5个图中的正方形的个数是______;(2)求第n 个图中正方形的个数.【答案】(1)16(2)31n +【分析】(1)第1个图中正方形的个数是:3311=´+,第2个图中正方形的个数是:7321=´+,第3个图中正方形的个数是:10331=´+,则第n 个图中正方形的个数是:31n +,即可得;(2)由(1)即可得.【详解】(1)解:第1个图中正方形的个数是:3311=´+,第2个图中正方形的个数是:7321=´+,第3个图中正方形的个数是:10331=´+,…则第n 个图中正方形的个数是:31n +,即第5个图中的正方形的个数是:35116´+=,故答案为:16;(2)解:由(1)得,第n 个图中正方形的个数是31n +.(1)填写下表:三角形个数12345…故答案为:()21n +;(3)不存在三角形的个数是x 由2022根火柴棒拼成.理由如下:由(2)得出的规律可得:212022x +=,解得1010.5x =,∵火柴棒根数x 为正整数,∴1010.5x =不合题意,舍去,∴不存在三角形的个数是x 由2022根火柴棒拼成.【点睛】本题考查了图形类的变化规律,关键是通过观察图形,得出火柴棒数与三角形个数之间的规律.一、单选题A.63个B.87个C.91个【答案】D【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为而可得出答案.A.4044B.4046C.6069【答案】D二、填空题【答案】6068【分析】先根据题中的图形进行研究,分析出图形规律即可作答.【详解】解:第一个图的十字星是2个;(1)第四次裁剪后,得到的最小图形的面积占大正方形面积的______.(2)请你利用(1)中的结论,求下列各式的值:①23202211112222+++×××+=5112347解得78n =,答:需78张餐桌拼成一张大餐桌;(3)如图:由(1)同理可知,n 张桌子共坐()42n +人,42240n +=,解得59.5n =,n 是正整数,6078n =<,答:最少要用60张餐桌.【点睛】本题考查了数据规律的探究与实际应用;解题的关键是从题意观察、发现数据规律.。
初中数学规律探究题
1条 2条 3条 七年级数学(上)探索规律类 问题一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 . 2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。
4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10(第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。
七年级数学上册人教版整式的加减专题复习——规律探究(解析版)
整式的加减专题复习——规律探究(解析版)第一部分典例剖析+针对训练类型一数式规律典例1(2021秋•南岗区校级期中)有一列数,按一定规律排列而成:﹣1,3,﹣9,27,﹣81,243,…,其中某三个相邻数的和是1701,则这三个数中最小的数是.思路引领:设三个数中最前面的数为x,则另外两个数分别为﹣3x,9x,根据三个数之和为1701,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入﹣3x和9x 中,取其中最小值即可得出结论.解:设三个数中最前面的数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=1701,解得:x=243,∴﹣3x=﹣729,9x=2187.∵﹣729<243<2187,故答案为:﹣729.总结升华:本题考查了一元一次方程的应用以及规律型:数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.典例2(2022秋•涟水县校级月考)观察下面三行数,并按规律填空:①﹣2,4,﹣8,16,﹣32,64,,,…;②0,6,﹣6,18,﹣30,66,,…;③﹣3,3,﹣9,15,﹣33,63,,….(1)按第①行数的规律,分别写出第7和第8个数;(2)请你分别写出第②③行的第7个数;(3)取每行数的第9个数,计算这三个数的和.思路引领:(1)根据已知数据都是前一个数乘2的到得,再利用第奇数个系数为负数即可得出答案;(2)根据3行数据关系分别分析得出即可;(3)根据(2)得出的规律分别求出每行第9个数,再把它们相加即可.解:(1)∵①﹣2,4,﹣8,16,﹣32,64,∴第7个数是﹣128,第八个数是256;(2)第②行数是第①行数加上2,第③行数正好比第①行数少1得到的,即第二行的第7个数是﹣128+2=﹣126,第三行的第7个数是﹣128﹣1=﹣129;(3)根据以上所求得出:第一行第9个数为﹣512,第二行第9个数为﹣512+2=﹣510,第三行第9个数为﹣512﹣1=﹣513,则这三个数的和是:﹣512﹣510﹣513=﹣1535.总结升华:此题主要考查了数字变化规律,根据已知数据得出得数字第②行数是第①行数加上2,第③行数正好比第①行数少1得到的是解题关键.