运动学的描述
运动学描述的基本概念
运动学描述的基本概念运动学是物理学的一个分支,研究物体的运动状态和运动规律。
在运动学中,物体的位置、速度、加速度、时间等因素被用来描述和分析物体的运动。
以下是运动学描述的基本概念:1. 位移:位移是指物体从初始位置到最终位置的直线距离和方向的变化。
位移通常用矢量表示,具有大小和方向,可以使用位移-时间图像来表示。
2. 速度:速度是物体在单位时间内位移的变化率。
平均速度是在一段时间内的位移与时间的比值,而瞬时速度则是在某一瞬间的瞬时位移与时间的比值。
速度的单位通常是米/秒。
3. 加速度:加速度是物体在单位时间内速度的变化率。
平均加速度是在一段时间内的速度变化量与时间的比值,而瞬时加速度则是在某一瞬间的瞬时速度变化量与时间的比值。
加速度的单位通常是米/秒²。
4. 时间:时间是运动发生的过程中的一个基本参量,用来描述事件的先后顺序和持续时间。
时间的单位通常是秒。
5. 运动图像:运动图像是一种图示运动的方式,通过记录物体的位置随时间的变化来呈现运动过程。
在一维运动中,我们可以使用位移-时间图像表示,而在二维运动中,我们可以使用速度-时间或者加速度-时间图像表示。
6. 一维运动:一维运动是指物体在一条直线上的运动,例如沿着一条直线的向前或向后运动。
在一维运动中,我们只需要考虑物体在一个方向上的位移、速度和加速度。
7. 二维运动:二维运动是指物体在一个平面内的运动。
在二维运动中,物体可以沿着平面的两个不同方向上运动,因此需要考虑物体在水平方向和竖直方向上的位移、速度和加速度。
8. 相对运动:相对运动是指两个物体之间的运动状态的比较。
可以根据不同的参考系来描述物体的相对运动,例如地面上行走的人相对于马路是静止的,但是相对于地球来说则是在运动的。
9. 匀速运动:匀速运动是指物体在单位时间内保持恒定速度的运动。
在匀速运动中,物体的加速度为零,位移随时间的增长呈线性关系。
10. 匀加速运动:匀加速运动是指物体在单位时间内加速度保持恒定的运动。
高一物理运动的描述知识点归纳
高一物理运动的描述知识点归纳高一物理运动的描述知识点1匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.(2)特点:a=0,v=恒量.(3)位移公式:S=vt.7.匀变速直线运动(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.(2)特点:a=恒量(3)公式:速度公式:V=V0+at位移公式:s=v0t+at2速度位移公式:vt2-v02=2as平均速度V=以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.8.重要结论(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+l–Sn=aT2=恒量(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:自由落体运动(1)条件:初速度为零,只受重力作用.(2)性质:是一种初速为零的匀加速直线运动,a=g.(3)公式:10.运动图像(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;③图像与横轴交叉,表示物体从参考点的一边运动到另一边.(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.④图线与横轴交叉,表示物体运动的速度反向.⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动高一物理运动的描述知识点2时刻与时间间隔的关系时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。
对一些关于时间间隔和时刻的表述,能够正确理解。
如:第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。
运动学的基本原理与运动描述
运动学的基本原理与运动描述运动学是物理学的一个重要分支,研究物体的运动规律和运动状态。
它通过对物体的位置、速度和加速度等参数的测量和分析,揭示了运动的基本原理和运动描述的方法。
本文将从运动学的基本原理、运动描述的方法以及一些实际应用方面进行探讨。
一、运动学的基本原理运动学的基本原理主要包括质点运动、刚体运动和相对运动等方面。
质点运动是指将物体视为一个质点,忽略其形状和大小,只考虑质点的位置、速度和加速度等参数。
刚体运动则是指物体在运动过程中保持形状和大小不变,只发生平移或旋转的运动。
相对运动则是指观察者和物体之间的相对运动关系。
在运动学中,最基本的概念是位移、速度和加速度。
位移是指物体在一段时间内从一个位置到另一个位置的改变量。
速度是指物体在单位时间内位移的改变量,即位移的导数。
加速度则是指物体在单位时间内速度的改变量,即速度的导数。
这些概念为我们描述和理解运动提供了基本的工具。
二、运动描述的方法为了描述物体的运动,我们需要确定一个参考系。
参考系是一个用于观察和描述物体运动的坐标系。
常见的参考系有直角坐标系和极坐标系。
直角坐标系适用于描述物体的平面运动,而极坐标系适用于描述物体的径向和角度运动。
在运动描述中,我们可以使用位置-时间图、速度-时间图和加速度-时间图等图形来表示物体的运动规律。
位置-时间图将物体的位置随时间的变化关系用曲线表示,可以直观地展示物体的运动轨迹。
速度-时间图则将物体的速度随时间的变化关系用曲线表示,可以展示物体的加速度和减速度等信息。
加速度-时间图则将物体的加速度随时间的变化关系用曲线表示,可以展示物体的运动状态。
除了图形表示,我们还可以使用数学公式来描述物体的运动规律。
