六年级奥数之进位制问题

六年级奥数之进位制问题
六年级奥数之进位制问题

进位制问题

1.在几进制中有4×13=100.

2.在三进制中的数12120120110110121121,则将其改写为九进制,其从左向右数第l位数字是几?

3.在6进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?

4.设1987可以在b进制中写成三位数xyz,且++=1+9+8+7,试确定出所有可能的x、y、z及b.

x y z

5.下面加法算式中不同字母代表不同的数字,试判定下面算式是什么进制,A 、B 、C 、D 的和为多少?

6. 一个非零自然数,如果它的二进制表示中数码l 的个数是偶数,则称之为“坏数”.例如:18=(10010)2是

“坏数”.试求小于1024的所有坏数的个数.

7.计算:2003333 3...31?????- ? ??? 个26的余数.

8.一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.老师发现这3个三位数的最高

位数字恰好是3、4、5,那这样的三位数一共有多少个?

9. 一袋花生共有2004颗,一只猴子第一天拿走一颗花生,从第二天起,每天拿走的都是以前各天的总和.

①如果直到最后剩下的不足以一次拿走时却一次拿走,共需多少天?

②如果到某天袋里的花生少于已拿走的总数时,这一天它又重新拿走一颗开始,按原规律进行新的一轮.如此继续,那么这袋花生被猴子拿光的时候是第几天?

五年级奥数数学行程问题知识点及练习

行程问题 行程问题是小学阶段接触最多、难度比较大的一类应用题,程问题有其基本的解答规律。这一讲所讲的行程问题是比较复杂行程问题,解答这类行程问题时不能生搬硬套关系式,要具体问题具体分析。 基本数量关系式: 速度x时间=路程路程÷时间=速度 路程÷速度=时间 一、专题简析: 我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。 解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。 例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇? 练习一 1、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米? 2、一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?

例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米? 练习二 1、甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米? 2、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇? 例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?

小学六年级数学行程问题综合讲解

行程问题需要用到的基本关系: 路程=速度时间速度=路程时间时间=路程速度 题型一、相遇问题与追及问题 相遇问题当中:相遇路程=速度和相遇时间 追及问题当中:追及路程=速度差追及时间 *********画路程图时必须注意每一段路程对应的问题是相遇问题还是追及问题********** 【例题1】甲、乙两人从A地到B地,丙从B地到A地。他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。求乙的速度? 考点:多次相遇问题. 分析:本题可先据甲丙两人速度和及相遇时间求出总路程,再根据乙丙两人的相遇时间求出乙丙两人的速度和之后就能求出乙的速度了. 解答:解:(8+10)×5÷(5+1)-10 =18×5÷6-10, =15-10, =5(千米). 答:乙每小时行5千米. 点评:本题据相遇问题的基本关系式:速度和×相遇时间=路程,进行解答即可. 【例题2】甲、乙两人同时从A、B两地相向而行,第一次在离A地40米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离B地30米处,求A、B两地相距多远?分析:两次相遇问题,其实两车一起走了3段两地距离,当然也用了3倍的一次相遇时间。 40×3-30=90km 变式1、甲、乙两人同时从东西两地相向而行,第一次在离东地60米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离西侧20米处,求东西两地相距多远? 60×3-20=160km 【例题3】快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时。两车分别从两站同时开出,相向而行,在离中点18千米处相遇。甲乙两站相距多少千米? 分析:中点相遇问题,实际上是相遇问题和追及问题的综合。 第一步:相同的时间,快车比慢车多行18×2=36千米 解:∵快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时 快车与慢车的时间比是6 : 10 ∴快车与慢车的速度比是10:6=5:3 ∴相遇时,快车行了全程的:5/(5+3)=5/8 全程是225÷5/8=360(千米)

五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习 板块一多人从两端出发——相遇问题 【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米? 【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C 从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C 相遇,求甲、乙两站相距多少km? 【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离. 【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?

