解析几何——直线与圆锥曲线

直线与圆锥曲线

学习目标:

1、 掌握直线与圆锥曲线的交点个数问题的解法

2、 掌握直线与曲线相交时,用列联方程组的方法解题

3、 设而不求的思想方法在解题过程中的使用

例题选讲:

例1. (方略:双曲线)直线01:=--y ax l 与曲线12:2

2

=-y x C . (1) 若直线l 与曲线C 有且只有一个公共点,求实数a 的取值范围; (2) 若直线l 被曲线C 截得的弦长212a PQ +=,求实数a 的取值范围;

(3) 是否存在实数a ,使得以PQ 为直径的圆过原点,若存在,求出a 的值,若不存在,

说明理由.

例2. (方略P270)直线l 的斜率为1,在y 轴上的截距为b ,若直线l 与椭圆12

422=+y x 交于A 、B 两点,当OAB ?的面积最大时,求直线l 的方程,并求出面积的最大值.

例3.(2017年一模普陀18)已知椭圆22

22:1(0)x y C a b a b

+=>>的左、右焦点分别为1F 、

2F ,

过2F 的一条直线交椭圆于P 、Q 两点,若12PF F ?的周长为4+

.

(1)求椭圆C 的方程;

(2)若12F P F Q PQ +=u u u r u u u u r u u u r

,求直线PQ 的方程.

例4.(2017年一模虹口20)椭圆C :22

221(0)x y a b a b

+=>>过点(2,0)M ,且右焦点为

(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点.设点(4,3)P ,记PA 、PB 的斜

率分别为1k 和2k . (1)求椭圆C 的方程;

(2)如果直线l 的斜率等于1-,求出12k k ?的值;

(3)探讨12k k +是否为定值?如果是,求出该定值;如果不是,求出12k k +的取值范围.

A B

O

x

F

练习巩固

1. 若直线l 过点(3,0)且与抛物线x y 22

=相交于A 、B 两点,求OB OA ?的值.

2. O 为坐标原点,直线b x y +=与双曲线222

2

=-y x 相交于A 、B 两点,若OAB ?的面积为32,求b 的值.

3. (2017年一模普陀18)已知椭圆Γ:122

22=+b

y a x (0>>b a )的左、右两个焦点分别

为1F 、2F ,P 是椭圆上位于第一象限内的点,x PQ ⊥轴,垂足为Q ,且621=F F ,

9

3

5arccos

21=∠F PF ,△21F PF 的面积为23. (1)求椭圆Γ的方程;

(2)若M 是椭圆上的动点,求MQ 的最大值, 并求出MQ 取得最大值时M 的坐标.

x

4.(2015年二模黄浦23)已知点12(F F 、,平面直角坐标系上的一个动点(,)P x y 满足12||+||=4PF PF u u u r u u u u r

.设动点P 的轨迹为曲线C .

(1)求曲线C 的轨迹方程;

(2)点M 是曲线C 上的任意一点,GH 为圆2

2

:(3)1N x y -+=的任意一条直径,求MG MH ?u u u u r u u u u r

的取值范围;

(3)已知点A B 、是曲线C 上的两个动点,若OA OB ⊥u u u r u u u r

(O 是坐标原点),试证明:原点O 到

直线AB 的距离是定值.

(2015年二模闵行22)已知两动圆2

2

2

1:(F x y r +=和2

2

2

2:((4)

F x y r +=-(04r <<),把它们的公共点的轨迹记为曲线C ,若曲线C 与y 轴的正半轴的交点为M ,

且曲线C 上的相异两点A B 、满足:0MA MB ?=u u u r u u u r

(1)求曲线C 的方程;

(2)若A 的坐标为(2,0)-,求直线AB 和y 轴的交点N 的坐标; (3)证明直线AB 恒经过一定点,并求此定点的坐标.