例如,对于匀速直线运动,物体的位移可以用公式s=v*t表示,其中v为物体的速度,t为时间。
对于匀加速直线运动,物体的位移可以用公式s=v0*t+1/2*a*t^2表示,其中v0为物体的初速度,a为物体的加速度。
力学中的刚体运动和运动学描述方法
力学中的刚体运动和运动学描述方法力学是物理学的一个重要分支,研究物体的运动和力的作用。
在力学中,刚体是最基本的研究对象之一。
刚体是指形状不变,内部各点之间的距离保持不变的物体。
其运动可以通过运动学描述方法进行研究。
在力学中,刚体的运动可以分为平动和转动两种。
平动是指整个刚体的位置随时间而变化,而转动是指刚体绕一定轴线旋转。
对于刚体的平动运动,可以用质心的位置来描述。
质心是指刚体所有质点的质量的几何中心,可以视为刚体的一个点。
在运动学中,刚体的运动可以用位移、速度和加速度等物理量来描述。
位移是指刚体在运动过程中从一个位置到另一个位置的变化量。
速度是指刚体在单位时间内位移的变化量,可以用位移对时间的导数来表示。
加速度是指刚体在单位时间内速度的变化量,可以用速度对时间的导数来表示。
对于平动运动,刚体质心的速度可以通过质心的位移对时间的导数来计算。
而对于转动运动,刚体的角速度和角加速度可以用角位移和角速度对时间的导数来计算。
刚体的角位移是指刚体在旋转过程中绕定轴线转过的角度,可以用弧度来表示。
角速度是指刚体在单位时间内角位移的变化量,可以用角位移对时间的导数来表示。
角加速度是指刚体在单位时间内角速度的变化量,可以用角速度对时间的导数来表示。
除了位移、速度和加速度等物理量外,刚体还具有动能、势能和力矩等重要概念。
动能是指刚体由于运动而具有的能量,可以用质量和速度的平方的乘积来计算。
势能是指刚体由于位置而具有的能量,例如重力势能和弹性势能等。
力矩是指力对刚体产生的力臂乘以力的乘积,用于描述力对刚体的旋转效果。
运动学描述方法中,还有一个重要概念是力矩定理。
力矩定理是刚体平衡的基本条件之一,它表明刚体处于平衡状态时,所受外力对质心产生的力矩和所受外力对定轴线产生的力矩之和为零。
这个定律在解决许多静力学和动力学问题时非常有用。
综上所述,刚体的运动可以通过运动学描述方法进行研究。
刚体的平动运动可以用质心的位置、速度和加速度等物理量来描述,而转动运动可以用角位移、角速度和角加速度等物理量来描述。
运动学和动力学的基本概念及其区别
运动学和动力学的基本概念及其区别运动学和动力学是物理学中两个重要的概念,它们分别研究物体的运动和力学原理。
本文将探讨运动学和动力学的基本概念以及它们之间的区别。
一、运动学的基本概念运动学是研究物体运动状态的物理学分支,它关注物体的位置、速度、加速度等与运动相关的物理量。
运动学主要研究物体运动的几何性质和轨迹,在不考虑外部力的情况下研究物体的运动规律。
1. 位移:位移是指物体从初始位置到终止位置的位置变化,通常用Δx表示。
位移的大小和方向与路径有关,是一个矢量量。
2. 速度:速度是指物体单位时间内位移的变化率,通常用v表示。
速度可正可负,正表示正向运动,负表示反向运动。
平均速度的定义是位移与时间的比值,即v=Δx/Δt;瞬时速度则是极限过程中的速度。
3. 加速度:加速度是指物体单位时间内速度的变化率,通常用a表示。
加速度也可正可负,正表示加速运动,负表示减速运动。
平均加速度的定义是速度变化量与时间的比值,即a=Δv/Δt;瞬时加速度则是极限过程中的加速度。
二、动力学的基本概念动力学是研究物体运动中作用力和物体运动规律的物理学分支,它关注物体所受的力以及这些力对物体运动的影响。
动力学通过牛顿定律描述物体的运动规律,并研究力的产生和作用。
1. 牛顿第一定律:牛顿第一定律也被称为惯性定律,它表明物体在受力为零时保持静止或匀速直线运动的状态。
2. 牛顿第二定律:牛顿第二定律描述了物体运动时力与加速度的关系,它可以表达为F=ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
根据这个定律,物体的加速度与它所受的力成正比,与它的质量成反比。
3. 牛顿第三定律:牛顿第三定律表明作用力与反作用力大小相等、方向相反且作用于不同的物体上。
这个定律也被称为作用与反作用定律,它说明力是一对相互作用的力。
三、运动学和动力学的区别尽管运动学和动力学都研究物体的运动,但它们关注的角度和内容有所不同。
1. 角度不同:运动学主要从物体自身的运动状态出发,研究物体的位移、速度和加速度等几何性质;动力学则主要从力的作用和物体所受的力的影响出发,研究物体的加速度和受力情况。
运动学知识点总结
一、基本概念1. 运动学的定义运动学是物理学的一个分支,研究物体的运动状态、运动规律、运动原因和运动过程。
它不考虑物体的具体形态和内部结构,而主要关心物体的位置、速度、加速度等运动规律。
2. 运动的基本要素运动的基本要素包括位置、速度、加速度等。
位置是物体在空间中的坐标,速度是物体在单位时间内位置变化的速率,而加速度则是速度变化的速率。
3. 相对运动和绝对运动在运动学中,相对运动是指一个物体相对于另一个物体的运动,而绝对运动则是该物体在绝对参考系中的运动。
4. 相对参考系和绝对参考系相对参考系是以一个物体为参照,观察其他物体的运动状态;而绝对参考系是以绝对空间或绝对时间为参照,观察物体的运动状态。
二、直线运动1. 匀速直线运动在匀速直线运动中,物体的速度保持不变,加速度为零。
其运动规律可以使用位移、速度和时间的关系式进行描述。
2. 变速直线运动在变速直线运动中,物体的速度随着时间变化,而加速度不为零。
其运动规律可以使用位移、速度和加速度的关系式进行描述。
三、曲线运动1. 圆周运动在圆周运动中,物体绕着固定轴线做圆周运动。
其运动规律可以使用角度、角速度和角加速度的关系式进行描述。
2. 弹性碰撞在弹性碰撞中,两个物体之间发生碰撞而不损失动能,其碰撞规律可以使用动量守恒定律进行描述。
