一元二次方程的基本解法

合集下载

解一元二次方程的三种基本方法

解一元二次方程的三种基本方法

解一元二次方程的三种基本方法解一元二次方程的三种基本方法一元二次方程是数学中的基础概念之一,它的解法有很多种。

在这里,我们将介绍三种基本的解法。

一、配方法(1)将方程写成“完全平方”的形式。

例如,对于方程x²+6x–16=0,将右边的常数项移到左边,变为x²+6x=16,然后再将6x一分为二,得到x²+3x+3x=16,继续变形,即可让其成为完全平方。

(2)设定新的变量,使其成为一个完全平方。

例如,对于x²+6x–16=0,令y=x+3,代入原方程,得到y²–9+6y–16=0,简化后得到y²+6y–25=0,再将其变形成完全平方,可得(y+3)²=34,解得y= ± √34–3,代入y=x+3得到x=-3±√34。

二、公式法在公式法中,我们将方程ax²+bx+c=0写成:x=[–b±√(b²–4ac)]/2a,即可求得方程的两个根。

例如,对于方程x²+6x–16=0,可将a=1,b=6,c=–16带入公式中,计算得到x=-3±√34。

三、图像法对于一元二次方程y=ax²+b x+c,我们可以将其用一条二次函数的图像表示出来,相交坐标轴的两个点就是其解。

例如,对于方程x²+6x–16=0,我们可以作出相应的二次函数的图像,其中一条相交坐标轴的边界为x=-4和x=–2,因此可以解得方程的两个根为x=-4和x=-2。

总结以上三种方法都可以用来解一元二次方程。

配方法被广泛地应用于题目的解答中,因为它在操作方式上比较简单,尤其是在遇到较为复杂的方程式时有很好的实际应用。

公式法是一种少有的利用抽象公式的方法,尤其是在解有较大常数的一元二次方程时,可以简化计算。

图像法则不太常用,但在一些情况下,例如探究关于两个变量的函数的等高线时,它是非常实用的。

一元二次方程的解法(知识梳理)

一元二次方程的解法(知识梳理)

一元二次方程的解法
1、知识要点:一元二次方程和一元一次方程都是整式方程
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。

 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

2、方法
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±
.
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c
 将二次项系数化为1:x2+
x=-
方程两边分别加上一次项系数的一半的平方:
x2+
x+(
)2=-
+(
)2方程左边成为一个完全平方式:(x+
)2=
当b2-4ac≥0时,x+