针对训练11.(2021•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9B.10C.11D.12思路引领:观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数.故选:B.总结升华:此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.2.(2021秋•新洲区期中)有一串数:﹣2018,﹣2014,﹣2010,﹣2006,﹣2002…按一定的规律排列,那么这串数中前个数的和最小.思路引领:根据题目中数据的特点,可以写出第n个数,然后令第n个数等于0,即可得到相应的n的值,从而可以解答本题.解:∵有一串数:﹣2018,﹣2014,﹣2010,﹣2006,﹣2002…∴这串数的第n个数为﹣2018+4(n﹣1)=4n﹣2022,当4n﹣2022=0时,解得,n=505…2,∴那么这串数中前505个数的和最小,故答案为:505.总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出第多少个数的值为0.类型二数阵、数表规律典例3(2020秋•江汉区月考)将全体正偶数排成一个三角形数阵:按照以上规律排列,第25行第20个数是.思路引领:观察数字的变化,第n行有n个偶数,求出第n行的第一个数,结论可得.解:观察数字的变化可知:第n行有n个偶数.∵第1行的第一个数是:2=1×0+2;第2行第一个数是:4=2×1+2;第3行第一个数是:8=3×2+2;第4行第一个数是:14=4×3+2;•∴第n行第一个数是:n(n﹣1)+2.∴第25行第一个数是:25×24+2=602.∴第25行第20个数是:602+2×19=640.故答案为:640.总结升华:本题主要考查了数字的变化的规律,有理数的混合运算.准确找出数字的变化规律是解题的关键.典例4(2019秋•江汉区期中)有这样一对数,如下表,第n+3个数比第n个数大2(其中n是正整数)第1个第2个第3个第4个第5个……a b c(1)第5个数表示为;第7个数表示为;(2)若第10个数是5,第11个数是8,第12个数为9,则a=,b=,c=;(3)第2019个数可表示为.思路引领:(1)根据第n+3个数比第n个数大2,即可求解;(2)根据第n+3个数比第n个数大2,分别求出第10、11、12个数即可求出结果;(3)根据数字的变化规律,解:(1)∵第n+3个数比第n个数大2,∴第5个数比第2个数大2,∴第5个数为b+2.∵第4个数比第1个数大2,∴第4个数为a+2,∴第7个数比第4个数大2,∴第7个数为a+4.故答案为b+2、a+4.(2)∵第10个数为a+6,第11个数为b+6,第12个数为c+6,∴a+6=5,b+6=8,c+6=9解得a=﹣1,b=2,c=3.故答案为﹣1、2、3.(3)第一组数是a、b、c第二组数是a+2、b+2、c+2第三组数是a+4、b+4、c+4第四组数是a+6、b+6、c+6…第n组数的第三个数是c+(2n﹣2)2019÷3=673,第2019个数是第673组的第三个数,∴第673组的第三个数是c+2×673﹣2=c+1344.故答案为c+1344.总结升华:本题考查了数字的变化类,解决本题的关键是寻找数字的变化规律.针对训练21.(2021秋•播州区期中)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a6=,a2020=.思路引领:根据题目中的数据,可以写出前几项,从而可以数字的变化特点,然后即可得到a6和a2020的值.解:由题意可得,a1=1,a2=1+2=3,a3=1+2+3=6,a4=1+2+3+4=10,a5=1+2+3+4+5=15,…,∴a n=1+2+3+…+n=n(n+1)2,∴当n=6时,a6=6×72=21,当n=2020时,a2020=2020×20212=2041210,故答案为:21,2041210.总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.2.(2018秋•江夏区期中)已知一列数:1、﹣2、3、﹣4、5、﹣6、……,将这列数排成下列形式:按照上述规律排列下去,第10行数的第1个数是()A.﹣46B.﹣36C.37D.45思路引领:观察排列规律得到第1行有1个数,第2行有2个数,第3行有1个数,…,第9行有9个数,则可计算出前9行的数的个数45,而数字的序号为偶数时,数字为负数,于是可判断第10行数的第1个数为﹣46.故选A.解:第1行有1个数,第2行有2个数,第3行有1个数,…,第9行有9个数,所以前9行的数的个数为1+2+3+…+9=45,而数字的序号为奇数时,数字为正数,数字的序号为偶数时,数字为负数,所以第10行数的第1个数为﹣46.故选:A.总结升华:本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号数的关系解决这类问题.3.(2017秋•海淀区校级期中)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可求得x=,第2017个格子中的数为.