1. 牛顿第一定律牛顿第一定律又称惯性定律,规定了物体在没有外力作用时将保持静止或匀速直线运动的状态。
2. 牛顿第二定律牛顿第二定律规定了物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
3. 牛顿第三定律牛顿第三定律规定了作用在物体上的力与物体对作用力的反作用力大小相等、方向相反。
五、能量和动量1. 动能和势能动能是物体由于运动而具有的能量,其大小与物体的质量和速度成正比;而势能是物体由于位置而具有的能量,其大小与物体的高度和引力势能相关。
2. 动量动量是一个物体运动时的物理量,其大小等于物体的质量与速度的乘积。
运动学概论
运动学概论一、引言运动学是物理学的一个重要分支,主要研究物体的运动规律,包括速度、加速度等运动参数。
在日常生活中,我们经常能看到各种物体的运动,了解运动学理论可以帮助我们更好地理解和描述这些现象。
二、运动的基本概念1. 平动和转动运动学将运动分为平动和转动两种基本类型。
平动是指物体沿着直线运动,而转动是指物体绕着固定轴线旋转运动。
2. 位移、速度和加速度在描述物体的运动时,我们常用位移、速度和加速度这三个参数。
位移表示物体从一个位置到另一个位置的变化;速度表示单位时间内的位移量;加速度表示速度的变化率。
三、匀速直线运动1. 定义当物体在运动过程中,它的速度保持不变,我们称为匀速直线运动。
2. 公式在匀速直线运动中,位移、速度和时间之间满足一定的关系:s=vt,$v=\\frac{s}{t}$,a=0。
3. 图像匀速直线运动的速度-时间图像是一条水平直线,斜率表示速度的大小。
四、匀加速直线运动1. 定义在匀加速直线运动中,物体的加速度保持不变,速度随时间匀速增加或减少。
2. 公式在匀加速直线运动中,位移、速度和加速度之间的关系可以用以下公式描述:$s=v_0t+\\frac{1}{2}at^2$,v=v0+at。
3. 图像匀加速直线运动的速度-时间图像是一条直线,斜率表示加速度的大小。
五、总结运动学是物理学中一个重要的研究方向,通过运动学的学习,我们可以更好地理解和描述物体的运动规律。
匀速直线运动和匀加速直线运动是运动学中的两个基本概念,它们在描述物体运动过程中起着重要作用。
希望通过本文的介绍,读者能对运动学有一个初步的了解,进一步探索其中的奥秘。
运动学描述物体运动状态的基本概念
运动学描述物体运动状态的基本概念运动学是研究物体运动的科学,它涉及到描述、分析和预测物体的运动状态。
为了更好地理解和应用运动学的基本概念,本文将介绍物体位置、速度和加速度三个方面,并探讨它们之间的相互关系。
一、物体的位置物体的位置是指物体所处的空间位置。
为了方便描述和定量分析,我们通常引入坐标系来描述物体的位置。
常用的坐标系包括一维直角坐标系和二维直角坐标系。
在一维直角坐标系中,我们可以用一个坐标轴表示位置,坐标轴上某一点表示物体所处的位置,通常用位移来描述物体在这个坐标轴上的位置变化。
在二维直角坐标系中,我们需要引入两个相互垂直的坐标轴,通常用两个坐标表示物体的位置。
二、物体的速度物体的速度是指物体位置随时间的变化率。
在一维直角坐标系中,物体的平均速度定义为物体从初始位置到结束位置的位移与时间间隔的比值。
而物体的瞬时速度则是指物体在某一瞬时的速度,通常用导数来描述。
在二维直角坐标系中,物体的速度有两个分量,分别沿着坐标轴的方向,通常用矢量来表示。
我们可以通过求解物体的位移与时间间隔的比值,来计算物体在一段时间内的平均速度,或者通过对物体位矢关于时间的导数,得到物体的瞬时速度。
三、物体的加速度物体的加速度是指物体速度随时间的变化率。
在一维直角坐标系中,物体的平均加速度定义为物体速度变化量与时间间隔的比值。
而物体的瞬时加速度则是指物体在某一瞬时的加速度,通常用导数来描述。
在二维直角坐标系中,物体的加速度也有两个分量,分别沿着坐标轴的方向,通常用矢量来表示。
我们可以通过求解物体速度变化量与时间间隔的比值,来计算物体在一段时间内的平均加速度,或者通过对物体速度矢量关于时间的导数,得到物体的瞬时加速度。
四、物体运动状态的关系根据运动学的基本概念,我们可以看到物体的位置、速度和加速度之间存在一定的关系。
首先,物体的速度是物体位置的导数,即速度是位置关于时间的变率。
其次,物体的加速度是物体速度的导数,即加速度是速度关于时间的变率。
运动学描述物体的运动状态随什么变化的规律
运动学描述物体的运动状态随什么变化的规律运动学描述了物体在运动中的位置、速度和加速度等运动状态。
它通过运动学公式来表达这些状态与物体自身性质、运动时间以及其他影响因素之间的关系。
那么,我们来研究一下,物体的运动状态是如何随着时间的变化而改变的,探究其规律性。
一、物体的位置随时间变化的规律物体位置的变化是运动学中最基本的概念之一。
位置通常用坐标系来描述,可以使用直角坐标系、极坐标系等。
当我们观察一个物体在一维直线上的运动时,我们可以通过位移来描述其位置的变化。
位移是物体运动过程中,从初始位置到后续位置的变化量。
根据经典力学的规律,物体的位移与物体的速度和时间之间存在着关系。
公式如下:Δx = v * Δt其中,Δx表示位移,v表示物体的速度,Δt表示时间的变化量。
从这个公式可以看出,物体的位移随着速度和时间的变化而变化,即速度越大,或者时间越长,位移也会增大。
这符合我们的实际观察,当一个物体以较大的速度运动,或者运动的时间较长时,它的位移也会比较大。
二、物体的速度随时间变化的规律物体的速度是另一个重要的运动状态。
速度是描述物体单位时间内位移的变化量。
在一维直线上的运动中,平均速度可以通过位移和时间的比值来计算。
公式如下:v = Δx / Δt其中,v表示速度,Δx表示位移,Δt表示时间的变化量。
物体的速度随时间的变化可以通过速度-时间图来表示。
当我们观察一个加速运动的物体时,速度-时间图呈现出一条斜线。