 ∴x=
(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=
(b2-4ac≥0)就可得到方程的根。

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

一元二次方程的解法及应用

一元二次方程的解法及应用

一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。

解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。

本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。

一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。

具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。

例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。

二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。

其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。

例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。

三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。

一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。

具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。

例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。

一元二次方程的解法汇总

一元二次方程的解法汇总

一元二次方程的解法汇总一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知常数,且a ≠ 0。

解一元二次方程是数学中非常重要的一部分,它在实际问题中的应用广泛,如物理、经济学等领域。

本文将对一元二次方程的解法进行汇总,包括求解公式、配方法、因式分解法和图像法等。

1. 求解公式法求解公式法是最常用的解一元二次方程的方法。

根据一元二次方程的定义可知,其解可以通过求根公式来得到。

一元二次方程的求根公式为x = (-b ± √(b^2 - 4ac)) / 2a。

其中,±表示两个解,分别对应加号和减号。

这个公式又称为二次方程的根公式,可以直接带入方程的系数a、b、c来计算方程的解。

2. 配方法当一元二次方程的系数不方便使用求解公式的时候,可以采用配方法来求解。

配方法的基本思想是将一元二次方程的二次项与一次项相乘,使其变为一个完全平方的形式。

具体步骤如下:- 将一元二次方程写成a(x^2 + b/a*x) + c = 0的形式,其中b为一次项的系数。

- 将方程中的b/a*x一项配方,即加上一个常数使其变为一个完全平方的形式。

- 将方程中的常数项与刚刚配方得到的项合并,得到一个完全平方的二次项。

- 将方程进行因式分解,得到一个一次项与一个完全平方的二次项相乘的形式。

- 令一次项与完全平方的二次项分别等于0,解得方程的解。

3. 因式分解法因式分解法是一种利用因式分解的方法来解一元二次方程的方法。

当一元二次方程的系数较为复杂时,可以尝试使用因式分解法来求解。

具体步骤如下:- 将一元二次方程写成(a1x + b1)(a2x + b2) = 0的形式,其中a1、a2、b1、b2为已知常数。

- 将方程进行因式分解,得到两个一次项相乘的形式。

- 令每个一次项等于0,解得方程的解。

4. 图像法图像法是一种通过观察二次函数的图像来求解一元二次方程的方法。

根据二次函数的图像特征,可以直观地确定一元二次方程的解。

一元二次方程的解法

一元二次方程的解法

一元二次方程的解法一元二次方程是数学中非常重要的一个概念,它可以用来描述很多实际问题。

在解一元二次方程时,我们需要运用一些特定的方法和技巧。

本文将介绍一些常见的解一元二次方程的方法,并探讨它们的应用。

首先,我们来回顾一下一元二次方程的一般形式:ax^2 + bx + c = 0。

其中,a、b、c是已知的实数,且a不等于0。

解一元二次方程的关键在于求出方程的根,即方程的解。

下面将介绍几种常见的解法。

一、因式分解法当一元二次方程可以因式分解时,我们可以通过因式分解的方式求解。

例如,对于方程x^2 - 5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0。

根据因式分解的性质,我们知道当两个因子中的任意一个为0时,方程成立。

因此,我们得到两个根x = 2和x = 3。

二、配方法当一元二次方程无法直接因式分解时,我们可以通过配方法求解。

配方法的基本思想是通过添加一个适当的常数,将方程转化为一个可以因式分解的形式。

例如,对于方程x^2 + 6x + 8 = 0,我们可以通过添加一个常数使其变为(x + 3)^2 - 1 = 0。

然后,我们可以将其分解为(x + 3 + 1)(x + 3 - 1) = 0,得到两个根x = -4和x = -2。

三、求根公式求根公式是解一元二次方程的一种常用方法。

根据求根公式,一元二次方程ax^2 + bx + c = 0的根可以通过以下公式计算:x = (-b ± √(b^2 - 4ac)) / (2a)。

例如,对于方程x^2 - 4x + 4 = 0,我们可以代入a = 1,b = -4,c = 4,然后使用求根公式计算得到两个根x = 2和x = 2。

需要注意的是,当方程的判别式b^2 - 4ac小于0时,方程没有实数根,只有复数根。

四、图像法图像法是一种直观的解一元二次方程的方法。

我们可以通过绘制方程的图像来观察方程的根。

当方程的图像与x轴相交时,对应的x值即为方程的根。

一元二次方程的标准解法

一元二次方程的标准解法

一元二次方程的标准解法
一元二次方程的标准解法如下:
对于一元二次方程形如ax²+bx+c=0的情况,其中a、b、c为已知实数,且a ≠ 0。

1. 首先,计算该方程的判别式Δ = b² - 4ac。

根据Δ的值可以分
为三种情况:
- 当Δ > 0时,方程有两个不相等的实数根。

根据求根公式可得: x₁ = (-b + √Δ) / 2a
x₂ = (-b - √Δ) / 2a
- 当Δ = 0时,方程有两个相等的实数根。

根据求根公式可得:
x₁ = x₂ = -b / 2a
- 当Δ < 0时,方程没有实数根,只有两个共轭虚根。

根据求根
公式可得:
x₁ = (-b + √-Δ) / 2a
x₂ = (-b - √-Δ) / 2a
2. 根据计算得到的解x₁和x₂验证是否满足原方程。

将x₁和x₂代
入方程ax²+bx+c=0中,若两个解均使方程成立,则证明解是正确的。

标准解法中,通过求解方程的判别式Δ,可以判断方程的根的性质。

然后利用求根公式得到方程的实数根或共轭虚根。

最后通过验证解的
方法,验证计算得到的解是否满足原方程。

一元二次方程解法

一元二次方程解法

01一元二次方程有四种解法,它们分别是直接开平方法,配方法,公式法和因式分解法。

一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。

其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

有四种解法,它们分别是直接开平方法,配方法,公式法和因式分解法。

一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。

其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

1、直接开平方法例:解方程(3x+1)2=7;(3x+1)2=7;∴(3x+1)2=7;∴3x+1=±√7(注意不要丢解符号);∴x=﹙﹣1±√7﹚/3。

2、配方法例:用配方法解方程x²+4x-8=0:将常数项移到方程右边x²+4x=8;方程两边都加上一次项系数一半的平方:x²+4x+4=8+4;配方:(x+2)2=12;直接开平方得:x+2=±√12;∴x=-2±√12。