(2)判断:前m个格子中所填整数之和是否可能为2018?若能,求出m的值,若不能,请说明理由.(3)若取前3格子中的任意两个数记作a、b,且a≥b,那么所有的|a﹣b|的和可以通过计算|9﹣★|+|9﹣☆|+|★﹣☆|得到,其结果为;若a、b为前19格子中的任意两个数记作a、b,且a≥b,则所有的|a﹣b|的和为.思路引领:(1)根据三个相邻格子的整数的和相等列式求出x的值,再根据第9个数是2可得☆=2,然后找出格子中的数每3个为一个循环组依次循环,在用2014除以3,根据余数的情况确定与第几个数相同即可得解;(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.解:(1)∵任意三个相邻格子中所填整数之和都相等,∴9+★+☆=★+☆+x,解得:x=9,★+☆+x=☆+x﹣6,∴★=﹣6,所以,数据从左到右依次为9、﹣6、☆、9、﹣6、☆、…,第9个数与第三个数相同,即☆=2,所以,每3个数“9、﹣6、2”为一个循环组依次循环,∵2017÷3=672…1,∴第2017个格子中的整数与第1个格子中的数相同,为9.故答案为:9,9;(2)9﹣6+2=5,2018=2015+3=2015+9﹣6,2015÷5=403,403×3=1209,所以是第1209+1+1=1211个数,即m=1211,故前1211个数的和为2018;(3)∵取前3格子中的任意两个数,记作a、b,且a≥b,∴所有的|a﹣b|的和为:|9﹣(﹣6)|+|9﹣2|+|﹣6﹣2|=30.∵由于是三个数重复出现,那么前19个格子中,这三个数,9出现了7次,﹣6和2各出现了6次.∴代入式子可得:|9﹣(﹣6)|×7×6+|9﹣2|×7×6+|2﹣(﹣6)|×6×6=1212.故答案为:30,1212.总结升华:本题主要考查数字的变化规律,解答的关键是找出数字间的关系,得出规律.类型三图形的增长规律典例4(2021•汉川市模拟)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则第10个图形中右下方的“三角形数”中的所有点数是.思路引领:观察图象中点的个数的规律有第一个图形是4=1+3,第二个图形是9=3+6,第三个图形是16=6+10,…则按照此规律得到第10个图形的规律即可.解:∵第1个图形是4=1+(1+2),第2个图形是9=(1+2)+(1+2+3),第3个图形是16=(1+2+3)+(1+2+3+4),…∴第10个图形是112=(1+2+3+4+5+6+7+8+9+10)+(1+2+3+4+5+6+7+8+9+10+11)=55+66.故答案为:66.总结升华:此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.典例5(2020秋•江夏区期中)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是()A.360B.363C.365D.369思路引领:观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.解:第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块,第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n 个图案有黑色与白色地砖共(2n ﹣1)2,其中黑色的有12[(2n ﹣1)2+1],当n =14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365.故选:C .总结升华:本题考查图形的变化规律,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键. 针对训练31.(2021秋•中山市期中)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第10个图形共有 个〇.思路引领:观察图形的变化先得前几个图形中圆圈的个数,可以发现规律:第n 个图形共有(3n +1)个〇,进而可得结果. 解:观察图形的变化可知: 第1个图形共有1×3+1=4个〇; 第2个图形共有2×3+1=7个〇; 第3个图形共有3×3+1=10个〇; …所以第n 个图形共有(3n +1)个〇; 所以第10个图形共有10×3+1=31个〇; 故答案为:31.总结升华:本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律.2.(2018秋•硚口区期中)对于大于或等于2的整数的平方进行如下“分裂”,如下分别将22、32、42分裂成从1开始的连续奇数的和,依此规律,则20182的分裂数中最大的奇数是 .思路引领:由题意可知:每个数中所分解的最大的奇数是前边底数的2倍减去1.由此得出答案即可.解:自然数n2的分裂数中最大的奇数是2n﹣1.20182分裂的数中最大的奇数是2×2018﹣1=4035,故答案为:4035.