而当物体做匀速运动时,图像则是一条平行于时间轴的直线。
三、物体的加速度随时间变化的规律加速度是描述物体运动状态变化率的物理量,是速度随时间变化的导数。
在运动学中,加速度可正可负,表示速度变化的方向与速度本身的方向相同或相反。
公式如下:a = Δv / Δt其中,a表示加速度,Δv表示速度的变化量,Δt表示时间的变化量。
物理学中,加速度的单位是米每秒平方(m/s²)。
当一个物体的速度由10 m/s增加到20 m/s,所用的时间是5 s,则加速度为:a = (20 - 10) m/s / 5 s = 2 m/s²通过观察速度-时间图,我们可以进一步理解加速度对物体运动状态的影响。
运动学的基本概念 匀速直线运动
v甲对乙 = v甲对丙 + v丙对乙 ( 矢 性) 量
3、质点:用来代替物体的有质量的点叫质点。 、质点:用来代替物体的有质量的点叫质点。 它是一种 理想化模型 。 物体能简化成质点的条件是:在研究的问题中, 物体能简化成质点的条件是:在研究的问题中,物体只做 平动, 对研究物体运动无影响, 平动,或物体的 形状和大小 对研究物体运动无影响,才可 以把物体简化为质点。 以把物体简化为质点。
2、位移与路程的区别,平均速度与平均速率的区别 、位移与路程的区别, 关于平均速度的大小与平均速率 (1)当物体做单向直线运动时,二者才相等 )当物体做单向直线运动时, (2)当物体做直线运动,但方向有改变时,由于路程大于 )当物体做直线运动,但方向有改变时, 位移的大小,这时平均速度的大小要小于平均速率。 位移的大小,这时平均速度的大小要小于平均速率。 (3)物体做曲线运动时,位移的大小要小于路程,故平均 )物体做曲线运动时,位移的大小要小于路程, 速度的大小要小于平均速率。 速度的大小要小于平均速率。 例1:如图所示,三个物体甲、乙、丙相对于同一质点沿同一 :如图所示,三个物体甲、 直线作直线运动的位移图像,在时间t 直线作直线运动的位移图像,在时间 1内, (1)三者位移关系 ) (2)三者路程关系 ) 甲=乙=丙 乙 丙 甲>乙=丙 乙 丙
例:(单)以下说法中正确的是( B ) :(单 以下说法中正确的是( A、物体速度越大,加速度一定越大 、物体速度越大, B、物体速度变化越快,加速度一定大 、物体速度变化越快, C、物体加速度不断减小,速度一定越来越小 、物体加速度不断减小, D、物体在某时刻速度为零,加速度也一定为零 、物体在某时刻速度为零, 2. (单)下列说法正确的是 D ) . 下列说法正确的是( A.物体的速度改变量大,其加速度一定大 .物体的速度改变量大, B.物体有加速度时,速度就增大 .物体有加速度时, C.物体的加速度大,速度一定大 .物体的加速度大, D.物体的速度变化率大,加速度一定大 .物体的速度变化率大,
运动学的基本知识
运动学的基本知识运动学是研究物体运动的科学分支,它研究运动的速度、位移、加速度和时间等基本概念。
本文将介绍运动学的基本知识,包括匀速直线运动、匀加速直线运动和曲线运动。
一、匀速直线运动匀速直线运动是指物体在等时间间隔内保持相同速度的运动。
在匀速直线运动中,物体的位移与时间成正比,速度保持不变。
根据运动学的公式,位移等于速度乘以时间:位移 = 速度 ×时间。
在匀速直线运动中,物体的速度可以通过物体的位移除以所用的时间计算得出。
二、匀加速直线运动匀加速直线运动是指物体在等时间间隔内速度以相同的加速度改变的运动。
在匀加速直线运动中,物体的位移与时间成二次函数关系。
根据运动学的公式,位移等于初速度乘以时间加上加速度乘以时间的平方的一半:位移 = 初速度 ×时间 + (1/2) ×加速度 ×时间的平方。
在匀加速直线运动中,物体的速度可以通过初速度加上加速度乘以时间计算得出。
三、曲线运动曲线运动是指物体运动轨迹不是直线的运动。
在曲线运动中,物体的速度和加速度都是矢量,具有大小和方向。
曲线运动需要使用矢量运算来求解。
其中,速度矢量的大小等于位移矢量的大小除以所用的时间,加速度矢量的大小等于速度矢量的变化率。
总结运动学的基本知识包括匀速直线运动、匀加速直线运动和曲线运动。
匀速直线运动中,物体保持相同的速度;匀加速直线运动中,物体的速度以相同的加速度改变;曲线运动中,物体的运动轨迹不是直线。
运动学是研究物体运动的重要分支,它可以用来解释和预测物体的运动行为。
通过掌握运动学的基本知识,我们可以更好地理解和描述物体的运动过程。
以上是关于运动学的基本知识的简要介绍。
希望本文对您有所帮助。
运动学基础
ad d vtττvτ2naττannaτan
切向加速度:
a
d v dt
s
表示速度矢量大小的变化率;
法向加速度:
an
v 2
表示速度矢量方向的变化率;
点的速度与加速度
描述点的运动的弧坐标表示法
讨论1:
弧坐标中的加速度表示:
点沿着一螺旋线自外向 内运动。点所走过的弧长 与时间的一次方成正比。 请判断点的运动性质:
s
弧坐标中的加速度表示:
P'
P
/2
dτ
d
lim τ lim 2τ
0
0
sin
2
sin
lim
2
0
1
当 0时,
2 的极限方向垂直于 ,亦即n方向。
dτ n d
点的速度与加速度
描述点的运动的弧坐标表示法
s
弧坐标中的加速度表示:
P'
P
/2
d dsd 1
dt
dt
ds
vτ
其中:
d 1 曲率 ds
平移刚体上各点的加速度
平移的特点
平移的特点
应该注意,平移刚体内的点,不一定沿直线运动,也 不一定保持在平面内运动,它的轨迹可以是任意的空间曲 线。
—运动副
高副—通过点、线接触
低副—通过面接触
移动副 转动副
6.2 点的运动
描述点的运动的矢量法
z
O
x
位置矢量为变矢量
P
P´
r = r (t) ---点的运动方程
r r´ r P
点P在运动过程中,其位置矢量 的端点描绘出一条连续曲线
y ----位矢端图(运动轨迹)
运动的描述