【巩固】甲、乙两车的速度分别为52 千米/时和40 千米/时,它们同时从 A 地出发到 B 地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。求这辆卡车的速度。 【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离. 【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B两地相距多少米? 【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?

小学奥数进位制

进位制 例1 把十进制数(3568)10写成数码与计算单位乘积的和的形式。 解(3568)10=3×103+5×102+6×101+8×100 例2 把二进制的数(101011)2写成数码与计数单位乘积的和的形式。 解(101011)2=1×25+0×24+1×23+0×22+1×21+1×20=25+23+2+1 例3 把(37)10改写成二进制数。 点拨把一个十进制数改写成二进制数,可以采用“方幂法”,即将这个十进制数写成若干个2的次幂形式,再根据例2写出这个二进制数;也可以用2连续除十进制数,然后将每次所得的余数按自下而上的顺序依次写出来,这种办法通常叫“二除取余法”,即用2除十进制数自下而上依次取余数。 解法一 (37)10=32+4+1=1×25+0×24+0×23+1×22+0×21+1×20=(100101)2解法二 (37)10=(100101)2 例4 把二进制数(110011)2改写成十进位制数。 (110011)2=1×25+1×24+0×23+0×22+1×21+1×20 =25+24+21+1 =32+16+2+1=(51)10 例5 把(394)10写成八进制数。 点拨把十进制数改写成八进制数和十进制数改写成二进制数的方法类似,可以采用“方幂法”和“八除取余法”。 解法一 (394)10=6×82+1×81+2×80=(612)8 解法二 (394)10=(612)8 例6 把(354)6改写成十进制数。 (354)6=3×62+5×61+4×60=108+30+4=(142)10 例7 把三进制数201012化为八进制的数。 点拨要想把三进制数化为八进制的数,首先将三进制的数化为十进制的数,再将此十进制的数化为八进制的数。 (201012)3=2×35+0×34+1×33+0×32+1×31+2×30=486+27+3+2=(518)10

六年级奥数行程问题讲解

行程问题(一一) 专题简析: 行程问题的三个基本量是距离、速度和时间。其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。 行程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况: (1)相向而行:相遇时间=距离÷速度和 (2)相背而行:相背距离=速度和×时间。 (3)同向而行:速度慢的在前,快的在后。 追及时间=追及距离÷速度差 在环形跑道上,速度快的在前,慢的在后。 追及距离=速度差×时间。 解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。 例题1 两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。甲车行完全程用了多少小时? 解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”。这句话的实质就是:“乙48分钟行了24千米”。可以先求乙的速度,然后根据路程求时间。也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。 解法一:乙车速度:24÷48×60=30(千米/小时) 48甲行完全程的时间:165÷30— =4.7(小时) 60解法二:48×(165÷24)—48=282(分钟)=4.7(小时) 答:甲车行完全程用了4.7小时。

挑战自我 1、甲、乙两地之间的距离是420千米。两辆汽车同时从甲地开往乙地。第一辆每小时行42千米,第二辆汽车每小时行28千米。第一辆汽车到乙地立即返回。两辆汽车从开出到相遇共用多少小时? 2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。两车同时从两地开出,相遇时甲车距B地还有多少千米? 1 千米。继续行进到下午112.510点钟时两车相距A、B两城同时相向而行。到83、甲、乙两辆汽车早上点钟分别从B两地间的距离是多少千米?、时,两车相距还是112.5千米。A1 2 例题 千米的地方相遇。之后,两车继续以原来的速度前进。各两辆汽车同时从东、西两站相向开出。第一次在离东站60 30千米处相遇。两站相距多少千米?自到达对方车站后都立即返回,又在距 中点西侧东西1—图33 从东站出发的汽车行两辆汽车行一个全程时,从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。千米,也就是说这辆汽车再行3060千米,两车走三个全程时,这辆汽车走了3个60千米。这时这辆汽车距中点了倍。找到这个关系,东、西两这站之间的距离也就可以求出来30千米的话,共行的路程相当于东、西两站路程的1.5 了。所以×3+30)÷1.5=140(千米)(60 千米。答:东、西两站相距140 挑战自我 千米的地方相遇,之后两车继续以原来的速度前进。各551、两辆汽车同时从南、北两站相对开出,第一次在离南站 15千米处相遇。两站相距多少千米?自到站后都立即返回,又在距中点南侧