总结升华:此题考查数字的变化规律,注意根据具体的数值进行分析分解的最大的奇数和底数的规律,从而推广到一般.3.(2022•仙居县校级开学)如图,都是由棱长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(10)个图形由()个正方体叠成.A.120B.165C.220D.286思路引领:根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+⋯+ n(n+1)2,据此可得第(6)个图形中正方体的个数.解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+⋯+n(n+1)2,∴第10个图形中正方体的个数为1+3+6+10+15+21+28+36+45+55=220.故选:C.总结升华:本题主要考查了图形变化类问题,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+⋯+n(n+1)2.类型四乘方规律典例6(2022•内蒙古)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72022的结果的个位数字是( ) A .0B .1C .7D .8思路引领:由已知可得7n 的尾数1,7,9,3循环,则70+71+…+72022的结果的个位数字与70+71+72的个位数字相同,即可求解.解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,… ∴7n 的尾数1,7,9,3循环, ∴70+71+72+73的个位数字是0, ∵2023÷4=505…3,∴70+71+…+72022的结果的个位数字与70+71+72的个位数字相同, ∴70+71+…+72022的结果的个位数字是7, 故选:C .总结升华:本题考查数的尾数特征,能够通过所给数的特点,确定尾数的循环规律是解题的关键.典例7(2022秋•东港区校级月考)求1+2+22+23+……+22007的值,可令S =1+2+22+23+……+22007,则2S =2+22+23+24+……+22008,因此2S ﹣S =22009﹣1,即S =22009﹣1,仿照以上推理,计算出1+3+32+33+……+32022值为32023−12.思路引领:令S =1+3+32+33+……+32022,则3S =3+32+33+……+32023,作差求出S 即可. 解:令S =1+3+32+33+……+32022, 则3S =3+32+33+……+32023, ∴3S ﹣S =32023﹣1, 则S =32023−12,即1+3+32+33+……+32022=32023−12.故答案为:32023−12.总结升华:本题考查数字的变化规律,通过观察所给的求和方法,灵活应用此方法求和是解题的关键. 针对训练41.(2021秋•罗湖区期中)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;……,已知按一定规律排列的一组数:2501,2502,2503,……,2999,21000.若2500=a ,用含a 的式子表示这组数之和是( ) A .2a 2﹣2aB .2a 10﹣2a 5﹣2C .2a 2﹣aD .2a 20﹣a思路引领:把所求的数列的各数提取2500,可得:2500×(2+22+23+…+2499+2500),利用所给的等式的规律求解即可.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…, ∴2+22+23+…+2n =2n +1﹣2, ∴2501+2502+2503+…+2999+21000 =2500×(2+22+23+…+2499+2500) =2500×(2500+1﹣2) =2500×(2×2500﹣2), ∵2500=a , ∴原式=a (2a ﹣2) =2a 2﹣2a . 故选:A .总结升华:本题主要考查了规律型:数字的变化类,有理数的混合运算,解答的关键是由所给的等式总结出规律.2.(2019秋•汾阳市期末)任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m 3分裂后,其中有一个奇数是203,则m 的值是( ) A .13B .14C .15D .16思路引领:观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数203的是从3开始的第101个数,然后确定出101所在的范围即可得解.解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m =(m+2)(m−1)2,∵2n +1=203,n =101,∴奇数203是从3开始的第101个奇数, ∵(13+2)(13−1)2=90,(14+2)(14−1)2=104,∴第101个奇数是底数为14的数的立方分裂的奇数的其中一个, 即m =14. 故选:B .