1-1-1运动的描述概念、规律、方法与解题技巧1. 机械运动:物体在空间中所处的位置发生变化,这样的运动称为机械运动,简称运动,机械运动按轨迹分为直线运动和曲线运动。
2. 参考系:任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
问题1运动的相对性:选择不同的参考系来观察描述同一个物体的运动,结果往往是不同的,如行驶的汽车,若以路旁的树为参考系,车是运动的;若以车中的人为参考系,则车就是静止的。
问题2在运动学问题中,参考系的选取是任意的:可以选取高山、树木为参考系;也可以选取运动的车辆为参考系.但通常选取相对地面静止的物体为参考系。
问题3选择参考系时,应以观测方便和使运动的描述尽可能简单为原则。
3. 质点:把具有一定大小、形状的物体在一定条件下,看做具有质量的一个点,这个点叫质点。
质点是理想化的物体模型。
物体简体为质点的条件:物体的大小在所研究的问题里可以忽略时,物体可看作质点。
问题4如果一个物体的各部分运动情况都相同,物体上任何一点都能反映物体的运动(即平动),物体可以看做质点;问题5物体的大小与研究的问题中的距离相比很小时,可以看作质点。
问题6只研究物体的平动,而不考虑其转动效果时,物体即使是转动的,通常将质心的运动代表物体的运动,也可以看作质点。
【特别提醒】a. 物体能否看做质点并非以体积的大小为依据,体积大的物体有时也可看成质点,体积小的物体有时不能看成质点。
b. 质点并不是质量很小的点,它不同于几何图形中的“点”。
c. 同一物体,在不同问题中,有的可看成质点,有的不能。
4. 时刻和时间:时刻指某一瞬时,在时间轴上为一个点。
例如:第ns初,第ns末;时间指一段时间间隔,在时间轴上为两点间的线段。
例如:第ns内,ns内,前ns,最后ns。
5. 路程:质点实际运动路径的长度,路程只有大小,没有方向。
单位:在国际单位制中为米,符号为m;常用的单位还有千米、厘米等,符号分别为km、cm.。
运动学描述物体的运动状态随什么变化的规律
运动学描述物体的运动状态随什么变化的规律摘要:1.物体运动状态的定义与描述2.物体运动状态变化的原因3.物体运动状态变化的规律4.总结正文:一、物体运动状态的定义与描述物体运动状态是指物体在空间中的位置、速度、加速度等物理量的变化情况。
其中,速度是描述物体运动快慢和方向的物理量,加速度是描述物体速度变化快慢和方向的物理量。
物体的运动状态可以通过其速度和加速度来描述。
二、物体运动状态变化的原因物体运动状态的变化是由外力引起的。
根据牛顿第一定律,一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
外力是使物体运动状态改变的原因,它可以改变物体的速度、加速度以及运动方向。
三、物体运动状态变化的规律物体运动状态变化的规律可以通过牛顿运动定律来描述。
牛顿运动定律包括以下三条:1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
该定律指出了物体具有惯性,即物体维持自己的运动状态并不需要力。
2.牛顿第二定律:物体的加速度与作用在物体上的外力成正比,与物体的质量成反比。
该定律描述了物体受到外力后,其加速度与外力、质量之间的关系。
3.牛顿第三定律:作用在物体上的力与物体对它的反作用力大小相等,方向相反,作用在同一条直线上。
该定律揭示了力的相互作用性质。
通过以上三条定律,可以描述物体运动状态变化的规律。
例如,当物体受到一定的力作用时,其速度会发生变化,从而改变物体的运动状态。
四、总结物体运动状态的变化是由外力引起的,其变化的规律可以通过牛顿运动定律来描述。
什么是运动学和动力学?
什么是运动学和动力学?
运动学和动力学是物理学中两个重要的分支,用于研究和描述物体在运动过程中的行为和相互作用。
什么是运动学和动力学:
1.运动学:运动学研究的是物体的运动状态、速度、加速度
等与时间相关的属性,而不考虑引起这些运动的原因。
它关注的是物体的几何形状和轨迹,以及描述物体位置、速度和加速度的数学关系。
运动学主要涉及到位移、速度和加速度等概念,并使用图表、方程式和向量等工具来描述和分析运动。
2.动力学:动力学研究的是物体运动背后的原因和力的作用。
它涉及到物体受到的力、质量和运动状态之间的关系。
动力学使用牛顿定律和其他力学原理,研究物体的运动如何受到力的影响。
它能够描述物体的加速度、力和质量之间的相互作用,以及描述物体受到外部力和内部力时的运动变化。
简单说,运动学描述了物体在运动中的位置、速度和加速度等属性,而动力学则研究导致物体运动变化的力和原因。
运动学关注物体的几何特征和轨迹,而动力学则关注物体运动背后的力学原理和相互作用。
这两个分支在物理学、工程学和生物学等领域都有广泛应用。
它们在描述和解释物体的运动行为、设计运动系统、预测物体的轨迹等方面都起着重要的作用。
运动学和力学的基本概念
运动学和力学的基本概念运动学和力学是物理学中的两个重要分支,它们研究的是物体的运动以及运动背后的原因和规律。
本文将分别介绍运动学和力学的基本概念,帮助读者更好地理解这两个领域。
一、运动学的基本概念运动学是研究物体运动的学科,它关注的是物体在运动过程中的位置、速度、加速度等量的变化规律。
以下是运动学中的一些基本概念:1. 位移:位移是指物体在某个时间段内位置的变化量,通常用Δx表示。
位移可以是一个矢量,具有大小和方向。
2. 速度:速度是指物体在单位时间内位移的变化量,用v表示。
速度可以分为瞬时速度和平均速度,前者表示某一瞬间的速度,后者表示某个时间段内的平均速度。
3. 加速度:加速度是指物体在单位时间内速度的变化量,用a表示。
加速度也可以分为瞬时加速度和平均加速度。
4. 时间:时间是运动学中的重要参量,用t表示。
时间可以用来描述运动发生的顺序和持续的时长,是运动学中的基本概念之一。