五年级奥数:行程问题

行程问题(一) 讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。 行程问题的主要数量关系是: 路程=速度×时间 如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。 行程问题内容丰富多彩、千变万化。主要有一个物体的运动和两个或几物体的运动两大类。两个或几个物体的运动又可以分为相遇问题、追及问题两类。 这一讲我们学习一个物体运动的问题的一些简单的相遇问题。 例题与方法: 例1.小明上学时坐车,回家时步行,在路上一共用了90分。如果他往返都坐车,全部行程需30分。如果他往返都步行,需多少分 例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。汽车行驶了一半路程,在中途停留30分。如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少 例3.一列火车于下午1时30分从甲站开出,每小时行60千米。1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。甲、乙两站相距多少千米

例4.苏步青教授是我国着名的数学家。一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米。甲带着一只狗,狗每小时行10千米。这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。这只狗一共走了多少千米 苏步青略加思索,就把正确答案告诉了这位外国数学家。小朋友们,你能解答这道题吗 例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。东、西两地相距多少千米 练习与思考: 1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行千米。小李下午3时半骑自行车出发,、经过小时两人相遇。小李骑自行车每小时行多少千米 2.A、B两地相距60千米。两辆汽车同时从A地出发前往B地。甲车比乙

小学奥数:进制的应用.专项练习及答案解析

1. 了解进制; 2. 会对进制进行相应的转换; 3. 能够运用进制进行解题 一、数的进制 1.十进制: 我们常用的进制为十进制,特点是“逢十进一”。在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。比如二进制,八进制,十六进制等。 2.二进制: 在计算机中,所采用的计数法是二进制,即“逢二进一”。因此,二进制中只用两个数 字0和1。二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形 式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。 二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。 注意:对于任意自然数n ,我们有n 0=1。 3.k 进制: 一般地,对于k 进位制,每个数是由0,1,2,L ,1k -() 共k 个数码组成,且“逢k 进一”.1k k >() 进位制计数单位是0k ,1k ,2k ,L .如二进位制的计数单位是02,12,22,L ,八进位制的计数单位是08,18,28,L . 4.k 进位制数可以写成不同计数单位的数之和的形式 1110110n n n n k n n a a a a a k a k a k a ---=?+?++?+L L () 十进制表示形式:1010101010n n n n N a a a --=+++L ; 二进制表示形式:1010222n n n n N a a a --=+++L ; 为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数 如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数. 5.k 进制的四则混合运算和十进制一样 先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。 二、进制间的转换: 知识点拨 教学目标 5-8-2.进制的应用

六年级奥数行程问题

六年级奥数行程问题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

行程问题(一) 专题简 行程问题的三个基本量是距离、速度和时间。其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。 行程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况: (1)相向而行:相遇时间=距离÷速度和 (2)相背而行:相背距离=速度和×时间。 (3)同向而行:速度慢的在前,快的在后。 追及时间=追及距离÷速度差 在环形跑道上,速度快的在前,慢的在后。 追及距离=速度差×时间。 解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。 例题 两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。甲车行完全程用了多少小时 解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”。这句话的实质就是:“乙48分钟行了24千米”。可以先求乙的速度,然后

根据路程求时间。也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。 解法一:乙车速度:24÷48×60=30(千米/小时) 甲行完全程的时间:165÷30—4860 =(小时) 解法二:48×(165÷24)—48=282(分钟)=(小时) 答:甲车行完全程用了小时。 1、甲、乙两地之间的距离是420千米。两辆汽车同时从甲地开往乙地。第一辆每小时行42千米,第二辆汽车每小时行28千米。第一辆汽车 到乙地立即返回。两辆汽车从开出到相遇共用多少小时 2、A 、B 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时。两车同时从两地开出,相遇时甲车距B 地还有多少千米 3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。到10点钟时两车相距千米。继续行进到下午1时,两车相距还是千米。A 、B 两地间的距离是多少千米 两辆汽车同时从东、西两站相向开出。第一次在离东站60千米的地方相遇。之后,两车继续以原来的速度前进。各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。两站相距多少千米 从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千例题 挑战自我