总结升华:本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示:则第4个方框中x+y的值是()A.11B.12C.13D.14思路引领:找出求解过程图中的规律,利用此规律求得m,n,x,y的值,将相应字母的值代入即可得出结论.解:求解过程图中的表格中的规律为:第一行前两个格为十位数字的平方,后两个格为个位数字的平方,平方后不是两位数,十位数字用0代替,第二行从第二个格开始表示的是两位数中个位数字与十位数字的乘积的2倍,第三行为从右开始将一二行数字相加的和,足10进1,∵62=36,∴m=3,n=6,∵6×7×2=84,∴x=8,y=4,∴x+y=12.故选:B.总结升华:本题主要考查了有理数的乘方,求代数式的值,找出求解过程图中的规律是解题的关键.类型五幻方规律典例8(2021秋•江阴市期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3B.﹣8或1C.﹣1或﹣4D.1或﹣1思路引领:由于八个数的和是4,所以需满足两个圈的和是2,横、竖的和也是2.列等式可得结论.解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.总结升华:本题考查了有理数的加法.解决本题的关键是知道横竖两个圈的和都是2.典例9(2020•冷水江市一模)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,m=.思路引领:根据“每行、每列、每条对角线上的三个数之和相等”解答即可.解:1+2+3+…+9=45,根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,第三列第二个数为:15﹣3﹣5=7,第三个数为:15﹣2﹣7=6,如图所示:∴m=15﹣8﹣6=1.故答案为:1.总结升华:本题考查数的特点和有理数的加法,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.针对训练51.(2021秋•南安市期中)现有七个数﹣1,﹣2,﹣2,﹣4,﹣4,﹣8,﹣8将它们填入图1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为m,如图2给出了一种填法,此时m=64,在所有的填法中,m的最大值为256.思路引领:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个数之积相等且最大所以﹣8,﹣8必须放在被乘两次的位置.与﹣8,﹣8同圆的只能为﹣1,﹣4,其中﹣4m=256解:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个数之积相等且最大所以﹣8,﹣8必须放在被乘两次的位置.与﹣8,﹣8同圆的只能为﹣1,﹣4,其中﹣4放在中心位置,如图∴m=(﹣8)×(﹣8)×(﹣1)×(﹣4)=256总结升华:本题考查有理数的乘法,关键是找到两个(﹣8)的位置.2.将9个数填入幻方的九个方格中,使处于同一横行、同一竖列、同一斜对角线上的三个数的和相等,如表一:按此规律将满足条件的另外6个数填入表二,则表二中这9个数的和为(用含a的整式表示).表一492357816表二a+5a+1a﹣1思路引领:根据同一横行、同一竖列、同一斜对角线上的三个数的和相等作出图形,根据题意列出关于a与x的方程,可得x=a+2,进一步求出这9个数的和即可.解:如图所示:4+x+a﹣1+a+3=a﹣3+a+1+a+3,解得x=a﹣5,a+3+x+a+3=2a+6+a﹣5=3a+1,3(3a+1)=9a+3.故答案为:9a+3.总结升华:此题考查了列代数式,整式的加减,熟练掌握运算法则是解本题的关键.类型六其他规律典例10(2019秋•武昌区校级期中)某初中七(5)班学生军训排列成7×7=49人的方阵,做了一个游戏,起初全体学生站立,教官每次任意点4个不同学号的学生,被点到的学生,站立的蹲下,蹲下的站立,且学生都正确完成指令,同一名学生可以多次被点,则15次点名后蹲下的学生人数可能是()A.3B.27C.49D.以上都不可能思路引领:假设站立记为“+1”,则蹲下为“﹣1”.原来49个“+1”,乘积为“+1”,每次改变其中的4个数,即每次运算乘以4个“﹣1”,即乘以了“+1”,乘积为“+1”,即可得出结论.解:假设站立记为“+1”,则蹲下为“﹣1”.原来49个“+1”,乘积为“+1”,每次改变其中的4个数, 即每次运算乘以4个“﹣1”,即乘以了“+1”, 15次点名后,乘积仍然是“+1”, 所以,最后出现“﹣1”的个数为偶数, 即蹲下的学生人数为偶数, 选项A ,B ,C 都不符合题意, 故选:D .总结升华:此题主要考查了奇数与偶数,有理数乘法中积的符号的判断,解决本题的关键是利用有理数的乘法进行解决. 针对训练61.