(2015年二模杨浦23)已知抛物线2

:4C y x =的焦点F ,线段PQ 为抛物线C 的一条弦, (1) 若弦PQ 过焦点F ,求证:

11

FP FQ

+为定值; (2) 求证:x 轴的正半轴上存在定点M ,对过点M 的任意弦PQ ,都有

22

11MP MQ +

为定值;

(3) 对于(2)中的点M 及弦PQ ,设PM MQ λ=u u u u r u u u u r

,点N 在x 轴负半轴上,且满足

()

NM NP NQ λ⊥-u u u u r u u u r u u u r

,求N 点坐标

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

2019届高考数学一轮复习第八章平面解析几何第四节直线与圆圆与圆的位置关系课时作业

第四节 直线与圆、圆与圆的位置关系 课时作业 A 组——基础对点练 1.圆心为(4,0)且与直线3x -y =0相切的圆的方程为( ) A .(x -4)2 +y 2 =1 B .(x -4)2+y 2 =12 C .(x -4)2 +y 2 =6 D .(x +4)2 +y 2 =9 解析:由题意,知圆的半径为圆心到直线3x -y =0的距离,即r =|3×4-0| 3+1=23,结 合圆心坐标可知,圆的方程为(x -4)2 +y 2 =12,故选B. 答案:B 2.(2018·石家庄质检)若a ,b 是正数,直线2ax +by -2=0被圆x 2 +y 2 =4截得的弦长为23,则t =a 1+2b 2 取得最大值时a 的值为( ) A.12 B . 32 C.34 D .34 解析:因为圆心到直线的距离d = 24a 2 +b 2 ,则直线被圆截得的弦长L =2r 2 -d 2 =2 4-4 4a 2+b 2=23,所以4a 2 +b 2=4.t =a 1+2b 2 = 122 ·(22a )1+2b 2 ≤ 1 22·12·[(22a )2+(1+2b 2)2]=142[8a 2+1+2(4-4a 2)]=942 ,当且仅当? ???? 8a 2 =1+2b 2 4a 2 +b 2 =4时等号成立,此时a =3 4 ,故选D. 答案:D 3.(2018·惠州模拟)已知圆O :x 2 +y 2 =4上到直线l :x +y =a 的距离等于1的点恰有3个,则实数a 的值为( ) A .2 2 B . 2 C .-2或 2 D .-22或2 2 解析:因为圆上到直线l 的距离等于1的点恰好有3个,所以圆心到直线l 的距离d =1,即d =|-a |2=1,解得a =± 2.故选C. 答案:C 4.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2 +(y +1)2 =4截得的弦长为

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

【高考精品复习】第九篇 解析几何 第8讲 直线与圆锥曲线的位置关系

第8讲 直线与圆锥曲线的位置关系 【高考会这样考】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 基础梳理 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程. 即??? Ax +By +C =0,F (x ,y )=0, 消去y 后得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交; Δ=0?直线与圆锥曲线C 相切; Δ<0?直线与圆锥曲线C 无公共点. (2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)圆锥曲线的弦长 直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.

必修二平面解析几何初步知识点及练习带答案(全)

1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着 交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示 任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ) . 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示 过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的 倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. (3)指出此时直线的方向向量:),(A B -,),(A B -,) , ( 2 2 2 2 B A A B A B +-+ (单位向量); 直线的法向量:),(B A ;(与直线垂直的向量) (6)参数式:?? ?+=+=bt y y at x x 00(t 为参数)其中方向向量为),(b a ,) ,(2222b a b b a a ++; a b k = ; 22||||b a t PP o += ;

怎样学好圆锥曲线

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,

平面解析几何(直线和圆的方程圆锥曲线)专题

平面解析几何(直线和圆的方程、圆锥曲线)专题 17.0 圆锥曲线几何性质 如果涉及到其两“焦点”,优先选用圆锥曲线第一定义;如果涉及到其“焦点”、“准线”或“离心 率”,优先选用圆锥曲线第二定义;此外,如果涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用? PF t +PF2| =2a》£沪2方程为椭圆, 椭圆方程的第一定义:PF1- PF2 =2a F I F2无轨迹, PF1 - PF2 =2a = F t F2以F"F2为端点的线段 |PF t _PF2| =2aYF t F2方程为双曲线 双曲线的第一定义:PF1 _PF2 =2a - F1F 2无轨迹 PF i -PF 2 =2a=F i F2以F i,F 2的一个端点的一条射线 圆锥曲线第二定义(统一定义):平面内到定点F和定直线|的距离之比为常数e的点的轨迹.简言之就是“ e=点点距(数的统一)”,椭圆,双曲线,抛物线相对关系(形的统一)如右图. 点线距 当0 e 1时,轨迹为椭圆; 当e =1时,轨迹为抛物线; 当e -1时,轨迹为双曲线; 当e =0时,轨迹为圆(e =£,当c =0, a =b时). a 圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势 b =?,1 —e2、双曲线中b . e2 -1 . a a 圆锥曲线的焦半径公式如下图: 特征直角三角形、焦半径的最值、焦点弦的最值及其“顶点、焦点、准线等相互之间与坐标系无关的几 何性质”,尤其是双曲线中焦半径最值、焦点弦最值的特点 17.1圆锥曲线中的精要结论: .其中e=c,椭圆中 a a ex a— ex