小学六年级奥数行程问题

行程问题(一) 【知识点讲解】 基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系. 基本公式:路程=速度×时间; 路程÷时间=速度; 路程÷速度=时间 关键:确定运动过程中的位置和方向。 相遇问题:速度和×相遇时间=相遇路程(请写出其他公式) 追及问题:追及时间=路程差÷速度差(写出其他公式) 主要方法:画线段图法 基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。 相遇问题: 例1、甲乙两车同时从AB 两地相对开出,第一次相遇后两车继续行驶,各自到 达对方出发点后立即返回,第二次相遇时离B 地的距离是AB 全程的5 1。已知甲车在第一次相遇时行了120千米。AB 两地相距多少千米?

例2、甲、乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。问A、B 两城相距多少千米? 例3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米? 例4、甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少? 例5、小李从A城到B城,速度是50千米/小时,小兰从B城到A城,速度是40千米/小时。两人同时出发,结果在距A、B两城中点10千米处相遇。求A、B 两城间的距离。 例6、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时休息5分钟,小张以每小时6千米的速度每走5分休息10分钟.两人出发后多长时间第一次相遇?

五年级奥数—火车行程问题

五年级奥数训练——火车行程问题 姓名: 例1甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。乙火车在前,两火车在双轨车道上行驶。甲火车从后面追上到完全超过乙火车要用多少秒? 练习一 一列快车长150米,每秒行22米;一列慢车长100米,每秒行14米。快车从后面追上慢车到超过慢车,共需几秒钟? 例2 一列火车长180米,每秒钟行25米。全车通过一条120米的山洞,需要多长时间? 练习二 一列火车长360米,每秒行18米。全车通过一座长90米的大桥,需要多长时间? 例3 有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。现在两车相向而行,从相遇到离开需要几秒钟?

有两列火车,一列长260米,每秒行18米;另一列长216米,每秒行30米。现两列车相向而行,从相遇到相离需要几秒钟? 例4一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。求这列火车的速度。 练习四 一列火车从小明身旁通过用了15秒,用同样的速度通过一座长100米的桥用了20秒。这列火车的速度是多少? 例5甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车;若两列车齐尾并进,则甲车行30秒超过乙车。甲列车和乙列车各长多少米? 练习五 列快车长200米,每秒行22米;一列慢车长160米,每秒行17米。两列车齐头并进,快车超过慢车要多少秒?若齐尾并进,快车超过慢车要多少秒?

1、车长180米,每秒行18米;B火车每秒行15米。两火车同方向行驶,A 火车从追上B火车到超过它共用了100秒钟,求B火车长多少米? 2、火车通过200米的大桥需要80秒,同样的速度通过144米长的隧道需要72秒。求火车的速度和车长。 3、一列火车长210米,以每秒40米的速度过一座桥,从上桥到离开桥共用20秒。桥长多少米? 4、级384个同学排成两路纵队去郊游,每两个同学相隔0.5米,队伍以每分钟61米的速度通过一座长207米的大桥,一共需要多少时间? 5、叔沿铁路边散步,他每分钟走50米,迎面驶来一列长280米的列车,他与列车车头相遇到车尾相离共用了半分钟,求这列火车的速度。