(2019秋•硚口区期中)把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};…我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x 是集合的一个元素时,100﹣x 也必是这个集合的元素,这样的集合又称为黄金集合,例如{﹣1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m ,且1180<m <1260,则该黄金集的元素的个数是( ) A .23B .24C .24或25D .26思路引领:由黄金集合的定义,可知一个整数是x ,则必有另一个整数是100﹣x ,则这两个整数的和为x +100﹣x =100,只需判断1180<m <1260内100的个数即可求解. 解:在黄金集合中一个整数是x ,则必有另一个整数是100﹣x , ∴两个整数的和为x +100﹣x =100, 由题意可知,1180<m <1260时, 100×12=1200,100×13=1300, ∴这个黄金集合的个数是24或25个; 故选:C .总结升华:本题考查有理数,新定义;理解题意,通过两个对应元素和的特点,结合m 的取值范围,进而确定元素个数是解题关键.第二部分 专题提优训练1.观察下面一列数:1,12,2,13,1,3,14,23,32,4,15,12,1,2,5,16,…(已写出了第1至第16个数).(1)第7,第8,第9,第10个数的积是 ,前16个数的积是 ; (2)按此规律,第30个数是 ;(3)在上面这列数中,从左起第m 个数记为F (m ),当F (m )=92020时,求m 的值. 思路引领:(1)根据规律直接写出数计算即可;(2)根据题意将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组数据的积为1,且分子递增1,分母递减1,然后根据规律得出第30个数即可; (3)根据F (m )=92020判断出F (m )是第几组第几个数即可得出m 的值. 解:(1)根据题意知,第7,第8,第9,第10个数的积是14×23×32×4=1,前16个数的积是1×(12×2)×(13×1×3)×(14×23×32×4)×(15×24×1×42×5)×16=16,故答案为:1,16;(2)由(1)知,将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组数据的积为1,且分子递增1,分母递减1, ∵1+2+3+4+5+6+7=28,∴第30个数在第8组的第2个数,即1+18−1=27,故答案为:27;(3)∵F (m )=92020,2020+9=2029,∴F (m )是第2028组第9个数,前面有2027组数, ∴m =(1+2+3+4+…+2027)+9=1+20272×2027+9=2055387. 总结升华:本题主要考查数字的变化规律,根据数字的变化分组分析规律是解题的关键.2.(2021秋•丹江口市期中)观察一列数:1,﹣2,3,﹣4,5,﹣6,7,…,将这列数排成下列形式:(1)在表中,第12行第6个数是 ;(2)在表中,“2021”是其中的第 行,第 个数;(3)将表中第i 行的最后一个数记为a i ,如第1行的最后一个数记为a 1,即a 1=1,第2行的最后一个数记为a 2,即a 2=3,如此下去,a 3=﹣6,a 4=﹣10,…,第n 行的最后一个数记为a n ,则用含n 的式子表示|a n |为 ; (4)在(3)的条件下,计算1a 1+1a 2−1a 3−1a 4+1a 5+1a 6−1a 7−1a 8+1a 9+1a 10.思路引领:(1)先求出前11行一共有66,即可求解;(2)求出前n 行共有n(n+1)2个数,再求前63行共有2016个数,即可求2021的位置;(3)由题意可得,1+2+3+......+n =n(n+1)2,即可求解; (4)原式=2(1−12+12−13+13−14+......+19−110+110−111),再运算即可. 解:(1)由题可知,第一行1个数,第二行2个数,…,第n 行n 个数, ∴前11行一共有1+2+3+…+11=66, ∴第12行第一个数是67, ∴第12行第6个数是﹣72, 故答案为:﹣72;(2)由题意可得,前n 行共有n(n+1)2个数,∴当n =63时,前63行共有2016个数, ∴2021时第64行的第5个数, 故答案为:64,5;(3)由题意可得,1+2+3+......+n =n(n+1)2, ∴|a n |=n(n+1)2, 故答案为:n(n+1)2; (4)1a 1+1a 2−1a 3−1a 4+1a 5+1a 6−1a 7−1a 8+1a 9+1a 10=11+13+16+110+......+145=2(11×2+12×3+13×4+......+19×10+110×11) =2(1−12+12−13+13−14+......+19−110+110−111)=2(1−111) =2011.总结升华:本题考查数字的变化规律,根据题意探索数字的排列规律是解的关键. 3.(2022•东莞市校级一模)找出以下图形变化的规律,则第2022个图形中黑色正方形的数量是 3033 .思路引领:仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案. 