二、力学的基本概念力学是研究物体运动的原因和规律的学科,它研究的是物体受力后的运动状态以及力和运动之间的关系。
以下是力学中的一些基本概念:1. 力:力是使物体产生加速度的原因,用F表示。
力可以是一个矢量,具有大小和方向。
常见的力包括重力、弹力、摩擦力等。
2. 牛顿第一定律:牛顿第一定律也称为惯性定律,它指出物体如果没有受到外力作用,将保持静止或匀速直线运动的状态。
3. 牛顿第二定律:牛顿第二定律给出了物体受力后的加速度与力的关系。
它的数学表达式为F=ma,其中F是物体所受合力,m是物体的质量,a是物体的加速度。
4. 牛顿第三定律:牛顿第三定律也称为作用-反作用定律,它指出任何一对物体之间的相互作用力大小相等、方向相反。
三、运动学与力学的关系运动学和力学是物理学中密切相关的两个学科。
运动学研究物体的运动状态和其变化规律,而力学研究物体受力后的运动状态和力与运动的关系。
在力学中,利用运动学的概念和公式可以更好地描述力的作用效果。
流体的运动学描述
流体的运动学描述流体是指能够流动的物质,它包括气体和液体。
流体的运动学描述涉及到描述流体运动的物理量以及它们之间的关系。
下面将对流体的运动学描述进行详细介绍。
一、流体的速度流体的速度是描述其单位时间内流动的距离。
在流体力学中,通常用速度矢量来表示流体的速度。
速度矢量的大小为速度的大小,方向则表示速度的方向。
二、流体的加速度流体的加速度是描述其速度变化率的物理量。
在流体力学中,加速度通常是由两部分组成,即流体的局部加速度和流体的时间导数项。
三、流体的轨迹流体的轨迹描述了流体质点在运动过程中所经过的路径。
对于稳定流体的运动,其轨迹可以通过解析解或者实验测量得到。
四、流体的速度场流体的速度场是描述流体内不同位置上速度变化的物理量。
速度场通常用速度矢量函数表示,即在空间中每个位置的速度矢量随空间坐标的变化。
五、连续性方程连续性方程描述了流体在运动过程中质量守恒的原理。
它表明在稳态流动中,如果流体的密度不随时间变化,则流体的质量在空间上的任何一个区域中是守恒的。
六、运动方程运动方程描述了流体运动中的力学平衡状态。
它可以由牛顿第二定律推导得到,即描述了由外力、压力和粘性力等对流体质点的加速度之间的关系。
七、势流和旋转流势流描述了流体的速度场中不存在旋转的情况。
在势流中,流体流动的速度完全由势函数表示。
而旋转流则是指流体的速度场中存在旋转的情况。
八、边界条件边界条件是描述流体运动中流体与物体接触的边界上速度和压力等物理量之间的关系。
边界条件是流体力学研究中重要的一部分,也是建立流体运动模型的基础。
九、雷诺数雷诺数是流体力学中的一个重要无量纲参数,它用于判断流体流动中惯性力和粘性力之间的相对重要性。
在流体流动的稳定性和流态转变等问题中,雷诺数具有重要的应用价值。
结论流体的运动学描述涉及到速度、加速度、轨迹、速度场、连续性方程、运动方程、势流、旋转流、边界条件以及雷诺数等物理量和概念。
通过对这些参数的分析和计算,可以全面地描述流体运动的特征和规律,为解决与流体运动相关的问题提供理论基础和实际指导。
运动的描述知识点总结
运动的描述知识点总结运动是人类生活中不可或缺的一部分,它不仅可以增强身体素质,还可以提高生活质量。
在运动中,我们会接触到许多相关的知识点,这些知识点对于我们正确理解和掌握运动的本质和规律具有重要意义。
接下来,我们将对运动的描述知识点进行总结,希望能够帮助大家更好地理解运动的本质和特点。
一、运动的定义。
运动是指物体在空间位置上发生变化的过程。
在运动中,物体的位置、速度和加速度都会发生变化,这些变化是运动的基本特征。
运动的描述需要用到物理学中的运动学知识,通过对位置、速度和加速度的描述,可以准确地表达物体在运动过程中的状态和特征。
二、运动的分类。
根据运动的特点和规律,可以将运动分为直线运动和曲线运动两大类。
直线运动是指物体在运动过程中沿着直线路径进行移动,而曲线运动则是指物体在运动过程中沿着曲线路径进行移动。
在实际生活中,我们会遇到各种各样的运动形式,这些运动形式都可以通过直线运动和曲线运动来进行分类和描述。
三、运动的描述方法。
在运动的描述过程中,我们通常会采用位置-时间图、速度-时间图和加速度-时间图等方法来描述物体的运动状态。
位置-时间图可以直观地反映出物体在不同时间点上的位置情况,速度-时间图则可以反映出物体在不同时间点上的速度情况,而加速度-时间图则可以反映出物体在不同时间点上的加速度情况。
通过这些描述方法,我们可以清晰地了解物体在运动过程中的状态和特征。
四、运动的规律。
在运动的过程中,物体会受到各种各样的力的作用,这些力会影响物体的运动状态。
根据牛顿运动定律,我们可以得出物体在受力作用下的运动规律。
例如,牛顿第一定律指出,物体在受力作用下会保持匀速直线运动或静止状态;牛顿第二定律则指出,物体的加速度与受到的合外力成正比,与物体的质量成反比;牛顿第三定律则指出,任何两个物体之间都会有相互作用力,且这两个力的大小相等、方向相反。
通过运用这些运动规律,我们可以准确地描述和预测物体在运动过程中的状态和特征。
运动学基础知识
运动学基础知识运动学是物理学的一个分支,研究物体的运动规律和运动量的变化。
它涉及到速度、加速度、位移、时间等概念,是理解物体运动的基础。
本文将介绍运动学的基本概念和公式,以及它们在实际生活和科学研究中的应用。
1. 位置、位移和路径在运动学中,位置是指物体所处的空间坐标,通常用直角坐标系表示。
位移是指物体从一个位置到另一个位置的变化量,是个矢量量值。
路径是物体在运动过程中经过的轨迹,可以是直线、曲线或复杂的曲线。
2. 速度和速度的变化率速度是物体在单位时间内移动的位移,是一个矢量量值。
平均速度可以通过总位移除以总时间得到。
当时间间隔趋近于无穷小时,得到瞬时速度,即物体在某一时刻的速度。
速度的变化率称为加速度,是一个矢量量值。
平均加速度可以通过总速度变化量除以总时间得到。