小学六年级奥数第十三章进位制

学习好资料欢迎下载 第十三章进位制 知识要点 在日常生活中,我们通常使用十进制,在我们熟知的十进制中,常有O,1,2,…,9共十个数字,相加时满十就要进一。类似地,在二进制中有“满二进一”,在八进制中有“满八进一”等等。进位制的选择和使用有一定的客观标准,哪种进位制更能方便地反映某类客观事物的数量关系,人们就会采用哪种进位制。例如:1小时等于60分钟是六十进制,一年等于十二个月是十二进制等等。 一般地,设K为大于1的自然数时,K进位制的特点是: 1.“满K进一”,即相邻两个单位的进率为K,把K叫做K进位制的基数。 2.K进位制有K个不同的记数符号。如五进制用0,1,2,3,4五个记数符号。 一个K进位制的数就是各位数字与K的幂的乘积的和,其中幂指数等于相应的数字所在的位数(从右往左数)少1。 3.十进制和二进制的转化。 十进制和二进制的对应关系: 十进制1,2,3,4,5,6,7,8,9,10,… 二进制1,10,11 ,100 ,101,110,111 ,1000 ,1001,1010,… 把一个十进制数化为二进制数,只要用2连续去除,然后将每次所得的余数,按自下而上的顺序写出来。例如,把(13)10化成二进制: 把一个二进制数化为十进制数,只要把二进制数写成以2为底的幂的和的形式,再具体算出来。例如: 0123 2)+0×2+1×1 (1101)=(1×2+×2102 1)(8 =+4+10 (13) =10把问题转化到最合适的进位制中就要善于把进位制知识灵活地运用,学习进位制知识,解决问题。例如计算机就是采用二进制,充分发挥了其运行速度快的特点。例1 把十进制数(3568)写成数码与计算单位乘积的和的形式。10一个十进制整数的位数从右边第一位数起依次为个、十、百、千、万…”.计数单位点拨 ,...,用乘方的形式来写,计数单位依次为1(10,10),10,,是1,10100,10001000043,10 (210) 100123+8×10+6×10 (3568)解=3×10+5×1010说明像此题这样,利用数码和它的排列位置就可以写出任意大的整数。 写成数码与计数单位乘积的和的形式。(101011)2 例把二进制的数2它按照“满二进一”都可以用“0”和“1”两个数码来表示。任何一个二进制的数,点拨 读作“一零”。为了加以区的原则记数。十进制数“10”表示十,二进制数“10”表示二,分别表示这两种不同进位制中的数。对于二进制的整数,从右向左分,我们用,(10)(10)210.

六年级数学行程问题专项练习题

一、相遇行程问题 相遇问题的基本关系式如下:总路程=速度和×相遇时间相遇时间=总路程÷速度和另一个速度=速度和-已知的一个速度 1、两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。甲乙两地相距多少千米 2、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇 3、两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。5小时后,两列火车相距多少千米 4、甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。从开始走到第二次相遇,共用了6小时。A、B两地相距多少千米 5、、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B 城需6小时,乙车从B城到A城需12小时,两车出发后多少小时相遇 6、、王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去,遇到王欣再向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米 7、、甲乙两队学生从相距18千米的两地同时出发,相向而行。一个同学骑自行车以每小时15千米的速度在两队间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米

8、两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。两车相遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地间的距离。 9、甲、乙二人同时从A、B两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点千米的地方相遇。求A、B两地之间的距离。 10、两地相距37.5千米,甲、乙二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小时走4千米。相遇时甲、乙二人各走了多少千米 11、东、西两车站相距564千米,两列火车同时从两站相对开出,经6小时相遇。第一列火车比第二列火车每小时快2千米。相遇时这两列火车各行了多少千米 12、在一次战役中,敌我双方原来相距62.75千米。据侦察员报告,敌人已向我处前进了11千米。我军随即出发迎击,每小时前进6.5千米,敌人每小时前进5千米。我军出发几小时后与敌人相遇 13、在复线铁路上,快车和慢车分别从两个车站开出,相向而行。快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。从两车头相遇到两车的尾部离开,需要几秒钟 14、甲、乙两个车站相距550千米,两列火车同时由两站相向开出,5小时相遇。快车每小时行60千米。慢车每小时行多少千米 15、两辆汽车同时从相距465千米的两地相对开出,5小时后两车还相距120千米。一辆汽车每小时行37千米。另一辆汽车每小时行多少千米