3、公式法例:用公式法解方程2x²-8x=-5;将方程化为一般形式:2x²-8x+5=0;∴a=2,b=-8,c=5;b²-4ac=(-8)²-4×2×5=64-40=24>0;∴x=[(-b±√(b²-4ac)]/(2a)。

4、因式分解法例:用因式分解法解方程y2+7y+6=0;方程可变形为(y+1)(y+6)=0;y+1=0或y+6=0;∴y1=-1,y2=-6。

一元二次方程详细解法大全

一元二次方程详细解法大全

判别式法解一元二次方程详细过程7x2−4x−3=0a=7;b=−4;c=−3确定各项系数∆=b2−4ac=(−4)2−4×7×(−3)=16+84=100x1=−b+√∆2a x2=−b−√∆2a必背公式代入数值:x1=4+√1002×7=4+1014=1414=1x2=4−√1002×7=4−1014=−614=−37若∆<0,则方程无解。

此方法为解一元二次方程的万能方法。

配方法解一元二次方程详细过程7x2−4x−3=0x2−47x−37=0 除以7,二次项系数化1x2−2×27×x−37=0x2−2×27×x+(27)2−(27)2−37=0x2−2×27×x+(27)2−(27)2−37=0绿色部分为完全平方公式(x−27)2−(27)2−37=0(x−27)2=2549①x−27=±57x1=57+27=1 x2=−57+27=−37此方法为解一元二次方程的万能方法若上面①式中等号右边为负数,方程无解。

十字相乘法解一元二次方程详细过程7x2−4x−3=0二次项系数:7一次项系数:-4常数项:-3对二次项系数和常数项进行拆分7= 7 × 1−3=3 × −1交叉相乘之和等于中间一次项系数7×(−1)+3×1=−7+3=−4则该方程可写为:(7x+3)(x−1)=0则方程的解为:7x+3=0 或 x−1=0x1=−37x2=1此方程为解一元二次方程最快速的方法但仅适用于有解且解为整数或分数的方程当解为根式时不能用。

上面讲的都是普通一元二次方程的解法对于一些特殊的一元二次方程,则还有一些特殊的解法,下面为同学们一一列举1.无常数项型ax2+bx=0例如:5x2+3x=0把一个x提到“( )”外面得到:x(5x+3)=0x=0 或5x+3=0x1=0 x2=−3 52.无一次项型ax2+c=0例如:5x2−7=05x2=7x2=75x=±√7 53.完全平方型(ax+b)2=c例如:(5x+3)2=95x+3=±35x=3 或 5x=−3x1=35 x2=−35。

一元二次方程的解法

一元二次方程的解法

一元二次方程的解法一元二次方程的解法有:(注:以下^ 是平方的意思。

)一、直接开平方法。

如:x^2-4=0解:x^2=4x=±2(因为x是4的平方根)∴x1=2,x2=-2二、配方法。

如:x^2-4x+3=0解:x^2-4x=-3配方,得(配一次项系数一半的平方)x^2-2*2*x+2^2=-3+2^2(方程两边同时加上2^2,原式的值不变)(x-2)^2=1【方程左边完全平方公式得到(x-2)^2】x-2=±1x=±1+2∴x1=1,x2=3三、公式法。

(公式法的公式是由配方法推导来的)-b±∫b^2-4ac(-b加减后面是根号下b^2-4ac)公式为:x=-------------------------------------------(用中2a文吧,希望你能理解:2a分之-b±根号下b^2-4ac)利用公式法首先要明确什么是a、b、c。