解:∵当n 为偶数时第n 个图形中黑色正方形的数量为n +12n 个;当n 为奇数时第n 个图形中黑色正方形的数量为n +12(n +1)个,∴当n =2022时,黑色正方形的个数为2022+1011=3033个. 故答案为:3033.总结升华:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并正确的找到规律.4.(2020秋•西城区校级期中)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,….由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.(1)请你写出一个既是三角形数又是正方形数的自然数 .(2)类似地,我们将k 边形数中第n 个数记为N (n ,k )(k ≥3).以下列出了部分k 边形数中第n 个数的表达式: 三角形数:N (n ,3)=12n 2+12n 正方形数:N (n ,4)=n 2 五边形数:N (n ,5)=32n 2−12n 六边形数:N (n ,6)=2n 2﹣n …根据以上信息,得出N (n ,k )= .(用含有n 和k 的代数式表示)思路引领:(1)由题意得第8个图的三角形数是36,所以既是三角形数又是正方形数,且大于1的最小正整数为36;(2)由已知等式进行变形进而可推出结果.解:(1)由题意第8个图的三角形数为12×8(8+1)=36,∴既是三角形数又是正方形数,且大于1的最小正整数为36, 故答案为36.(2)∵N (n ,3)=n 2+n 2=(3−2)n 2+(4−3)n2,N (n ,4)=n 2=2n 2+0×n 2=(4−2)n 2+(4−4)n2, N (n ,5)=32n 2−12n =(5−2)n 2+(4−5)n2,N (n ,6)=2n 2﹣n =4n 2−2n 2=(6−2)n 2+(4−6)n2, 由此推断出N (n ,k )=(k−2)n 2+(4−k)n2(k ≥3).故答案为:(k−2)n 2+(4−k)n2(k ≥3).总结升华:本题考查三角形数、正方形数的规律、完全平方数与归纳推理等知识,观察已知式子的规律并改写形式是解决问题的关键.5.(2020秋•江夏区校级月考)观察下列等式:12=1,22=4,32=9,42=16,52=25,…,若12+22+32+42+52+…+n 2的个位数字是1(0<n ≤2020,且n 为整数),下列选项中,n 的最大值是( ) A .2001B .2006C .2011D .2019思路引领:通过计算发现每10个数,末位数字循环一次,再结合选项进行判断即可求解. 解:∵12=1,22=4,32=9,42=16,52=25,62=36,72=49,82=64,92=81,102=100,112=121,122=144,132=169,…, ∴每10个数,末位数字循环一次, ∴1+4+9+6+5+6+9+4+1+0=45, ∵2001÷10=200……1, ∴200×45+1=9001; ∵2006÷10=200……6, ∴200×45+1+4+9+6+5+6=9031; ∵2011÷10=201……1, ∴201×45+1=9046; ∵2019÷10=201……9, ∴202×45=9090; ∵2006>2001, ∴n 的最大值为2006, 故选:B .总结升华:本题考查数字的变化规律,通过探索每个数的尾数的循环规律,并运用规律求解是解题的关键.6.(2021•碧江区 模拟)观察等式:2+22=23﹣2:2+22+23=24﹣2;2+22+23+24=25﹣2,…已知按一定规律排列的一组数:250、251、252、…、299、2100,若250=a,则用含a的式子表示这组数的和是.思路引领:由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故答案为:2a2﹣a.总结升华:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.7.(2019秋•武汉期中)如图,在边长为1厘米的正方形网格有12个格点,用这些格点做三角形顶点,一共可以连成面积为2平方厘米的三角形个数为()A.24B.32C.28D.12思路引领:根据面积等于底乘以高依次分情况分析既可以得到三角形个数.解:①如图以AB为底时,与对边CF的四个顶点都可以构成面积等于2平方厘米的三角形,类似这样的三角形共有16个,②如图以AC为底与线段BE上的三个点可以构成面积等于2平方厘米的三角形,类似这样的三角形共有12个,其中有四个直角三角形是重复的,故三角形总个数:16+12﹣4=24个,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学专题规律探究题
题型一:数字变化类问题
1.观察下列按顺序排列的等式:,,,
试猜想第n 个等式(n 为正整数):a n= __ .
2.下表中的数字是按一定规律填写的,表中 a 的值应是.
1 2 3 5 8 13 a ⋯
2 3 5 8 13 21 34 ⋯
3.观察下面的单项式:a,﹣2a2,4a3,﹣8a4,⋯根据你发现的规律,第8 个式子是.