(完整版)小学五年级-奥数--行程问题

第二十四讲行程问题---相遇问题 例1:甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走6.2千米,乙每小时走4.3千米。两人几小时后相遇? 练习 1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。两地间的水路长多少千米? 2,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。两车出发后多少小时相遇? 3、一列快车和一列慢车分别从甲乙两地同时相向而行。快车10小时可以到达乙地,慢车15小时可以到达甲地。已知快车每小时比慢车多行20千米,两车出发后几小时相遇? 例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。两车在距中点42.9千米处相遇,东、西两地相距多少千米? 练习1.甲、乙两汽车同时从两地出发,相向而行。甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。求两地之间的路程是多少千米? 2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。求A、B两城之间的距离? 3.甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?

例3 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米? 练习 1、兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米? 2.汽车从甲地开往乙地,每小时行32千米。4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地? 3、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。已知甲车每小时比乙车快20千米,则A、B两地相距多少千米? 作业 1、甲,乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇.东西两城相距多少千米? 2、.甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行84千米,乙车每小时行68千米,两车在距中点32千米处相遇.东西两城相距多少千米? 3、.一辆客车和一辆货车同时从甲,乙两地相向而行.客车每小时行80千米,货车每小时行65千米。货车先行51千米后客车才出发,结果两车正好在甲乙两地中点相遇,这时客车行了多少千米? 4、甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?

10小学奥数——数阵+进位制 试题及解析

小学奥数——数阵、进位制 一.选择题(共16小题) 1.在右图的66 ?方格内,每个方格中只能填A,B,C,D,E,F中的某个字母,要求每行、每列、每个标有粗线的23 ?长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是() A.E,C,D,F B.E,D,C,F C.D,F,C,E D.D,C,F,E 2.如图,请将0、1、2、?、14、15 填入一个的表格中,使得每行每列的四个数除以4的 余数都恰为0、1、2、3各一个,而除以4的商也恰为0、1、2、3各一个.表格中已经填好了几个数,那么,这个表格中最下方一行的四个数的乘积是() A.784 B.560 C.1232 D.528 3.如图,将前9个正奇数1,3,5,7,9,11,13,15,17放在33 ?的幻方中,使横向、纵向和对角线方向数字和相等,则( +=) A E A.32 B.28 C.26 D.24 4.将1,2,3,4,5,6分别填入66 ?的方格网(如图所示)的36个小方格中,使得每一行每一列中的6个数1,2,3,4,5,6各出现一次,并且满足与不等号相邻的两个数中小

数是大数的约数,那么,第二行从左到右的第6个数是()(左图是一个33 ?的例子) A.5 B.4 C.3 D.2 5.9、“九宫阵”是一个99 ?的方阵,它是由九个33 ?的“九宫格”(图中黑实线围住的方阵)组成.请你在下图中将数字1,2,3,4,5,6,7,8,9分别填入空格内,使得每行、每列及9个“九宫格”中数字1~9均恰好出现一次.当填写完后,那么,位于第4行第4列的数字是() A.2 B.4 C.6 D.8 6.在如图方格表中的每个方格中填人一个字母,使得方格表中每行、每列及两条对角线上的 四个方格中的字母都是A,B,C,D,那么表中★所在方格应填的字母是() A.A B.B C.C D.D 7.我国古代的“河图”是由33 ?的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图给出了“河图”的部分点图,请你推算出P处所对应的点图.有以下4个点图可供选择

小学六年级奥数行程问题[技巧]

小学六年级奥数行程问题[技巧] 行程问题,一) 【知识点讲解】 基本概念,行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系. 基本公式,路程=速度×时间; 路程?时间=速度; 路程?速度=时间 关键,确定运动过程中的位置和方向。 相遇问题,速度和×相遇时间=相遇路程(请写出其他公式) 追及问题,追及时间=路程差?速度差(写出其他公式) 主要方法,画线段图法 基本题型,已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。 相遇问题: 例1、甲乙两车同时从AB两地相对开出,第一次相遇后两车继续行驶,各自到1达对方出发点后立即返回,第二次相遇时离B地的距离是AB全程的。已知甲5车在第一次相遇时行了120千米。AB两地相距多少千米, 例2、甲、乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。问A、B两城相距多少千米,