当时间间隔趋近于无穷小时,得到瞬时加速度,即物体在某一时刻的加速度。
3. 动力学方程动力学方程描述了物体运动过程中的力学关系。
根据牛顿第二定律,物体的加速度与其受到的合外力成正比,与物体的质量成反比。
用公式表示为 F = ma,其中 F 是合外力,m 是物体的质量,a 是物体的加速度。
4. 一维运动一维运动是指运动仅发生在一个方向上的运动。
在一维运动中,位移、速度和加速度可以是正数、负数或零。
物体的加速度为零时,物体处于匀速运动状态;物体的加速度不为零时,物体处于匀加速运动状态。
在一维运动中,可以使用一些基本的公式来计算位移、速度和加速度之间的关系,如位移公式、速度公式和加速度公式。
5. 二维运动二维运动是指运动发生在二维平面上的运动。
在二维运动中,物体的位置可以用二维坐标来表示,速度和加速度可以分解为横向和纵向的分量。
在二维运动中,可以使用向量表示位移、速度和加速度。
位移向量是从初始位置指向末位置的矢量,速度向量是位移向量除以时间的矢量,加速度向量是速度向量除以时间的矢量。
6. 自由落体运动自由落体是指物体在重力作用下自由下落的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
For personal use only in study and research; not for commercial use1.1 机械运动★知识点:一、机械运动、参考系1物体位置发生变化,叫做机械运动,简称运动。
2谈到运动,应先选定一个参考系(参照物),选择不同的参考系。
物体的运动情况可能不同。
3参考系是假设不动的,在选取上是任意的,但是研究地面上的运动时,常取做参考系4时间和时刻:在时间轴上,时刻对应点。
时间对应线段二、质点1、用来代替物体的,有质量的点2、物理意义:为了方便研究物体的运动,不考虑物体的形状下引入的理想模型3、条件:当物体的形状、大小、体积对研究的问题无影响或者影响很小时4、物体是否能看成是质点与物体的形状、大小无关★例题分析1.在有云的夜晚,抬头望月,觉得月亮在云中穿行,这是选取的参考系是()A、月亮B、云C、地面D、星2、关于时间和时刻的表述,下列正确的有()A、第5秒内表示5秒的时间B、第5秒末和第6秒初表示的是时间C、第5秒末和第6秒初表示的是相同时刻D、5秒内和第5秒内表示的相同的的时间。
3、关于参考系的选取,以下说法正确的是()A、研究物体的运动,必须选定参考系B、描述一个物体的运动情况时,参考系是可以任意选取的C、实际选取参考系时,应本着便于观测和使对运动的描述尽可能简单的原则来进行,如在研究地面上的运动时,常取地面或相对于地面静止的其他物体做参考系D、参考系必须选取地面或相对于地面不动的其它物体4、下面关于质点的正确说法有()A、研究和观察日食时可把太阳当做质点B、研究地球的公转时可把地球看做质点C、从地球上的控制中心跟踪观察在太空中飞行的宇宙飞船,可把飞船看作质点D、只有体积很小的物体才能看作质点★自主练习1.关于质点的概念,下面叙述正确的是()A、任何细小的物体都可以看作质点。
B、任何静止的物体都可以看作质点。
C、在研究某一问题是,一个物体可以视为质点,那么在研究另一个问题时,该物体也一定可视为质点。
D、一个物体可否视为质点,要看所研究问题的具体情况而定。
2.在有云的夜晚,抬头望月,觉得月亮在云中穿行,这是选取的参考系是()A、月亮B、云C、地面D、星3.汽车在平直的公路上向东冒雨行驶,下列说法中正确的是( )A、选择汽车为参考系,雨滴是静止的B、选择地面为参考系,坐在汽车里的乘客是静止的C、选择汽车为参考系,路旁的树木在向西运动D、选择乘客为参考系,刮雨器一定是静止的4.两辆汽车在平直公路上行驶,甲车内的人看见窗外树木向东移动,乙车内的人发现甲车没有运动.如果以大地为参考系.上述事实说明( )A 、甲车向西运动,乙车不动B 、乙车向西运动,甲车不动C 、甲车向西运动,乙车向东运动D 、甲,乙两车以相同的速度都向西运动5、甲、乙、丙三人各乘一只热气球,甲看到楼房匀速上升,乙看到甲匀速上升,丙看到乙匀速下降,甲看到丙匀速上升,那么,甲、乙、丙对地可能是( )A 、甲、乙匀速下降,且甲乙v v >,丙停在空中B 、甲、乙匀速下降,且甲乙v v >,丙匀速上升C 、甲、乙匀速下降,且甲乙v v >,丙匀速下降D 、上述结论均不正确6.关于时间和时刻,下列说法正确的是 ( )A 、时刻表示时间极短,时间表示时间较长。
B 、时刻对应位置,时间对应位移C 、作息时间表上的数字均表示时刻D 、1分钟只能分成60个时刻7、在第一次世界大战中,一个法国飞行员驾驶飞机在高空执行任务,发现脸颊附近浮动着一个小物体.飞行员以为是一只小虫子,就伸手去抓了一下,哪知抓到手中一看,原来是一颗德国人的子弹.你能从物理的角度解释这件事吗?1. 2 位移和路程★知识点一、位移:(S 、X )1物理意义:为了描述 引入的物理量2是矢量,有 ,有3定义:用一条从 指向 的有方向的线段表示4国际单位:米(m )5直线运动的位移的公式表示:S 12=X 2-X 1二、路程1、物理意义:物体运动轨迹的长度2是标量,有 ,无3国际单位:米(m )三、位移与路程比较1)路程与 有关。
位移与 有关,与路径 。
2)路程只有大小没有方向,位移既有大小又有方向。
4、联系:在单向的直线运动中,位移大小 路程,其他情况中,路程 位移的大小。
★例题分析1.如图所示,物体沿半径为R 的半圆弧线由A 运动到C ,则它的位移和路程分别为( )A 、0,0B 、4R 由A →C ,4R C 、4R 由A →C ,2R πD 、4R π,由A →C ,4R 2.小球从A 点出发,沿半径为r 的圆周转动。
则当小球转过1.25周时所发生的位移的大小是_________,小球所通过的路程是__________。