平面解析几何初步(知识点 例题)

个性化简案 个性化教案(真题演练)

个性化教案

平面解析几何初步 知识点一:直线与方程 1. 直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[?∈α,?=90α斜率不存在. 2. 直线的斜率:αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 3.直线方程的五种形式 【典型例题】 例1:已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2 3.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 【举一反三】 1. 直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B .60° C .120° D .150° 2. 设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( ) A .-3,4 B .2,-3 C .4,-3 D .4,3 3. 直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( ) A .7 B .- 77 C .77 D .-7 4. 直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2:已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上. 练习:设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0. 例3:已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:2 3 ++x y 的最大值与最小值.

高考数学复习第八章平面解析几何直线与圆、圆与圆的位置关系课时作业理

课时作业55 直线与圆、圆与圆的位置关系 一、选择题 1.若直线2x +y +a =0与圆x 2 +y 2 +2x -4y =0相切,则a 的值为( ) A .± 5 B .±5 C .3 D .±3 解析:圆的方程可化为(x +1)2+(y -2)2 =5,因为直线与圆相切,所以有|a |5 =5,即 a =±5. 答案:B 2.直线x +2y -5+5=0被圆x 2 +y 2 -2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 6 解析:依题意,圆的圆心为(1,2),半径r =5,圆心到直线的距离d = |1+4-5+5| 5=1,所以结合图形可知弦长的一半为r 2 -d 2 =2,故弦长为4. 答案:C 3.已知直线l 经过点M (2,3),当圆(x -2)2 +(y +3)2 =9截l 所得弦长最长时,直线 l 的方程为( ) A .x -2y +4=0 B .3x +4y -18=0 C .y +3=0 D .x -2=0 解析:∵圆(x -2)2 +(y +3)2 =9截l 所得弦长最长,∴直线l 经过圆(x -2)2 +(y +3)2 =9的圆心(2,-3).又直线l 经过点M (2,3),∴直线l 的方程为x -2=0. 答案:D 4.若圆x 2+y 2 +2x -4y +m =0(m <3)的一条弦AB 的中点为P (0,1),则垂直于AB 的直径所在直线的方程为( ) A .x -y +1=0 B .x +y -1=0 C .x -y -1=0 D .x +y +1=0 解析:由圆的方程得该圆圆心为C (-1,2),则CP ⊥AB ,且直线CP 的斜率为-1,故垂直于AB 的直径所在直线的方程为y -1=-x ,即x +y -1=0. 答案:B 5.过点(2,0)引直线l 与曲线y =1-x 2 相交于A ,B 两点,O 为坐标原点,当△AOB

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率( ) A. 等于0 B. 等于1 C. 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A .1 B .-1 C .0 D .7 3. 已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB|=( ) A 、|x 1-x 2| B 、|y 1-y 2| C 、 x 2-x 1 D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限 B.第一象限 C.第四象限 D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x 轴上的截距为( ) A .23 - B .32- C .32 D .2 6.直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线221 :2+=x y l 垂直,则a 的值是( ) A 2 B -2 C .21 D .21 - 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1 y x =-

解析几何-- 圆锥曲线的概念及性质

4.2 解析几何-- 圆锥曲线的概念及性质 一、选择题 1.(2010·安徽)双曲线方程为x 2 -2y 2 =1,则它的右焦点坐标为 ( ) A. ????22,0 B.????52,0 C.??? ?62,0 D .(3,0) 解析:∵原方程可化为x 21-y 2 1 2=1,a 2=1, b 2=12, c 2=a 2+b 2=32, ∴右焦点为????6 2 ,0. 答案:C 2.(2010·天津)已知双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个 焦点在抛物线y 2 =24x 的准线上,则双曲线的方程为 ( ) A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2 108-y 2 36=1 D.x 2 27-y 2 9 =1 解析:∵渐近线方程是y =3x ,∴b a = 3.① ∵双曲线的一个焦点在y 2=24x 的准线上, ∴c =6.② 又c 2=a 2+b 2,③ 由①②③知,a 2=9,b 2=27, 此双曲线方程为x 29-y 2 27=1. 答案:B