例3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行 每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米, 例4、甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行 52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少, 例5、小李从A城到B城,速度是50千米/小时,小兰从B城到A城,速度是40千米/小时。两人同时出发,结果在距A、B两城中点10千米处相遇。求A、B 两城间的距离。 例6、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时休息5分钟,小张以每小时6千米的速度每走 5分休息10分钟.两人出发后多长时间第一次相遇? 家庭作业 1、一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1 小时,客车每小时行多少千米? 2、一个600米长的环形跑道上,兄弟两人如果同时从同一起点按顺时针反方向跑步,每隔12分钟相遇一次,如果两人同从同一起点反方向跑步,每隔4分中相遇一次。兄弟两人跑一圈各要几分钟, 3、A、B两地相距207千米,甲、乙两车8,00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8,30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分, 4、一辆小轿车,一辆货车两车分别从A、B两地出发,相向而行。出发时,小

五年级奥数行程问题

五年级奥数行程问题标准化管理部编码-[99968T-6889628-J68568-1689N]

行程问题专题训练 一行程问题之基本公式运用 1 、甲和乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两地在距中点32千米处相遇。东西两地相距多少千米? 2、快车和慢车同时从甲乙两地相向开出,快车每小时40千米,经过3小时,快车已经驶过中点25千米,这时快车和慢车还相距7千米。慢车每小时行多少千米? 3、甲乙两人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东西两村相距多少千米? 4、甲乙两队学生从相距18千米的两地同时出发,相向而行。一个同学骑自行车以每小时14千米的速度,在两队之间不停的往返联络。甲队每小时行5千米,乙队每小时行4千米。两队每小时4千米。两队相遇时,骑自行车的同学共行多少千米? 5、甲乙两车早上8时分别从AB两地同时相向出发,到10时两车相距112.5千米。两车继续行驶到下午1时,两车相距还是112.5千米。AB两地相距多少千米? 二行程问题之追击问题 6、中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前。求几小时后小轿车追上中巴车? 7、一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶。途中因汽车出故障修车2小时。因为要按时到达乙地,修好车后必须每小时多行30千米。问汽车是在离甲地多远处修车的? 8、甲汽车,乙跑步,二人同时从一点出发沿着长四千米的环形公路方向进行晨练。出发后十分钟,甲便从乙身后追上了乙,已知两人速度和是每分钟行700米,求甲乙两人的度各是多少? 9、甲乙丙三人都从A地到B地,早晨六点钟,甲乙两人一起从A地出发,甲每小时走5千米,乙每小时走4千米。丙上午八时才从A地出发,傍晚六点,甲丙同时到达B,问丙什么时候追上乙? 10、甲乙丙三人步行的速度分别是每分钟100米、90米、75米。甲在公路上A 处,乙丙同时在公路上B处,三人同时出发,甲乙相遇3分钟后,甲丙又相遇了。求AB之间的距离。 行程问题之列方程法 11、一辆车从甲地开往乙地平均每小时行20千米。到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。求甲乙两地间的路程? 12、一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15千米可早到0.4小时,如果每小时走12千米就要迟到0.25小时,他去某地的路程有多远? 13、东西两地相距5400米,甲乙从东地,丙从西地同时出发,相向而行。甲每分钟行55米,乙每分钟60千米,丙每分钟行70千米。多少分钟后乙正好走到甲丙两人之间的中点处?