4.有一组等式:
12 22 32 32,22 32 62 72,32 42 122 132,42 52 202 212⋯⋯请观察它们的构成规律,用你发现的规律写出第8 个等式为__________
5.把奇数列成下表,
根据表中数的排列规律,则上起第8 行,左起第 6 列的数是
5.在计数制中,通常我们使用的是“十进位制” ,即“逢十进一”。
而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等⋯而二进位制是计算机处理数据的依据。
已知二进位制与十进位
请将二进制数10101010(二)写成十进制数为.
7.观察一列单项式: 1x ,3x 2,5x 2,7x ,9x 2,11x 2
,⋯,则第 2013 个单项式是
8.有这样一组数据 a 1,a 2,a 3, ⋯a n ,满足以下规律: , ( n ≥2 且 n 为正整数),则 a 2013
的值为 __ (结果用数字表示) .
9. 观察下列各式的计算过程: 5×5=0×1×100+25,
15×15=1×2×100+25, 25×25=2×3×100+25,
35×35=3×4×100+25,
请猜测,第 n 个算式(n 为正整数 )应表示为
__________________________________________________________ ._
10. 如图,下列各图形中的三个数之间均具有相同的规律 .根据此规律 ,图形中 M 与 m 、 n 的关系是
A . M=mn
B . M=n(m+1)
C .M=mn+1
D .M=m(n+1)
11. 观察下列等式: 31=3,
32=9,33=27,34=81,35=243, 36=729,37=2187⋯ 解答下列问题: 3+32+33+34⋯+32013 的末位数字是( )
A .0
B .1
C .3
D . 7
12. 如下表,从左到右在每个小格中都填入一个整数, 使得任意三个
相邻格子所填 整数之和都相等,则第 2013个格子中的整数是 . -
4 a b c 6 b 2
⋯
6.观察下列各数,它们是按 定规律排列的,则第 n 个数是
,,
13. 将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是 85
15. 电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个 方块下面最多埋一个雷, 如果无雷, 掀开方块下面就标有数字, 提醒游戏者此数 字周围的方块(最多八个)中雷的个数(实际游戏中, 0 通常省略不标 ,此 WORD 中为方便大家识别与印刷, 我还是把图乙中的 0 都标出来吧, 以示与未掀开者的 区别),如图甲中的“ 3”表示它的周围八个方块中仅有 3 个埋有雷 .图乙第一行 从左数起的七个方块中(方块上标有字母) ,能够确定一定是雷的有 .(请
填入方块上的字母)
16. 如图,在△ ABC 中,∠ A=m °,∠ ABC 和∠
ACD 的平分线交于点 A 1,得∠ A 1;∠ A 1BC 和∠ A 1CD 的平分线交于点 A 2,得∠ A 2;⋯∠ A 2012BC 和∠ A 2012CD 的平分线交于 点 A 2013,则∠ A 2013= 度。
图甲 A B C D E F G
2 2 2
3
4 4 2 1
1 1 0 1 3 3
2 1
0 0 0 1 1 3 2 1 1 2
题型二:图形变化类问题
14.如图,是用火柴棒拼成的图
图
17.为庆祝“六?一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.
18.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征
20. 如图,下列图案均是长度相同的火柴按一定的规律拼搭而成: 第 1 个图案需 7 根火柴,第 2个图案需 13根火柴, ⋯,依此规律,第 11个图案需( )根火
例如:称图中 19.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.
21. ________________ 当白色小正方形个数 n 等于 1,2,3⋯时,由白色小正方形和和黑色小正方形组 成的图形分别如图所示 .则第 n 个图形中白色小正方形和黑色小正方形的个数 总和等于 .(用 n 表示, n 是正整数)
22. 如图,在菱形 ABCD 中,边长为 10,∠ A=60°.顺次连结菱形
ABCD 各边中点,可得四边形 A 1B 1C 1D 1;顺次连结四边形
A 1
B 1
C 1
D 1 各边中点,可得四边形 A 2B 2C 2D 2;顺次连结四边 形 A 2B 2C 2D 2 各边中点,可得四边形 A 3B 3C 3D 3;按此规律继
续下去⋯⋯ . 则四边形 A 2B 2C 2D 2 的周长是 形 A 2013B 2013C 2013D 2013 的周长
是 ▲
.
▲ C
23.如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O 后F,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8⋯后,那么所描的第2013 个点在射线
24.观察下列图形中点的个数,若按其规律再画下
n 个图形中所去,可以得到第有的个数为(用含n 的代数式表
示).。