其实它们就是最标准的二元一次方程的形式:ax^2+bx+c=0△=b2-4ac称为该方程的根的判别式。

当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根。

有些时候,做到b2-4ac<0时,需要讨论△,因为根号下的数字是非负数,<0也就没有实数根,也就没有做的意义了。

a代表二次项的系数,b代表着一次项系数,c是常数项注意:用公式法解一元二次方程时首先要化成一般形式,也就是ax^2+bx+c=0的形式,然后才能做。

解题时按照上面的公式,把数字带入计算就OK了。

这对任何一元二次方程都可以操作。

四、十字相乘法。

(这种方法在初中教材上没有,但是老师还是带着说了一点。

相信在高中已经学过了,我就简单的说一下。

)十字相乘简单的说就是交叉相乘,把常数项分解成积等于常数项,和为一次项的系数。

如:x^2+3x+2=0x +1x +2(十字相乘时可以写成这种形式,因为,1*2等于2,且1+2等于3,符合原方程。

一元二次方程全部解法

一元二次方程全部解法

一元二次方程全部解法一元二次方程是高中数学中常见的一个概念,它由形如ax^2+bx+c=0的方程组成,其中a、b、c为已知常数,x为未知数。

解一元二次方程的方法有多种,包括公式法、配方法、因式分解法等。

本文将以一元二次方程的全部解法为题,详细介绍这些解法的原理和步骤。

一、公式法解一元二次方程公式法是解一元二次方程最常用的方法之一。

对于方程ax^2+bx+c=0,其中a、b、c为已知常数,x为未知数,可以使用以下公式求解:x=(-b±√(b^2-4ac))/(2a)该公式中的±表示两个解,分别对应方程的两个根。

当b^2-4ac大于0时,方程有两个不相等的实数根;当b^2-4ac等于0时,方程有两个相等的实数根;当b^2-4ac小于0时,方程没有实数根,但可以有两个共轭复数根。

解一元二次方程的步骤如下:1. 根据方程的系数a、b、c,计算出b^2-4ac的值;2. 判断b^2-4ac的正负情况,确定方程的解的性质;3. 使用上述公式计算方程的解。

二、配方法解一元二次方程配方法也是解一元二次方程常用的方法之一。

对于方程ax^2+bx+c=0,其中a、b、c为已知常数,x为未知数,可以通过配方法将方程转化为完全平方的形式,从而求解方程。

配方法的步骤如下:1. 将方程的常数项c拆分成两个数的乘积,使得这两个数的和等于方程的一次项系数b;2. 将方程的二次项系数a移到方程的一边,并在另一边配方;3. 将配方后的表达式转化为完全平方;4. 对方程两边同时开根号,得到方程的解。

三、因式分解法解一元二次方程对于一些特殊的一元二次方程,可以通过因式分解的方法来求解。

这种方法适用于方程的二次项系数为1的情况。

因式分解法的步骤如下:1. 将方程移项,使方程等于0;2. 将方程分解为两个一次因式的乘积;3. 令每个一次因式等于0,解出方程的根。

四、其他方法解一元二次方程除了公式法、配方法和因式分解法外,还有一些其他的方法可以用来解一元二次方程。

一元二次方程的解法总结

一元二次方程的解法总结

一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。

一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。

顶点式:y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²—4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)²=n(n≥0)的方程,其解为x=m±配方法:1。