4.(2010·辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=() A.4 3 B.8 C.8 3 D.16 解析:解法一:AF直线方程为: y=-3(x-2), 当x=-2时,y=43,∴A(-2,43). 当y=43时代入y2=8x中,x=6, ∴P(6,43), ∴|PF|=|P A|=6-(-2)=8.故选B. 解法二:∵P A⊥l,∴PA∥x轴. 又∵∠AFO=60°,∴∠F AP=60°, 又由抛物线定义知P A=PF, ∴△P AF为等边三角形. 又在Rt△AFF′中,FF′=4, ∴F A=8,∴P A=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为() A.圆B.椭圆C.双曲线D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆 顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,BA P A DC PC ,从而 PC=2P A.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2),则A(-5,0),C(5,0),设P(x,y),得(x-5)2+y2=2(x+5)2+y2 化简得x2+y2+50 3 x+25=0,显然,P点的轨迹为圆.

山东2021新高考数学一轮复习第八章平面解析几何8.4直线与圆圆与圆的位置关系学案含解析.doc

第四节直线与圆、圆与圆的位置关系 课标要求考情分析 1.能根据给定直线、圆的方程判断直线与圆的 位置关系;能根据给定两个圆的方程判断两 圆的位置关系. 2.能用直线和圆的方程解决一些简单的问 题. 3.初步了解用代数方法处理几何问题的思想. 1.本节是高考中的重点考查内容,主要涉及直线与圆的位 置关系、弦长问题、最值问题等. 2.常与椭圆、双曲线、抛物线交汇考查,有时也与对称 性等性质结合考查. 3.题型以选择、填空为主,有时也会以解答题形式出现, 属中低档题. 知识点一直线与圆的位置关系 设直线l:Ax+By+C=0(A2+B2≠0), 圆:(x-a)2+(y-b)2=r2(r>0), d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ. 直线与圆的位置关系的常用结论 (1)当直线与圆相交时,由弦心距(圆心到直线的距离),弦长的一半及半径长所表示的线 段构成一个直角三角形.

(2)弦长公式|AB|=1+k2|x A-x B| =(1+k2)[(x A+x B)2-4x A x B]. 知识点二圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r21(r1>0), 圆O2:(x-a2)2+(y-b2)2=r22(r2>0). 两圆相交时公共弦的方程求法: 设圆C1:x2+y2+D1x+E1y+F1=0,① 圆C2:x2+y2+D2x+E2y+F2=0,② 若两圆相交,则有一条公共弦,其公共弦所在直线方程由①-②所得,即:(D1-D2)x +(E1-E2)y+(F1-F2)=0. 1.思考辨析 判断下列结论正误(在括号内打“√”或“×”) (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方

平面解析几何初步

平面几何初步 课程要求 1.直线与方程 (1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. (3)能根据两条直线的斜率判定这两条直线平行或垂直. (4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、 两点式及一般式),了解斜截式与一次函数的关系. (5)能用解方程组的方法求两条相交直线的交点坐标. (6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. 2.圆与方程 (1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程. (2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系. (3)能用直线和圆的方程解决一些简单的问题. (4)初步了解用代数方法处理几何问题的思想. 3.空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式. 考情分析 平面解析几何是高中数学的一个基本知识点,我们学习它是为了后面学习空间几何和圆锥曲线打基础。但平面几何作为一个考点,还是会在选择题或填空题中出现一道,而且难度适中。 为了拿到这5分,并且为后面的解答题做准备,我们需要牢牢掌握这部分基础知识。

知识梳理 1 一、 直线与方程 1. 直线的倾斜角和斜率: 倾斜角: x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别 地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180 直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线 的斜率。直线的斜率常用k 表示。 斜率反映直线与轴的倾斜程度 斜率的公式:给定两点 ()()y x p y x P ,,2 2 2 1 1 1 ,,x x 2 1≠,则直线 P P 2 1 的斜率 k = x x y y 2 1 2 1-- 平行与垂直:两条直线l l 2 1, ,他们的斜率分别为 k k 2,1 k k l l 212 1,//=? 1212 1 -=??⊥k k l l 2. 直线的方程 点斜式:直线l 过点 ()y x p 0 ,,且斜率为k,那么直线方程为:

直线与圆锥曲线的交点个数问题

直线与圆锥曲线的交点个数问题 直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,对于消元后的一元二次方程,必须讨论二次项系数和判别式?,若能数形结合,借助图形的几何性质则较为简便。 一、直线与圆锥曲线的交点个数的探求 设直线:0l Ax By C ++=,圆锥曲线:()0C f x y =,,由0()0A x B y C f x y ++=??=? ,,,,即将直线l 的方程与圆锥曲线C 的方程联立,消去y 便得到关于x 的一元二次方程20ax bx c ++=(当然,也可以消去x 得到关于y 的一元二次方程),通过一元二次方程解的情况判断关系,见下表: 注意:(1)对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切;(2)有关直线与圆锥曲线公共点的个数问题,要注意用好分类讨论和数形结合的思想方法。 例1、讨论直线:1l y kx =+与双曲线22:1C x y -=的公共点的个数. 解:联立方程2211y kx x y =+??-=? ,,整理得22(1)220k x kx ---=, 当1k =±时,1x = . 当1k ≠±时,22248(1)84k k k ?=+-=-, 若0?> ,则k <0?= ,则k =0?< ,则k < 或k > 综上所述,当k =时,直线与双曲线相切于一点;1k =± 时,直线与双曲线相交

于一 点;k< 或k>时,直线与双曲线没有公共点 ;1k <<或11 k -<< 或1 k<-时,直线与双曲线有两个公共点. 点评:直线与圆锥曲线有无公共点的问题,实际上就是相应的方程组有无实数解的问题.直线与双曲线公共点的个数,特别是只有一个公共点时,除了相切的情况之外,还有直线与双曲线渐近线相平行时的情况.抛物线同样也存在这样的问题,应特别引起注意.二、借助于直线与圆锥曲线的交点个数探求直线方程 例2、已知双曲线C:2x2-y2=2与点Q(1,1),试判断以Q为中点的弦是否存在. 解:假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2,∴2(x1-x2)=y1-y1,即k AB= 2 1 2 1 x x y y - - =2 但渐近线斜率为±2,结合图形知直线AB与C无交点,所以假设不正确,即以Q为中点的弦不存在. 点评:解答利用了“点差法”,但前提应是直线与曲线有交点,故求出斜率后必须进行验证,本题的验证利用了数形结合法,也可利用判别式法进行验证。 三、借助于直线与圆锥曲线的交点个数探求参数 例3、若直线1 y kx =+与焦点在x轴上的椭圆 22 1 5 x y m +=总有公共点,求m的取值范围.解法一:考虑到直线与椭圆总有公共点,由直线与圆锥曲线的位置关系的充要条件可求.解:由椭圆方程及椭圆的焦点在x轴上,知05 m <<. 由22 1 1 5 y kx x y m =+ ? ? ? += ? ? , , 得22 (5)105(1)0 m k x kx m +++-=. 又∵直线与椭圆总有公共点,∴上述方程0 ?≥对一切实数k成立, 即22 (10)4(5)5(1)0 k n k m -?+?-=,亦即2 51 k m - ≥对一切实数k成立.10 m - ∴≤,即1 m≥.故m的取值范围为[) 15 m∈,. 解法二:由于直线过定点(01) ,,而直线与椭圆总有公共点,所以定点(01) ,必在椭圆内部或边界上,由点与椭圆的位置关系的充要条件易求. 解:由椭圆的方程及椭圆的焦点在x轴上知05 m <<. 又∵直线与椭圆总有公共点.∴直线所经过的定点(01),必在椭圆内部或边界上.22 01 1 5m + ∴≤,即1 m≥.故m的取值范围为[) 15 m∈,. 点评:解法一由直线与圆锥曲线的位置关系的充要条件求,思路易得,但计算量大;解法二首先判断直线是否过定点,定点在椭圆内、外还是干脆就在椭圆上,然后借助曲线特征判断,思路灵活,且简捷. 总之,讨论直线与圆锥曲线的交点个数实际上就是讨论方程组的解的个数,在讨论方程组的解时需要对二次项系数及一次项系数进行讨论,体现了分类讨论和数形结合的思想方法