3.甲、乙两人从同一地点出发,甲向北前进300米,乙向西前进400米,则甲相对于乙的位移的大小和方向如何?4.以下说法中正确的是 ( )A 、两个物体通过的路程相同,则它们的位移大小也一定相同。
A B C R R 图B、两个物体通过的路程不相同,但位移的大小和方向可能都相同。
C、一个物体在某一方向运动中,其位移大小可能大于所通过的路程。
D、如物体做单一方向的直线运动,位移的大小就等于路程。
★自主练习1.关于位移和路程,下述说法正确的是()A、位移的大小与路程相等,只是位移有方向B、位移比路程小C、位移用来描述直线运动,路程用来描述曲线运动D、位移取决于物体始末位置间的距离和方向2.小球从3m高处落下,被地板弹回,在1m高处被接住.那么,小球通过的路程和位移的大小分别是( )A、4m,3mB、3m,1mC、3m,2mD、4m,2m3.下列关于位移和路程关系的正确说法是 ( )A、物体沿直线向某一方向运动,通过的路程就是位移B、物体沿直线运动,通过的路程等于位移的大小C、物体通过的路程不等,位移可能相同D、物体通过一段路程,位移不可能为零4.关于质点的位移和路程,下列说法正确的是()A.位移是矢量,位移的方向即质点的运动方向B.路程是标量,路程即位移的大小C.质点做单向直线运动时,路程等于位移的大小D.位移大小不会比路程大5.下列分析中涉及研究位移的是A、交管部门在对车辆年检中,了解汽车行程计量值B、指挥部通过卫星搜索小分队深入敌方阵地的具体位置C、运动员王军霞在第26届奥运会上创造了女子5000m的奥运会记录D、高速公路路牌标示“上海80km”6.时间和时刻是两个不同的概念。
要注意区分第几秒初、第几秒末、第几秒、几秒内、前几秒、后几秒、后几秒初等概念。
其中属于时刻概念的有;属于时间概念的有。
7.一辆汽车从A点出发,向东行驶了40km,到达C点,又向南行驶了30km到达B点,此过程中它通过的路程多大?它的位移大小、方向如何?8.一支队伍长为150m,沿直线匀速前进,由于紧急情况,通讯员从队尾跑步前进300m赶到队首,传达命令后立即返回队尾,当通讯员返回队尾时,队伍已前进了200m,则在此全过程中通讯员的位移和路程分别是多少?第三节运动快慢的描述—速度★知识点一、速度1、物理意义:表示物体运动的快慢程度。
2、比值定义式:3、国际单位:m/s4、矢量:二、平均速度1、物理意义:描述物体在运动的快慢程度2、定义式:3、计算平均速度时先明确或的平均速度。
三、瞬时速度1、物理意义:描述物体在运动的快慢程度2、简称为。
当所取的时间无穷小时,物体的平均速度近似等于。
3、矢量:瞬时速度方向就是物体的四、平均速度与瞬时速度比较五、速率和平均速率速率:,是标量平均速率:,是标量六、匀速直线运动和变速直线运动1.匀速直线运动:物体在的直线运动,简称。
瞬时速度速度大小和方向都不会随时间变化而,平均速度与瞬时速度2.变速直线运动:物体在的直线运动.★例题分析:1、物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15 m/s,则物体在整个运动过程中的平均速度是2、一辆汽车在一条直线上行驶,第1 s内通过8 m,第2 s内通过20 m,第3 s内通过30 m,第4 s内通过10 m,则此汽车最初2 s内的平均速度是______ m/s,中间2 s内的平均速度是______ m/s,全部时间内的平均速度是______ m/s.3、一物体做单向直线运动,前一半时间以V1匀速运动,后一半时间以速度V2匀速运动,则全程平均速度为_________。
4、下列说法中正确的是A.做匀速直线运动的物体,相等时间内的位移相等B.做匀速直线运动的物体,在任一时刻的瞬时速度都相等C.任意时间内的平均速度都相等的运动是匀速直线运动D.如果物体运动的路程跟所需时间的比值是一个恒量,则此运动为匀速直线运动5、物体沿一条直线运动,下列说法正确的是()A、物体在某时刻的速度为3m/s,则物体在1s内一定走3mB、物体在某1s内的平均速度是3m/s,则物体在这1s内的位移一定是3mC、物体在某段时间内的平均速度是3m/s,则物体在1s内的位移一定是3mD、物体在发生某段位移过程中的平均速度是3m/s,则物体在这段位移的一半时的速度一定是3m/s ★课后自主练习1.下列说法中正确的是:A、匀速运动就是匀速直线运动B、对于匀速直线运动来说,路程就是位移C、物体的位移越大,平均速度一定越大D、物体在某段时间内的平均速度越大,在其间任一时刻的瞬时速度也一定越大2.下列关于速度和速率的说法正确的是()②平均速率是平均速度的大小③对运动物体,某段时间的平均速度不可能为零④对运动物体,某段时间的平均速率不可能为零A.①②B.②③ C.①④ D.③④3.关于瞬时速度,下述说法正确的是()A、是物体在某段时间内的速度B、是物体在某一时刻的速度C、是物体在发生某一段位移过程中的速度D、是物体通过某一位置时的速度4.短跑运动员在100m竞赛中,测得7s 末的速度是9m/s,10s末到达终点的速度是10.2m/s,则运动员在全程的平均速度为()A、9m/sB、9.6m/sC、10m/sD、10.2m/s5.对于作匀速直线运动的物体,则()A.任意2s内的位移一定等于1s内位移的2倍B.任意一段时间内的位移大小一定等于它的路程C.若两物体的速度相同,则它们的速率必然相同,在相同时间内通过的路程相等D.若两物体的速率相同,则它们的速度必然相同,在相同时间内的位移相等6.一列火车在前30min内的平均速度为1km/min,以下说法正确的是A.这辆火车在1h内通过的位移一定是60kmB.这列火车通过前15km的位移所用的时间一定是15minC.这辆火车在前30min内一定以1km/min的速度行驶D.这辆火车在前30min内所通过的位移是30km7.甲、乙两地在一条平直公路上,司机小李匀速开车,用100min可走过全程;而司机老张匀速开车,需用150min走完全程。