将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2。

将二次项系数化为13。

将常数项移到等号右侧4。

等号左右两边同时加上一次项系数一半的平方5。

将等号左边的代数式写成完全平方形式6。

左右同时开平方7.整理即可得到原方程的根公式法:1。

化方程为一般式:ax²+bx+c=0 (a≠0)2。

确定判别式,计算Δ(=b²—4ac);3。

若Δ>0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。

用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。

用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x—h)²+k(a≠0)。

一元二次方程的解法规律总结

一元二次方程的解法规律总结

一元二次方程的解法规律总结1.一元二次方程的解法1直接开平方法:根据平方根的意义,用此法可解出形如a x 2=a ≥0,b )a x (2=-b ≥0类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2=-的形式,也可以用此法解.2因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程xx -3=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程xx -3=0有两个根,而不是一个根. 3配方法:任何一个形如bx x 2+的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,22226726x 6x ⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++,即2)3x (2=+,从而得解. 注意:1“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1.2解一元二次方程时,一般不用此法,掌握这种配方法是重点.3公式法:一元二次方程0c bx ax 2=++a ≠0的根是由方程的系数a 、b 、c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方程的一般步骤:①先把方程化为一般形式,即0c bx ax 2=++a ≠0的形式;②正确地确定方程各项的系数a 、b 、c 的值要注意它们的符号;③计算0ac 4b 2<-时,方程没有实数根,就不必解了因负数开平方无意义;④将a 、b 、c 的值代入求根公式,求出方程的两个根.说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法.2.一元二次方程根的判别式一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=∆叫做一元二次方程0c bx ax 2=++的根的判别式.△>0⇔方程有两个不相等的实数根.△=0⇔方程有两个相等的实数根. △<0⇔方程没有实数根.判别式的应用1不解方程判定方程根的情况;2根据参数系数的性质确定根的范围;3解与根有关的证明题.3.韦达定理及其应用定理:如果方程0c bx ax 2=++a ≠0的两个根是21x x ,,那么a c x x ab x x 2121=⋅-=+,. 当a =1时,c x x b x x 2121=⋅-=+,.应用:1已知方程的一根,不解方程求另一根及参数系数;2已知方程,求含有两根对称式的代数式的值及有关未知系数;3已知方程两根,求作以方程两根或其代数式为根的一元二次方程;4已知两数和与积求两数.4.一元二次方程的应用1面积问题;2数字问题;3平均增长率问题.步骤:①分析题意,找到题中未知数和题给条件的相等关系包括隐含的;②设未知数,并用所设的未知数的代数式表示其余的未知数;③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求的答数是否符合题意,并做答.这里关键性的步骤是②和③.注意:列一元二次方程应用题是一元一次方程解应用题的拓展,解题的方法是相同的,但因一元二次方程有两解,要检验方程的解是否符合题意及实际问题的意义.。

一元二次方程五大解法

一元二次方程五大解法

一元二次方程五大解法
1、直接开平方法。

对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。

2、配方法。

在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。

3、公式法。

公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。

用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。

4、因式分解法。

因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节。

5、图像解法。

一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。

当△>0时,则该函数与x轴相交(有两个交点)。

当△=0时,则该函数与x轴相切(有且仅有一个交点)。

当△<0时,则该函数与轴x相离(没有交点)。

一元二次方程的判别式。

利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。

一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。

①当△>0时,方程有两个不相等的实数根。

②当△=0时,方程有两个相等的实数根。

③当△<0时,方程无实数根,但有2个共轭复根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的基本解法(1)龙中:徐传华
知识点讲解:
•一元二次方程的解法:
1.直接开平方法
2.配方法
3.公式法
4.因式分解法
一、直接开平方法

如果一个数x 的平方等于a ,即x 2=a.记作:a x ±=ax 2+bx+c=0(a ≠0)
1.b=0,c=0.ax 2=0
2.b=0,c ≠0.ax 2+c=0
3.b ≠0,c≠0.
如:x 2 =16,x 2 =72,x 2 =1/3,x 2+2x+1=0
(a≥0)
•练习:用直接开平方法解下列方程?
(1)y 2-12=0.
(2)2x 2=8.
().83-x 2
12=(3)
•例1:用直接开平方法解下列方程?
(1) (3x+2)(3x-2)=12.
(3)(x-m)2=n
(4)x 2+4x+4=0()2
33252=+-x x ()63422
=-x (2)
•例2:解关于x的方程?
(1) (2x+3)2=(3x+2)2
(2) (5-2x)2=9(x+3)2
二、配方法
•平方差公式:
a 2+2ab+
b 2=(a+b)2 a 2-2ab+b 2=(a-b)练习:填空
(1) x 2+10x+ =(x+ )
2(2) x 2-12x+ =(x-)
2(3) x 2+5x+ =(x+ )2(4) ()223
2x -=+-x x
•例3:用配方法解下列方程?()024x .12=++x ()03161x .22=-+x ()y
321y 332=+()23
1x 3242=+x
配方法解一元二次方程的一般步骤:①移项:把一元二次方程中含有的未知的项
移到方程的左边,常数项移到方程的右边。

②系数化1:根据等式的性质,把二次项系数化为1.
③配方:将方程两边都加上一次项系数一半
的平方,把原方程变形为(x+m)2=n的形式。

④开平方:当n≥0时,用直接开平方法解变
形后的方程;当n<0时,原方程无实数解。

•高难题目挑战:
例4:用配方法解关于x的方程?x2-2x+k=0。

相关文档
最新文档