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

(完整word版)平面解析几何初步复习课教学设计.doc

平面解析几何初步复习课教学设计 (一)教材分析 解析几何的主要内容为直线与圆,圆锥曲线,坐标系与参数方程。根据课程标准要 求,在必修 2 解析几何初步中,学生学习的最基本内容为直线与直线方程,圆与圆的方 程,并初步建立空间坐标系的概念。这一内容是对全体学生设计的,大部分学生在选修 中还将进一步学习圆锥曲线,坐标系与参数方程等有关内容。因此,本章要求学生掌握 解析几何最基本的思想方法--------用代数的方法研究曲线的几何性质,并学习最基本 的直线,圆的方程,并通过方程研究他们的图形性质。这样的安排,一方面降低了解析 几何的难度,多次反复又逐步提高学生对解析几何的认识,另一方面对部分在解析几何 学习上有较高要求的学生,可以在选修部分拓广加强。 因此教学中,要体会必修 2 的 4 个特点①是学习立体几何与解析几何的初级阶段②仅 仅是初步③是螺旋式上升的开始④ . 感性认识到理性认识的过渡期。 ( 二 )课程内容标准(教学大纲与课程标准比较) 《教学大纲》《课程标准》主要变化点 直线和圆的方程 (22 课时 ) 平面解析几何初步 ( 约 18 课时 ) 1.平面解析几何分 直线的倾斜角和斜率。直线(1) 直线与方程层为三块:初步(必 方程的点斜式和两点式。直①在平面直角坐标系中,结合具体修)、圆锥曲线(必 线方程的一般式。图形,探索确定直线位置的几何要选)和坐标系与参数 两条直线平行与垂直的条素。方程(自选)。 件。两条直线的交角。点到②理解直线的倾斜角和斜率的概2.线性规划问题移 直线的距离。念,经历用代数方法刻画直线斜率到《数学 5》“不等 用二元一次不等式表示平面的过程,掌握过两点的直线斜率的式”部分;原立几 B 区域。简单线性规划问题。计算公式。教材“空间直角坐 实习作业。③能根据斜率判定两条直线平行标系”移至解几初 曲线与方程的概念。由已知或垂直。步。 条件列出曲线方程。④根据确定直线位置的几何要素,3.注重过程教学,

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

平面解析几何初步——直线与圆

平面解析几何初步——直线与圆一.考试内容及要求 本章知识结构考试内容 要求层次 A B C 平面解析几何初步直线 与 方程 直线的倾斜角和斜率√ 过两点的直线斜率的计算公式√ 两条直线平行或垂直的判定√ 直线方程的点斜式、两点式及一般式√ 两条相交直线的交点坐标√ 两点间的距离公式、点到直线的距离公式√ 两条平行线间的距离√ 圆与 方程 圆的标准方程与一般方程√ 直线与圆的位置关系√ 两圆的位置关系√

三.基础知识梳理 (一)直线的倾斜角与斜率及直线方程 1.直线的倾斜角 (1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式 (1)若直线l 的倾斜角0 90α≠,则斜率tan k α=;0 90α=时,直线斜率不存在; (2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率21 21 y y k x x -=-. 3.直线方程的五种形式 4.几种特殊直线的方程: ①过点),(b a P 垂直于x 轴的直线方程为a x =;过),(b a P 垂直于y 轴的直线方程为b y = ②已知直线的纵截距为b ,可设其方程为b kx y +=; ③已知直线的横截距为a ,可设其方程为a my x +=; ④过原点的直线且斜率是k 的直线方程为y kx = (二)、两条直线的位置关系 1.两条直线的平行与垂直关系(分斜率存在与不存在两种情况讨论) ①若两条不重合的直线的斜率都不存在,则这两条直线平行;若一条直线的斜率不存在,另一条直线的斜率为0,则这两条直线垂直. ②已知直线111:b x k y l +=,222:b x k y l +=, 若1l ,与2l 相交,则21k k ≠ ; 若21l l ⊥,则121-=?k k ; 若1l //2l ,则21k k =且21b b ≠; 若1l 与2l 重合,则,21k k =且21b b =

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

相关文档
最新文档