第五讲——进位制问题

第五讲进位制问题 例题1 (1)2013=() 5=() 8 =() 12 =() 16 (2)(2012) 5=() 10 ;(3)(2012) 2 =() 10 练习1 (3A2) 12=() 10 ;(ADD) 16 =() 10 ; (2012) 5=() 12 ;(2012) 8 =() 12 例题2 (1)把三进制数12120120110110121121改写为九进制,它从左向右数第1位数字是多少? (2)(111011001) 2=() 4 =() 8 练习2 (120011221) 3=() 9 例题3 (5453) 7+(6245) 7 =() 7 练习3 (123) 5 (123) 5 =() 5

例题4 在6进制中有三位数abc,化为9进制的cba,这个三位数在十进制中是多少? 练习4 在7进制中有三位数abc,化为9进制为cba,这三位数在十进制中是多少? 挑战极限 例题五一个天平,物品必须放在左盘,砝码必须放在右盘,那么为了能称出1克到1000克,至少需要多少个砝码? 例题6 一本书共有2013页,第一天看一页书,从第二天起,每天看到的页数都是以前各天的总和。如果直到最后剩下的不足以看一次时就一次看完,共 需要多少天?

作业1、进制互化 (1)(11202) 4=() 10 ;(2)(1CA) 16 =() 10 (2)(3120) 10=() 16 ;(4)(1248) 10 =() 5 (5)(11202) 4=() 9 ;(6)(157) 9 =()16 2 、(1)(202) 4+(323) 4 =() 4 ;(2)(21) 5 (322) 5 =() 5 3 、一个十进制三位数(abc) 10 ,其中a,b,c均代表某个数码,它的二进制表达式 是一个七位数(1abcabc) 2 ,这个十进制的三位数是多少? 4 、一个自然数用三进制和四进制表示都为三位数,并且它的各位数字的排列顺序恰好相反,这个自然数用十进制表示是多少? 5 、 a,b是自然数,a进制下的数47和b进制下的数74相等,a与b的和的最小值是多少?

六年级奥数行程问题答案3

第三十五周 行程问题(三) 例题1: 客车和货车同时从A 、B 两地相对开出。客车 每小时行驶50千米,货车的速度是客车的80%,相遇后客车继续行3.2小时到达B 地。A 、B 两地相距多少千米? 图35——1A B 货车 客车 如图35-1所示,要求A 、B 两地相距多少千米,先要求客、货车合行全程所需的时间。客车3.2小时行了50×3.2=160(千米),货车行160千米所需的时间为: 160÷(50×80%)=4(小时) 所以(50+50×80%)×4=360(千米) 答:A 、B 两地相距360千米。 练习1: 1、甲、乙两车分别从A 、B 两地同时出发相向而行,相遇点距中点320米。已知甲的 速度是乙的速度的56 ,甲每分钟行800米。求A 、B 两地的路程。 2、甲、乙两人分别从A 、B 两地同时出发相向而行,匀速前进。如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。那么 A 、 B 两地的距离是多少千米? 3、甲、乙两人同时骑自行车从东、西两镇相向而行,甲、乙的速度比是3:4。已知甲 行了全程的13 ,离相遇地点还有20千米,相遇时甲比乙少行多少千米?

例题2: 从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是1:2:3,某人走这三段路所用的时间之比是4:5:6。已知他上坡时的速度为每小时2.5千米,路程全长为20千米。此人从甲地走到乙地需多长时间? 要求从甲地走到乙地需多长时间,先求上坡时用的时间。上坡的路程为20×11+2+3 =103 (千米),上坡的时间为103 ÷2.5=43 (小时),从甲地走到乙地所需的时间为:43 ÷44+5+6 =5(小时) 答:此人从甲地走到乙地需5小时。 练习2: 1、从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是2:3:5,小亮走这三段路所用的时间之比是6:5:4。已知小亮走平炉时的速度为每小时4.5千米,他从甲地走到乙地共用了5小时。问:甲、乙两地相距多少千米? 3、青青从家到学校正好要翻一座小山,她上坡每分钟行50米,下坡速度比上坡快40%,从家到学校的路程为2800米,上学要用50分钟。从学校回家要用多少时间?

相关文档
最新文档